CN103728551A - Analog circuit fault diagnosis method based on cascade connection integrated classifier - Google Patents
Analog circuit fault diagnosis method based on cascade connection integrated classifier Download PDFInfo
- Publication number
- CN103728551A CN103728551A CN201310034374.0A CN201310034374A CN103728551A CN 103728551 A CN103728551 A CN 103728551A CN 201310034374 A CN201310034374 A CN 201310034374A CN 103728551 A CN103728551 A CN 103728551A
- Authority
- CN
- China
- Prior art keywords
- fault
- classifier
- algorithm
- diagnosis
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 41
- 238000005516 engineering process Methods 0.000 claims abstract description 25
- 230000010354 integration Effects 0.000 claims abstract description 16
- 230000004044 response Effects 0.000 claims abstract description 11
- 238000000513 principal component analysis Methods 0.000 claims abstract description 7
- 238000000605 extraction Methods 0.000 claims abstract description 6
- 238000010276 construction Methods 0.000 claims abstract description 4
- 241000288113 Gallirallus australis Species 0.000 claims description 22
- 238000012706 support-vector machine Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 9
- 238000003066 decision tree Methods 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000007418 data mining Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000007635 classification algorithm Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000002620 method output Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Tests Of Electronic Circuits (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
Abstract
本发明公开了一种模拟电路的故障诊断方法及其实现方式。发明的内容分为三部分:(1)模拟电路故障特征信息提取;(2)故障分类器构造;(3)算法软件实现。该方法包括以下步骤:故障特征信息库的构造,采用信息熵最大原则,选取最优母小波,对被测电路的响应节点进行小波分解,提取被测电路的最优特征,利用主成分分析对故障特征进行降维;故障分类与智能诊断,根据获得的故障特征信息,利用多分类器级联模型和分类器集成技术构造故障诊断器辨识存在的故障及其原因;采用C#.NET平台,结合Weka软件对算法进行具体实现。本发明的故障诊断方法及其实现方式具有故障诊断性能更高、诊断范围更广和算法健壮性、可解释性更强的优点。The invention discloses a fault diagnosis method of an analog circuit and its realization. The content of the invention is divided into three parts: (1) extraction of analog circuit fault feature information; (2) fault classifier construction; (3) algorithm software implementation. The method includes the following steps: constructing the fault feature information database, adopting the principle of maximum information entropy, selecting the optimal mother wavelet, performing wavelet decomposition on the response nodes of the tested circuit, extracting the optimal features of the tested circuit, and using principal component analysis to analyze Dimensionality reduction of fault features; fault classification and intelligent diagnosis, according to the obtained fault feature information, using multi-classifier cascade model and classifier integration technology to construct a fault diagnostic device to identify existing faults and their causes; using C#.NET platform, combined with The Weka software implements the algorithm concretely. The fault diagnosis method and its realization method of the present invention have the advantages of higher fault diagnosis performance, wider diagnosis range, stronger algorithm robustness and stronger explainability.
Description
技术领域technical field
本发明涉及一种模拟电路的故障诊断方法及其实现方式。The invention relates to a fault diagnosis method of an analog circuit and its realization.
背景技术Background technique
模拟电路的故障诊断始于20世纪60年代,对其的理论研究是从网络元件参数可解性开始的,但由于其独特的困难如故障状态多样性、元件参数的容差性、信息不足以及结构模型的复杂性等,使得对于模拟电路的故障诊断的研究发展相对比较缓慢,其测试与故障诊断一直以来都成为困扰电路测试工业的难题。20世纪90年代后,随着人工智能技术的发展,模糊理论,小波技术以及一些机器学习方法都相继应用于该领域并取得了良好的效果,但其都存在片面性,对解决实际的模拟电路故障诊断与分析问题都还多多少少存在一定的差距。与此同时,模拟电路故障诊断的实际需求却不断增大。因此,研究一种对模拟电路板准确、快速的故障检测和故障定位方法,缩短检测维护时间及降低维修成本,对于完成电子设备中模拟电路板的保障维修具有重大意义。Fault diagnosis of analog circuits began in the 1960s, and its theoretical research started from the solvability of network element parameters. However, due to its unique difficulties such as diversity of fault states, tolerance of element parameters, insufficient information and Due to the complexity of the structural model, etc., the development of research on fault diagnosis of analog circuits is relatively slow, and its testing and fault diagnosis has always been a problem that plagues the circuit testing industry. After the 1990s, with the development of artificial intelligence technology, fuzzy theory, wavelet technology and some machine learning methods have been applied in this field and achieved good results, but they all have one-sidedness and have no effect on solving actual analog circuit faults. There is still a certain gap between diagnosis and analysis. At the same time, the actual demand for fault diagnosis of analog circuits is constantly increasing. Therefore, it is of great significance to study an accurate and fast fault detection and fault location method for analog circuit boards, shorten the detection and maintenance time and reduce maintenance costs for the maintenance of analog circuit boards in electronic equipment.
发明内容Contents of the invention
本发明公开一种模拟电路的故障诊断方法及其实现方式,包括:信号的故障特征提取、故障的分类识别和算法的软件实现三方面。该方法由以下步骤组成:(1)构造故障特征信息库,根据被测电路信号特点,采用信息熵最大原则(MEP),选取最优母小波,对被测电路的响应节点进行小波分解,提取被测电路的最优特征,然后利用主成分分析(PCA)对每层进行降维从而得到故障特征信息。(2)故障分析与智能诊断,根据获得的故障特征信息参数,利用多分类器级联模型和集成(Ensemble)[同态和异态]技术构造智能故障诊断器辨识出可能存在的故障及其原因。a)故障诊断器采用多分类器级联模型,首先解决正常样本与早期故障样本难于区分的问题,即先将正常电路的特征样本与所有故障电路的样本分别构成两个不相交的子集,采用同态的集成技术构造支持向量机分类器,形成层级G0,用于区分出正常和故障状态;其次对故障样本,采用异态的集成技术训练出不同算法的基分类器,然后利用加权投票算法对分类器进行合并,形成层级G1,用于区分出不同故障状态,这二层次结构就形成了多分类的级联推理思想。b)级联模型的分类器构造采用集成技术,首先对于层级G0,采用同态集成技术,即利用单边抽样的Bagging算法,解决数据的不平衡问题训练出集成的支持向量机分类器。然后对于层级G1,采用异态集成技术训练出基于贝叶斯、决策树和支持向量机算法的合成分类器对样本进行加权投票输出,增加故障诊断系统的泛化精度。(3)算法的软件实现采用微软C#.NET平台,将Weka软件项目的weka.jar文件通过IKVM.NET工具转换成能被.NET调用的weka.dll程序集,对weka.dll中的某些类进行重写,完成对算法的具体实现之后采用三层架构模型编写软件,实现对故障的具体分析与诊断。The invention discloses a method for diagnosing faults of an analog circuit and its implementation, including three aspects: signal fault feature extraction, fault classification and identification, and algorithm software implementation. The method consists of the following steps: (1) Construct the fault feature information database, according to the signal characteristics of the circuit under test, adopt the maximum information entropy principle (MEP), select the optimal mother wavelet, and perform wavelet decomposition on the response nodes of the circuit under test, extract The optimal characteristics of the circuit under test, and then use principal component analysis (PCA) to reduce the dimensionality of each layer to obtain fault feature information. (2) Fault analysis and intelligent diagnosis, according to the obtained fault characteristic information parameters, using multi-classifier cascade model and ensemble (Ensemble) [homomorphism and heteromorphism] technology to construct an intelligent fault diagnostic device to identify possible faults and their reason. a) The fault diagnosis device uses a multi-classifier cascade model, firstly to solve the problem that it is difficult to distinguish between normal samples and early fault samples, that is, firstly, the characteristic samples of normal circuits and the samples of all fault circuits form two disjoint subsets, Using homomorphic integration technology to construct support vector machine classifier, forming a level G 0 , which is used to distinguish normal and fault states; secondly, using heteromorphic integration technology to train base classifiers of different algorithms for fault samples, and then using weighted The voting algorithm merges the classifiers to form a level G 1 , which is used to distinguish different fault states. This two-level structure forms a multi-classification cascading reasoning idea. b) The classifier construction of the cascaded model adopts the integration technology. First, for the level G 0 , the homomorphic integration technology is adopted, that is, the Bagging algorithm of unilateral sampling is used to solve the problem of data imbalance to train an integrated support vector machine classifier. Then for level G 1 , a synthetic classifier based on Bayesian, decision tree and support vector machine algorithms is trained by using heteromorphic integration technology to perform weighted voting output on the samples and increase the generalization accuracy of the fault diagnosis system. (3) The software implementation of the algorithm adopts the Microsoft C#.NET platform, and the weka.jar file of the Weka software project is converted into a weka.dll assembly that can be called by .NET through the IKVM.NET tool. Classes are rewritten, and after the specific implementation of the algorithm is completed, the software is written using a three-layer architecture model to achieve specific analysis and diagnosis of faults.
附图说明Description of drawings
图1故障特征提取流程图Figure 1 Flow chart of fault feature extraction
图2故障决策流程图Figure 2 Fault decision flow chart
图3软件架构图Figure 3 software architecture diagram
具体实施方式Detailed ways
基于知识的模拟电路故障诊断技术从本质上讲是一个模式识别与分类问题。因此,如何提取故障的有效特征是模拟电路故障诊断的关键技术和重要一环,同时提取特征的最终目的是对测试样本构造分类器,实现对不同故障种类的正确分类识别。最终要达到这样的目的,完成对故障诊断的真实实现,必须要对算法进行软件的实现。Knowledge-based analog circuit fault diagnosis technology is essentially a pattern recognition and classification problem. Therefore, how to extract effective features of faults is a key technology and an important part of analog circuit fault diagnosis. At the same time, the ultimate purpose of extracting features is to construct a classifier for test samples and realize correct classification and identification of different fault types. Ultimately, to achieve this goal and complete the real realization of fault diagnosis, it is necessary to implement software for the algorithm.
为了达到上述目的,本发明的方法是这样实现的:In order to achieve the above object, method of the present invention is achieved like this:
1、模拟电路故障特征信息的最优小波提取1. Optimal wavelet extraction of analog circuit fault feature information
作为信号处理的小波故障特征信息提取方法是当前的研究热点,小波分析属于多分辨率分析,是一种精细的时频分析方法,对信号进行多层分解,有利于得到更多的采样信号局部细节特性,然而由于不同类型的小波具有不同的时频特性,为了更有效的提取电路的故障特征信息,应该使小波的时频特征与电路响应节点的时频特征相匹配,因此,本发明使用一种基于信息熵最大原则的最优母小波选择方法来解决此问题。具体的步骤如下,其流程如图1所示:The wavelet fault feature information extraction method as a signal processing is a current research hotspot. Wavelet analysis belongs to multi-resolution analysis, which is a fine time-frequency analysis method. Multi-layer decomposition of the signal is conducive to obtaining more local sampling signals. However, since different types of wavelets have different time-frequency characteristics, in order to more effectively extract the fault feature information of the circuit, the time-frequency characteristics of the wavelet should be matched with the time-frequency characteristics of the circuit response node. Therefore, the present invention uses An optimal mother wavelet selection method based on the principle of maximum information entropy is proposed to solve this problem. The specific steps are as follows, and the process is shown in Figure 1:
(1)设任意给定的节点响应信号为f(t),根据小波变换的定义式,(1) Let any given node response signal be f(t), according to the definition of wavelet transform,
(2)采用不同小波变换,计算电路的信息熵,选择最优的母小波对电路节点响应进行小波变换。设响应节点正常信号为r(t),故障响应信号fi(t)(i=1,...,c),其中i为故障种类,c为故障总数,则电路的信息熵计算方法如下:分别对正常信号r(t)和故障响信号fi(t)进行相应小波变换,分解层次为n,则分别取第n层低频逼近系数和第1,...,n层高频逼近系数构成一个向量,设正常信号为R(k),故障信号为Fi(k),其中k为信号采样样本个数,将正常信号R(k)记为F0(k),则所有信号小波变换后构成的向量可表示为Fi(k)(i=0,1,...,c),然后分别计算每两个向量之间的余弦相似度根据信息熵基本理论,可定义电路信息熵则可以根据电路信息熵的最大原则来选择最优的小波母函数。例如经过计算可得冲激响应信号适合于用Haar小波进行变换。(2) Use different wavelet transforms to calculate the information entropy of the circuit, and select the optimal mother wavelet to perform wavelet transform on the circuit node response. Let the normal signal of the response node be r(t), and the fault response signal f i (t)(i=1,...,c), where i is the type of fault and c is the total number of faults, then the information entropy calculation method of the circuit is as follows : Carry out corresponding wavelet transform on the normal signal r(t) and the fault response signal f i (t) respectively, and the decomposition level is n, then respectively take the nth layer low frequency approximation coefficient and the first,...,n layer high frequency approximation The coefficients form a vector, let the normal signal be R(k), and the faulty signal be F i (k), where k is the number of signal sampling samples, and the normal signal R(k) is recorded as F 0 (k), then all signals The vector formed after wavelet transformation can be expressed as F i (k) (i=0, 1, ..., c), and then calculate the cosine similarity between each two vectors According to the basic theory of information entropy, circuit information entropy can be defined Then the optimal wavelet mother function can be selected according to the maximum principle of circuit information entropy. For example, the impulse response signal obtained through calculation is suitable for transformation by Haar wavelet.
(3)在进行PCA之前,为了避免数据量纲的影响,对响应信号小波变换的每层系数分别进行数据归一化,采用下式进行:其中l为第n层小波分解, N为每层小波系数的个数。归一化后,将每层小波系数合并构成一个新的向量将所有归一化的样本向量组合成矩阵X,建立相关矩阵,m为样本数目,由R即可获得特征值λi和特征向量ai(i=1,2,...,n),计算第i个主元对总方差的贡献率,按贡献率由大到小进行排列,依次选取k个主元使得积累贡献率之和大于90%。之后依据计算出所需的各主元值,形成最终的特征向量样本。(3) Before performing PCA, in order to avoid the influence of the data dimension, the coefficients of each layer of wavelet transform of the response signal are normalized respectively, and the following formula is used to carry out: where l is the wavelet decomposition of the nth layer, N is the number of wavelet coefficients in each layer. After normalization, the wavelet coefficients of each layer are combined to form a new vector Combine all normalized sample vectors into a matrix X to build a correlation matrix, m is the number of samples, and the eigenvalue λ i and eigenvector a i (i=1, 2, ..., n) can be obtained from R, and the contribution rate of the i-th pivot to the total variance is calculated, according to the contribution rate by Arrange from large to small, and select k pivots in turn so that the sum of the cumulative contribution rate is greater than 90%. later based on Calculate the required pivot values to form the final eigenvector samples.
2、故障分类器的构造2. Construction of fault classifier
故障诊断的目的是对测试样本进行分类识别,通常的做法是设计不同的分类算法,比如现在常用的分类器包括神经网络分类器、支持向量机分类器、贝叶斯分类器等,为了实现尽可能好的识别性能,常常会设计不同的分类方案,然而无论是哪一种分类器对不同的问题得到的效果并不总是最好的,因而现在常用的做法有各种分类器的改进方法和基于分类器集成(Ensemble)的技术等,而集成学习利用多个基分类器的输出能提高传统分类器的精度,取得了很好的效果。本发明则基于分类器的集成技术,采用一种级联模型来构造推理故障诊断分类器,其基本思路是:首先解决正常样本与早期故障样本难于区分的问题,先将正常电路的特征样本与所有故障电路的样本分别构成两个不相交的子集,采用同态的集成技术构造支持向量机分类器,形成层级G0,用于区分出正常和故障状态;其次对故障样本,采用异态的集成技术训练出不同算法的基分类器,然后利用加权投票算法对分类器进行合并,形成层级G1,用于区分出不同故障状态,用这样的二层次结构模型形成了一种诊断推理思想。其具体的思路和实施步骤如下,流程如图2所示:The purpose of fault diagnosis is to classify and identify test samples. The usual method is to design different classification algorithms. For example, the commonly used classifiers include neural network classifiers, support vector machine classifiers, and Bayesian classifiers. Possibly good recognition performance, different classification schemes are often designed, but no matter which classifier is used for different problems, the effect is not always the best, so now the common practice is to improve various classifiers And technology based on classifier integration (Ensemble), and integrated learning can improve the accuracy of traditional classifiers by using the output of multiple base classifiers, and achieved good results. The present invention is based on the integration technology of classifiers, and adopts a cascade model to construct a reasoning fault diagnosis classifier. The samples of all faulty circuits respectively constitute two disjoint subsets, using homomorphic integration technology to construct a support vector machine classifier, forming a level G 0 , which is used to distinguish normal and faulty states; secondly, for faulty samples, using abnormal state Based on the integrated technology of different algorithms, the base classifiers of different algorithms are trained, and then the classifiers are merged by using the weighted voting algorithm to form a level G 1 , which is used to distinguish different fault states. Using such a two-level structure model, a diagnostic reasoning idea is formed. . The specific ideas and implementation steps are as follows, and the process is shown in Figure 2:
(1)将正常电路的特征样本与所有故障电路的样本分成两个不相交的子集XN和XF,设XN为正类样本实例,XF为反类样本实例,然而根据实际经验我们知道,正常类在数据集中出现的概率很大,而故障类出现的概率却非常小,这样就会造成正常类的样本数量要明显多于其他故障类构成的样本,这种数据集称为不平衡数据集。处理这种不平衡数据集的分类方法主要思路有:(a)使用对不平衡类别有很好适应性的基分类器,而集成学习算法不变,(b)使用传统分类器,通过修改集成学习算法是最终得到的分类器能够适应不平衡类别问题。目前第二种思路占主导地位。Bagging作为一种重要的集成学习算法实施方法简单,效果良好。本发明采用一种称为同态集成分类技术的方法,使用单边抽样Bagging集成学习算法对样本集XN和XF进行训练,而基分类器使用同一种分类学习算法-支持向量机,它克服了神经网络的不足,在解决小样本、非线性及高维模式识别等问题中表现出结构简单、全局最优、泛化能力强等特点。基于支持向量机的单边抽样Bagging集成学习算法,是这样进行训练的,在每一轮首先抽出所以正类样本实例,再从反类样本实例中随机有放回地抽取与正类同样多的实例样本,和所有正类实例一起构成训练集Ti,然后用基分类学习算法-支持向量机从Ti中训练出基分类器,最后将每一轮学习出的基分类器进行融合,组成我们故障诊断分类器的第一层级G0,可以用于正常与故障的分类,正常输出为0,而故障输出为1。(1) Divide the feature samples of normal circuits and samples of all fault circuits into two disjoint subsets X N and X F , let X N be the positive sample instance, X F be the negative sample instance, however according to practical experience We know that the normal class has a high probability of appearing in the data set, while the probability of the fault class appearing is very small, which will cause the number of samples of the normal class to be significantly larger than the samples composed of other fault classes. This data set is called Unbalanced dataset. The main idea of the classification method to deal with this unbalanced data set is: (a) use a base classifier that has good adaptability to the unbalanced category, while the ensemble learning algorithm remains unchanged, (b) use a traditional classifier, by modifying the ensemble The learning algorithm is the resulting classifier that is able to adapt to the imbalanced class problem. The second line of thinking is currently dominant. As an important ensemble learning algorithm, Bagging is easy to implement and works well. The present invention adopts a method called homomorphic ensemble classification technology, and uses the unilateral sampling Bagging ensemble learning algorithm to train the sample sets X N and X F , and the base classifier uses the same classification learning algorithm-Support Vector Machine, which It overcomes the shortcomings of neural networks, and shows the characteristics of simple structure, global optimality and strong generalization ability in solving small sample, nonlinear and high-dimensional pattern recognition problems. The unilateral sampling Bagging integrated learning algorithm based on support vector machines is trained in this way. In each round, all positive sample instances are first extracted, and then randomly extracted from the negative sample instances with replacement as many positive samples. Instance samples, together with all positive examples constitute the training set T i , and then use the base classification learning algorithm - support vector machine to train the base classifier from T i , and finally fuse the base classifiers learned in each round to form The first level G 0 of our fault diagnosis classifier can be used for the classification of normal and fault, and the output of normal is 0, while the output of fault is 1.
(2)当G0分类器输出为1时,样本为故障样本,需进一步判断是哪一种故障,这样也就需要再构造一个或几个故障分类器。针对这种类别数较多的问题,除了一些传统的分类算法以外,如神经网络等。目前还出现了很多改进的算法,比如说先基于聚类算法进行粗分类再对每个粗分类构造分类器和一种称为异态集成技术的多分类器合并算法,即用相同的数据样本,而基分类器采用不同的算法进行训练,最终对得到的基分类器进行合并等。本发明采用异态集成分类技术的,来构造第二层级G1分类器,基分类器则选择贝叶斯算法、决策树算法和支持向量机算法,再对各种基分类器进行评估,采用加权的投票方式输出结果,这样构造的集成分类器的分类曲线将会明显平滑,同时还具有鲁棒性强的特点。(2) When the output of the G 0 classifier is 1, the sample is a fault sample, and it is necessary to further judge which kind of fault it is, so it is necessary to construct one or more fault classifiers. For problems with a large number of categories, in addition to some traditional classification algorithms, such as neural networks. At present, many improved algorithms have emerged, such as firstly performing rough classification based on clustering algorithms, and then constructing classifiers for each rough classification and a multi-classifier merging algorithm called heterogeneous integration technology, that is, using the same data sample , while the base classifiers are trained with different algorithms, and finally the obtained base classifiers are merged and so on. The present invention adopts the heteromorphic integrated classification technology to construct the second-level G1 classifier, and the base classifier selects Bayesian algorithm, decision tree algorithm and support vector machine algorithm, and then evaluates various base classifiers, using The weighted voting method outputs the result, the classification curve of the integrated classifier constructed in this way will be obviously smooth, and it also has the characteristics of strong robustness.
3、算法的一种软件实现方式3. A software implementation of the algorithm
算法是解决问题的灵魂,而算法的实现才使灵魂具有了依附的肉体,才具有了真实的现实意义。要实现如上所述的算法,是一件枯燥和困难的事情,然而幸运的是,Weka作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类、回归、聚类等,且更可贵的是,开发者可以对开源的代码进行改进,甚至利用Weka的架构开发出更多的数据挖掘算法。因此本发明基于C#平台利用Weka项目软件完成了对上述算法的实现,具体步骤如下:Algorithms are the soul of solving problems, and the realization of algorithms enables the soul to have a body attached to it, and only then does it have real practical significance. It is a boring and difficult thing to implement the above-mentioned algorithm. Fortunately, Weka, as an open data mining work platform, has assembled a large number of machine learning algorithms that can undertake data mining tasks, including data pre-processing. Processing, classification, regression, clustering, etc., and more importantly, developers can improve the open source code, and even use Weka's architecture to develop more data mining algorithms. Therefore the present invention utilizes Weka project software based on C# platform to complete the realization of above-mentioned algorithm, concrete steps are as follows:
(1)算法的软件实现采用微软C#.NET平台,要在.NET下能调用Weka软件项目的weka.jar文件,需要利用IKVM.NET工具将weka.jar文件转换成能被.NET调用的weka.dll程序集,只需执行ikvmc-target:library weka.jar即可,并将weka.dll导入.NET的项目引用中。(1) The software implementation of the algorithm adopts the Microsoft C#.NET platform. To call the weka.jar file of the Weka software project under .NET, it is necessary to use the IKVM.NET tool to convert the weka.jar file into a weka that can be called by .NET .dll assembly, just execute ikvmc-target: library weka.jar, and import weka.dll into the .NET project reference.
(2)将C++中实现的一维小波变换函数导出为能在C#中调用的函数,采用的如下方法:(2) Export the one-dimensional wavelet transform function realized in C++ as a function that can be called in C#, adopt the following method:
using System.Runtime.InteropServices;using System.Runtime.InteropServices;
[DllImport(“Wavelet1D.dll”,CharSet=CharSet.Auto)][DllImport("Wavelet1D.dll", CharSet=CharSet.Auto)]
public static extern int[]Wavelet1D(string filename,int level,string wname,refint[]length);public static extern int[]Wavelet1D(string filename, int level, string wname, refint[]length);
之后在C#中调用最优母小波对信号进行小波变换函数,得到小波变换系数之后对其进行量纲归一化,再调用weka中PrincipalComponents类实现样本的主成分分析。需注意在使用weka PrincipalComponents类之前需使用using语句导weka.filters.unsupervised.attribute,org.antlr.stringtemplate,org.antlr.stringtemplate.language命名空间。Then call the optimal mother wavelet in C# to perform wavelet transform function on the signal, get the wavelet transform coefficients and normalize them, and then call the PrincipalComponents class in weka to realize the principal component analysis of the sample. Note that before using the weka PrincipalComponents class, you need to use the using statement to guide the weka.filters.unsupervised.attribute, org.antlr.stringtemplate, org.antlr.stringtemplate.language namespace.
(3)实现对Bagging类的重写,由于weka中的weka.classifiers.meta.Bagging类实现的是标准的有放回地抽样方式对训练集进行操作,而本发明采用的是单边抽样Bagging算法,所以需对其类中的方法进行重写,命名为SSBagging类。之后直接调用LibSVM基分类器训练出第一层级G0分类器,命名为SSBaggingClassify类,其基本代码如下:(3) Realize the rewriting of Bagging class, because what the weka.classifiers.meta.Bagging class in weka realizes is that the sampling mode that puts back ground is standard to operate training set, and what the present invention adopts is unilateral sampling Bagging Algorithm, so the method in its class needs to be rewritten and named as SSBagging class. Then directly call the LibSVM base classifier to train the first-level G 0 classifier, named SSBaggingClassify class, and its basic code is as follows:
(4)构造完第一层级G0分类器,当其输出为1时,需进一步判断其是何种故障,根据上述思路需构造基于Ensemble技术的分类器,需用weka中的用于分类的关键类(4) After constructing the first-level G 0 classifier, when its output is 1, it is necessary to further judge what kind of fault it is. According to the above ideas, it is necessary to construct a classifier based on Ensemble technology, which is used for classification in Weka key class
weka.classifiers.functions.LibSVM,weka.classifiers.tress.J48,weka.classifiers.functions.LibSVM, weka.classifiers.tress.J48,
weka.classifiers.bayes.NaiveBayes和用于集成技术的weka.classifiers.meta.Vote。其基本代码如下:weka.classifiers.bayes.NaiveBayes and weka.classifiers.meta.Vote for ensemble techniques. Its basic code is as follows:
最后,软件采用三层架构模型进行实现,其结构图如图3,不再赘述。Finally, the software is implemented using a three-layer architecture model, and its structure diagram is shown in Figure 3, which will not be repeated here.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310034374.0A CN103728551B (en) | 2013-01-30 | 2013-01-30 | A kind of analog-circuit fault diagnosis method based on cascade integrated classifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310034374.0A CN103728551B (en) | 2013-01-30 | 2013-01-30 | A kind of analog-circuit fault diagnosis method based on cascade integrated classifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103728551A true CN103728551A (en) | 2014-04-16 |
CN103728551B CN103728551B (en) | 2016-03-09 |
Family
ID=50452711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310034374.0A Expired - Fee Related CN103728551B (en) | 2013-01-30 | 2013-01-30 | A kind of analog-circuit fault diagnosis method based on cascade integrated classifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103728551B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104076813A (en) * | 2014-07-08 | 2014-10-01 | 中国航空无线电电子研究所 | TCAS system fault comprehensive diagnosis method and system based on Bayesian decision tree |
CN104297670A (en) * | 2014-11-07 | 2015-01-21 | 电子科技大学 | Fault diagnosis and parameter identification method for analog integrated circuit |
CN104793124A (en) * | 2015-04-06 | 2015-07-22 | 长沙学院 | Switched circuit fault diagnosis method based on wavelet transformation and ICA (independent component analysis) feature extraction |
CN105445650A (en) * | 2015-12-28 | 2016-03-30 | 哈尔滨理工大学 | Hierarchical and intelligent optimized selection method of multi-soft fault Wiener characteristics |
CN105589037A (en) * | 2016-03-16 | 2016-05-18 | 合肥工业大学 | Ensemble learning-based electric power electronic switch device network fault diagnosis method |
CN105652182A (en) * | 2015-12-28 | 2016-06-08 | 北京航天测控技术有限公司 | Circuit board fault positioning system and circuit board fault positioning method based on circuit network and graph search |
CN108152059A (en) * | 2017-12-20 | 2018-06-12 | 西南交通大学 | High-speed train bogie fault detection method based on Fusion |
CN108961468A (en) * | 2018-06-27 | 2018-12-07 | 大连海事大学 | A kind of ship power system method for diagnosing faults based on integrated study |
CN109066819A (en) * | 2018-09-25 | 2018-12-21 | 中国人民解放军军事科学院国防工程研究院 | A kind of idle work optimization method of the power distribution network based on case reasoning |
CN110009030A (en) * | 2019-03-29 | 2019-07-12 | 华南理工大学 | Fault diagnosis method of sewage treatment based on stacking meta-learning strategy |
CN110059288A (en) * | 2017-12-28 | 2019-07-26 | 塔塔咨询服务有限公司 | For obtaining the system and method for promoting the best morther wavelet of machine learning task |
CN110415240A (en) * | 2019-08-01 | 2019-11-05 | 国信优易数据有限公司 | Sample image generation method and device, circuit board defect detection method and device |
CN110414548A (en) * | 2019-06-06 | 2019-11-05 | 西安电子科技大学 | Hierarchical Bagging Method for Sentiment Analysis Based on EEG Signals |
CN110715678A (en) * | 2019-10-22 | 2020-01-21 | 东软睿驰汽车技术(沈阳)有限公司 | Sensor abnormity detection method and device |
CN111636932A (en) * | 2020-04-23 | 2020-09-08 | 天津大学 | On-line measurement of blade cracks based on blade tip timing and ensemble learning algorithm |
CN111814834A (en) * | 2020-06-12 | 2020-10-23 | 广东电网有限责任公司 | A kind of high-voltage cable partial discharge pattern recognition method, computer equipment and storage medium |
CN112990255A (en) * | 2020-12-23 | 2021-06-18 | 中移(杭州)信息技术有限公司 | Method and device for predicting equipment failure, electronic equipment and storage medium |
CN114239464A (en) * | 2021-12-17 | 2022-03-25 | 深圳国微福芯技术有限公司 | Yield prediction method and system of circuit based on Bayes filter and resampling |
WO2022088643A1 (en) * | 2020-10-26 | 2022-05-05 | 华翔翔能科技股份有限公司 | Fault diagnosis method and apparatus for buried transformer substation, and electronic device |
CN115035005A (en) * | 2022-04-26 | 2022-09-09 | 西安石油大学 | Image reconstruction method for multiphase flow visual monitoring |
CN117668562A (en) * | 2024-01-31 | 2024-03-08 | 腾讯科技(深圳)有限公司 | Training and using method, device, equipment and medium of text classification model |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108254678A (en) * | 2018-01-19 | 2018-07-06 | 成都航空职业技术学院 | A kind of analog circuit fault sorting technique based on sine and cosine algorithm |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221213A (en) * | 2008-01-25 | 2008-07-16 | 湖南大学 | Neural Network Method for Fault Diagnosis of Analog Circuits Based on Particle Swarm Optimization |
CN101231672A (en) * | 2008-02-02 | 2008-07-30 | 湖南大学 | Soft Fault Diagnosis Method for Analog Circuits Based on Improved BP Neural Network |
CN101231673A (en) * | 2008-02-02 | 2008-07-30 | 湖南大学 | An Analog Circuit Fault Diagnosis Method Using Immune Ant Algorithm Optimization |
CN101533068A (en) * | 2009-04-08 | 2009-09-16 | 南京航空航天大学 | Analog-circuit fault diagnosis method based on DAGSVC |
WO2011137914A1 (en) * | 2010-05-04 | 2011-11-10 | Mingoa Limited | Identification and verification of management points in telecommunications systems |
CN102749573A (en) * | 2012-07-27 | 2012-10-24 | 重庆大学 | Analog circuit fault diagnosis method based on wavelet packet analysis and Hopfield network |
US20120303339A1 (en) * | 2011-05-27 | 2012-11-29 | International Business Machines Corporation | Computational fluid dynamics modeling of a bounded domain |
-
2013
- 2013-01-30 CN CN201310034374.0A patent/CN103728551B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221213A (en) * | 2008-01-25 | 2008-07-16 | 湖南大学 | Neural Network Method for Fault Diagnosis of Analog Circuits Based on Particle Swarm Optimization |
CN101231672A (en) * | 2008-02-02 | 2008-07-30 | 湖南大学 | Soft Fault Diagnosis Method for Analog Circuits Based on Improved BP Neural Network |
CN101231673A (en) * | 2008-02-02 | 2008-07-30 | 湖南大学 | An Analog Circuit Fault Diagnosis Method Using Immune Ant Algorithm Optimization |
CN101533068A (en) * | 2009-04-08 | 2009-09-16 | 南京航空航天大学 | Analog-circuit fault diagnosis method based on DAGSVC |
WO2011137914A1 (en) * | 2010-05-04 | 2011-11-10 | Mingoa Limited | Identification and verification of management points in telecommunications systems |
US20120303339A1 (en) * | 2011-05-27 | 2012-11-29 | International Business Machines Corporation | Computational fluid dynamics modeling of a bounded domain |
CN102749573A (en) * | 2012-07-27 | 2012-10-24 | 重庆大学 | Analog circuit fault diagnosis method based on wavelet packet analysis and Hopfield network |
Non-Patent Citations (2)
Title |
---|
唐静等: "基于核理论均衡聚类和模糊支持向量机的模拟电路诊断方法", 《中南大学学报(自然科学版)》 * |
马超等: "基于支持向量机属性约简集成的模拟电路故障诊断", 《仪器仪表学报》 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104076813A (en) * | 2014-07-08 | 2014-10-01 | 中国航空无线电电子研究所 | TCAS system fault comprehensive diagnosis method and system based on Bayesian decision tree |
CN104297670A (en) * | 2014-11-07 | 2015-01-21 | 电子科技大学 | Fault diagnosis and parameter identification method for analog integrated circuit |
CN104297670B (en) * | 2014-11-07 | 2017-01-25 | 电子科技大学 | Fault diagnosis and parameter identification method for analog integrated circuit |
CN104793124A (en) * | 2015-04-06 | 2015-07-22 | 长沙学院 | Switched circuit fault diagnosis method based on wavelet transformation and ICA (independent component analysis) feature extraction |
CN105652182B (en) * | 2015-12-28 | 2018-10-02 | 北京航天测控技术有限公司 | A kind of board failure positioning system and method based on circuit network and graph search |
CN105445650A (en) * | 2015-12-28 | 2016-03-30 | 哈尔滨理工大学 | Hierarchical and intelligent optimized selection method of multi-soft fault Wiener characteristics |
CN105652182A (en) * | 2015-12-28 | 2016-06-08 | 北京航天测控技术有限公司 | Circuit board fault positioning system and circuit board fault positioning method based on circuit network and graph search |
CN105589037A (en) * | 2016-03-16 | 2016-05-18 | 合肥工业大学 | Ensemble learning-based electric power electronic switch device network fault diagnosis method |
CN108152059A (en) * | 2017-12-20 | 2018-06-12 | 西南交通大学 | High-speed train bogie fault detection method based on Fusion |
CN108152059B (en) * | 2017-12-20 | 2021-03-16 | 西南交通大学 | High-speed train bogie fault detection method based on multi-sensor data fusion |
CN110059288A (en) * | 2017-12-28 | 2019-07-26 | 塔塔咨询服务有限公司 | For obtaining the system and method for promoting the best morther wavelet of machine learning task |
CN110059288B (en) * | 2017-12-28 | 2023-04-14 | 塔塔咨询服务有限公司 | System and method for obtaining an optimal mother wavelet for facilitating a machine learning task |
CN108961468A (en) * | 2018-06-27 | 2018-12-07 | 大连海事大学 | A kind of ship power system method for diagnosing faults based on integrated study |
CN109066819A (en) * | 2018-09-25 | 2018-12-21 | 中国人民解放军军事科学院国防工程研究院 | A kind of idle work optimization method of the power distribution network based on case reasoning |
CN109066819B (en) * | 2018-09-25 | 2021-08-20 | 中国人民解放军军事科学院国防工程研究院 | Reactive power optimization method of power distribution network based on case reasoning |
CN110009030A (en) * | 2019-03-29 | 2019-07-12 | 华南理工大学 | Fault diagnosis method of sewage treatment based on stacking meta-learning strategy |
CN110414548A (en) * | 2019-06-06 | 2019-11-05 | 西安电子科技大学 | Hierarchical Bagging Method for Sentiment Analysis Based on EEG Signals |
CN110415240A (en) * | 2019-08-01 | 2019-11-05 | 国信优易数据有限公司 | Sample image generation method and device, circuit board defect detection method and device |
CN110715678A (en) * | 2019-10-22 | 2020-01-21 | 东软睿驰汽车技术(沈阳)有限公司 | Sensor abnormity detection method and device |
CN111636932A (en) * | 2020-04-23 | 2020-09-08 | 天津大学 | On-line measurement of blade cracks based on blade tip timing and ensemble learning algorithm |
CN111814834A (en) * | 2020-06-12 | 2020-10-23 | 广东电网有限责任公司 | A kind of high-voltage cable partial discharge pattern recognition method, computer equipment and storage medium |
CN111814834B (en) * | 2020-06-12 | 2024-11-29 | 广东电网有限责任公司 | High-voltage cable partial discharge mode identification method, computer equipment and storage medium |
WO2022088643A1 (en) * | 2020-10-26 | 2022-05-05 | 华翔翔能科技股份有限公司 | Fault diagnosis method and apparatus for buried transformer substation, and electronic device |
CN112990255B (en) * | 2020-12-23 | 2024-05-28 | 中移(杭州)信息技术有限公司 | Device failure prediction method, device, electronic device and storage medium |
CN112990255A (en) * | 2020-12-23 | 2021-06-18 | 中移(杭州)信息技术有限公司 | Method and device for predicting equipment failure, electronic equipment and storage medium |
CN114239464A (en) * | 2021-12-17 | 2022-03-25 | 深圳国微福芯技术有限公司 | Yield prediction method and system of circuit based on Bayes filter and resampling |
CN114239464B (en) * | 2021-12-17 | 2023-08-11 | 深圳国微福芯技术有限公司 | Circuit yield prediction method and system based on Bayesian filter and resampling |
CN115035005A (en) * | 2022-04-26 | 2022-09-09 | 西安石油大学 | Image reconstruction method for multiphase flow visual monitoring |
CN117668562B (en) * | 2024-01-31 | 2024-04-19 | 腾讯科技(深圳)有限公司 | Training and using method, device, equipment and medium of text classification model |
CN117668562A (en) * | 2024-01-31 | 2024-03-08 | 腾讯科技(深圳)有限公司 | Training and using method, device, equipment and medium of text classification model |
Also Published As
Publication number | Publication date |
---|---|
CN103728551B (en) | 2016-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103728551B (en) | A kind of analog-circuit fault diagnosis method based on cascade integrated classifier | |
CN107316046B (en) | Fault diagnosis method based on incremental compensation dynamic self-adaptive enhancement | |
CN107122790A (en) | Non-intrusion type load recognizer based on hybrid neural networks and integrated study | |
CN101907681B (en) | Analog circuit dynamic online failure diagnosing method based on GSD-SVDD | |
CN110132598A (en) | Noise Diagnosis Algorithm for Rolling Bearing Faults in Rotating Equipment | |
CN103245907B (en) | A kind of analog-circuit fault diagnosis method | |
CN106323636A (en) | Adaptive extraction and diagnosis method for degree features of mechanical fault through stack-type sparse automatic coding depth neural network | |
CN108256556A (en) | Wind-driven generator group wheel box method for diagnosing faults based on depth belief network | |
Juneja | A fuzzy-filtered neuro-fuzzy framework for software fault prediction for inter-version and inter-project evaluation | |
Xu-Sheng et al. | Research on ELM soft fault diagnosis of analog circuit based on KSLPP feature extraction | |
CN111256965A (en) | Multi-scale information fusion stacked sparse self-coding rotary machine fault diagnosis method | |
Wang et al. | Application of an oversampling method based on GMM and boundary optimization in imbalance-bearing fault diagnosis | |
CN115733673B (en) | A data anomaly detection method based on multi-scale residual classifier | |
Cao et al. | Fault diagnosis of rolling bearing based on multiscale one-dimensional hybrid binary pattern | |
CN109946080A (en) | A Method for Recognition of Mechanical Equipment Health Status Based on Embedded Recurrent Network | |
Gohar et al. | Terrorist group prediction using data classification | |
Li et al. | Intelligent fault diagnosis of aeroengine sensors using improved pattern gradient spectrum entropy | |
CN119357562B (en) | Method and system for evaluating encapsulation tightness of integrated circuit under high-temperature environment | |
CN107451760A (en) | Based on when the limited Boltzmann machine of window sliding Fault Diagnosis of Roller Bearings | |
Du et al. | Data augmentation on fault diagnosis of wind turbine gearboxes with an enhanced flow-based generative model | |
CN117828325A (en) | Vibration signal characteristic extraction method, device and storage medium | |
Xiang et al. | Fault diagnosis of gearbox based on refined topology and spatio-temporal graph convolutional network | |
Zhang et al. | Fault diagnosis on train brake system based on multi-dimensional feature fusion and GBDT enhanced classification | |
CN110458071A (en) | A Feature Extraction and Classification Method of Optical Fiber Vibration Signal Based on DWT-DFPA-GBDT | |
CN117788031A (en) | Power grid equipment fault cost analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160309 Termination date: 20170130 |
|
CF01 | Termination of patent right due to non-payment of annual fee |