CN103713379B - 一种大数值孔径的折反射的干式投影光学系统 - Google Patents

一种大数值孔径的折反射的干式投影光学系统 Download PDF

Info

Publication number
CN103713379B
CN103713379B CN201410024170.3A CN201410024170A CN103713379B CN 103713379 B CN103713379 B CN 103713379B CN 201410024170 A CN201410024170 A CN 201410024170A CN 103713379 B CN103713379 B CN 103713379B
Authority
CN
China
Prior art keywords
lens
optical system
projection optical
numerical aperture
dry type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410024170.3A
Other languages
English (en)
Other versions
CN103713379A (zh
Inventor
邓超
邢廷文
廖志远
朱红伟
杨雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201410024170.3A priority Critical patent/CN103713379B/zh
Publication of CN103713379A publication Critical patent/CN103713379A/zh
Application granted granted Critical
Publication of CN103713379B publication Critical patent/CN103713379B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

本发明涉及一种大数值孔径的折反射的干式投影光学系统。本发明中的投影光学系统由一系列透镜和两个反射镜组成。从物面到像面依次有五个镜组,其中,两个反射镜一起组成第三个镜组,它是一个具有负光焦度的镜组,有利于帮助系统矫正场曲、减小系统的口径以及减少系统的非球面个数。本发明中的投影光学系统数值孔径大、像差小且结构紧凑,可有效地降低制造成本,降低镜片的加工、检测和装调难度。

Description

一种大数值孔径的折反射的干式投影光学系统
技术领域
本发明涉及一种工作于预定波长紫外光的投影光学系统,特别涉及一种大数值孔径(数值孔径达到0.93)的折反射的干式投影光学系统。
背景技术
光刻是半导体制造工艺中非常重要的一道工序,投影光学系统是光刻工序中用作对硅片进行扫描曝光的装置,通过投影光学系统将掩膜上的图案缩小后投射到如干胶片等的感光基板上进行曝光,曝光质量的好坏对整个刻蚀工序有很大的影响。为了提高投影光学系统的分辨率,一方面使用波长低于260nm的紫外光作为曝光系统的光源;另一方面尽可能增大光学系统的像方数值孔径。
随着像方数值孔径的增大,光学系统的口径也急剧增大,这给材料的生产、加工等方面带来严重的困难。对于大数值孔径光学系统而言,由于存在很大的匹兹瓦场曲,这将导致光学系统的像面弯曲严重,而对于曝光半导体硅片而言,获得平场像是很重要的。为了获得平场像,其中一个解决的方法就是将投影光学系统设计为折反射式投影光学系统,这个折反射投影光学系统里包含折射元件和反射元件,由于凹面反射镜具有类似于正透镜光焦度但却有负透镜场曲,利于矫正场曲且不引入色差,因此,折反射投影光学系统的反射元件中至少有一个凹面反射镜。为了能很好地校正色差和减小系统的重量,折反射投影光学系统一般至少包含两个凹面反射镜。
本发明中的投影光学系统很好地实现了系统的大数值孔径,且很好地解决了由系统的大数值孔径带来的像面弯曲问题。另外,与纯折射系统相比,本发明中的系统更好地解决了由大数值孔径带来的元件尺寸过大的问题,当像方数值孔径取预定的0.93时,系统中所有的元件口径都控制在了280mm以内。本发明的特点在于实现了系统大数值孔径、且保证了系统极高的成像质量和紧凑的系统结构,可有效地降低制造成本,降低元件的加工、检测和装调难度。
发明内容
本发明要解决的技术问题是提供一种大数值孔径的折反射的干式投影光学系统,提高曝光分辨率。本发明提出了适用于深紫外光波长照明且数值孔径达到0.93的干式投影光学系统,该光学系统结构紧凑、大视场、成像质量优良,且具有较小的尺寸和较少的材料消耗。
本发明采用的技术方案为:一种大数值孔径的折反射的干式投影光学系统,所述大数值孔径投影光学系统沿其光轴方向包括第一透镜组G1、第二透镜组G2、第三反射镜组G3、第四透镜组G4和第五透镜组G5,从光束入射方向的第一透镜组G1没有光焦度,第二透镜组G2具有正光焦度,第三反射镜组G3具有负光焦度,第四透镜组G4具有正光焦度,第五透镜组G5具有正光焦度。所述大数值孔径的投影光学系统包含了二十三片透镜和两片反射镜,且包含有非球面表面。
所述大数值孔径投影光学系统第一透镜组G1为一块平行平板。
其中第二透镜组G2包括第一弯月正透镜2、第二弯月正透镜3、第一双凸正透镜4、第三弯月正透镜5、第一平凸正透镜6、第四弯月正透镜7、第一弯月负透镜8、第五弯月正透镜9和第二双凸正透镜10。第二透镜组G2包括九块透镜,是类双高斯物镜结构形式。
其中第三反射镜组G3包括第一反射镜11、第二反射镜12。第一反射镜11和第二反射镜12分别只使用了两个凹非球面反射镜的离轴部分,这两个凹非球面反射镜的圆对称轴为系统的光轴。第三反射镜组G3具有负光焦度。
其中第四透镜组G4包括第三双凸正透镜13、第二弯月负透镜14、第三弯月负透镜15、第四弯月负透镜16、第六弯月正透镜17、第四双凸正透镜18、第五双凸正透镜19和第五弯月负透镜20。第四透镜组G4包括八块透镜,具有正光焦度。
其中第五透镜组G5包括第六双凸正透镜21、第七双凸正透镜22、第七弯月正透镜23、第八弯月正透镜24和第九弯月正透镜25。第五透镜组G5包括五块透镜,具有正光焦度。第五透镜组G5最后一块透镜是平凸透镜,最后一面为平面。
其中第四透镜组G4和第五透镜组G5之间有一孔径光阑。
其中第一透镜组G1、第二透镜组G2、第四透镜组G4和第五透镜组G5均采用SIO2玻璃。
其中所述大数值孔径投影光学系统为双远心系统。
其中所述的大数值孔径投影光学系统适用于深紫外照明光源,例如波长为157nm、193.3nm或248nm的光源。
本发明与现有技术相比有以下优势:
1、本发明所涉及到的大数值孔径的折反射的干式投影光学系统中的第二透镜组G2、第三反射镜组G3、第四透镜组G4和第五透镜组G5的光焦度分别为正、负、正和正,这种结构能很好的校正系统像差,特别是场曲,有利于提高成像质量。
2、本发明所涉及到的大数值孔径的折反射的干式投影光学系统的所有透镜均使用同一种材料,这一方面对控制产品的研发、生产等成本有利,另一方面对提高系统热力学等性能有利。
3、本发明所涉及到的大数值孔径的折反射的干式投影光学系统为双远心系统,物方远心度和像方远心度都较高,因此,即使位于物面的掩模图案和位于像面的硅片存在一定安装误差,也不会造成大数值孔径投影光学系统的倍率等光学性能的显著降低。
4、本发明所述大数值孔径投影光学系统具有有物方保护玻璃,这对光学系统工程应用有利。
5、本发明所述大数值孔径的折反射的干式投影光学系统中非球面的非球面度都小于1mm,这便于对系统元件的高精度加工和检测,有利于提高成像质量。
6、本发明同时包含了非球面和反射镜,这有利于减小系统口径和减少系统元件,使得系统结构紧凑、体积小巧。
附图说明
图1为本发明的大数值孔径的折反射的干式投影光学系统的布局示意图;
图2为大数值孔径的折反射的干式投影光学系统在全场范围内光学调制传递函数示意图;
图3为大数值孔径的折反射的干式投影光学系统细光束场曲与畸变示意图。
标号说明:1-第一平行平板、2-第一弯月正透镜、3-第二弯月正透镜,4-第一双凸正透镜、5-第三弯月正透镜、6-第一平凸正透镜、7-第四弯月正透镜、8-第一弯月负透镜、9-第五弯月正透镜、10-第二双凸正透镜、11-第一反射镜、12-第二反射镜、13-第三双凸正透镜、14-第二弯月负透镜,15-第三弯月负透镜、16-第四弯月负透镜、17-第六弯月正透镜、18-第四双凸正透镜、19-第五双凸正透镜、20-第五弯月负透镜、21-第六双凸正透镜、22-第七双凸正透镜、23-第七弯月正透镜、24-第八弯月正透镜、25-第九弯月正透镜、26-像面。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细描述。
图1为本发明大数值孔径的折反射的干式投影光学系统布局示意图,共使用了二十三片透镜和两片反射镜,从光束入射方向依次包括第一透镜组G1、第二透镜组G2、第三反射镜组G3、第四透镜组G4和第五透镜组G5。第一透镜组G1为无光焦度的平行平板玻璃;第二透镜组G2具有正光焦度;第三反射镜组G3具有负光焦度;第四透镜组G4具有正光焦度;第五透镜组G5具有正光焦度。像面26为硅片表面。
本发明所包含的第一透镜组G1、第二透镜组G2、第四透镜组G4和第五透镜组G5中二十三个折射元件共用一个对称轴——系统的光轴,第三反射镜组G3包括的第一反射镜11和第二反射镜12分别只使用了两个凹非球面反射镜的离轴部分,这两个凹非球面反射镜的圆对称轴也为系统的光轴。
本发明所包含的大数值孔径的折反射的干式投影光学系统的掩膜面正好为投影光学系统的物面,而硅片面正好位于投影光学系统的像面处,掩膜面和硅片面的大小之比为4:1。
本发明所包含的大数值孔径的折反射的干式投影光学系统为双远心系统。所谓双远心系统就是物面上每个视场点发出的主光线与光轴平行,且该光线也以平行于光轴的方向入射到像面上。所谓主光线是指每个视场发出的经过光阑中心的光线。物面上每个视场点发出的主光线与光轴平行,且该光线也以平行于光轴的方向入射到像面上,这保证了即使位于物面的掩模图案和位于像面的硅片存在一定安装误差,也不会造成大数值孔径投影光学系统的倍率等光学性能的显著降低。
本发明所包含的第一透镜组G1为一块平行平板,该平行平板可充当光学系统的物方保护玻璃。
本发明所包含的第二透镜组G2由九块透镜组成,它们分别是:第一弯月正透镜2、第二弯月正透镜3、第一双凸正透镜4、第三弯月正透镜5、第一平凸正透镜6、第四弯月正透镜7、第一弯月负透镜8、第五弯月正透镜9和第二双凸正透镜10。第二透镜组G2的主要作用是将位于物面的图案成实像于第三反射镜组G3之前,该实像为系统的第一中间像。第二透镜组G2为类双高斯结构,它在保证系统远心的同时,通过提供正光焦度来平衡系统的畸变等像差。
本发明所包含的第三反射镜组G3包括第一反射镜11、第二反射镜12。第一反射镜11和第二反射镜12分别只使用了两个凹非球面反射镜的离轴部分,这两个凹非球面反射镜的圆对称轴为系统的光轴。第三反射镜组G3具有负光焦度,它的主要作用是将第一中间像成像到第二中间像面处。它通过提供负光焦度来矫正匹兹瓦场曲,在减少系统元件数量和减小系统口径情况下,使得系统得到平场像面。
本发明所包含的第四透镜组G4由八块透镜组成,它们分别是:第三双凸正透镜13、第二弯月负透镜14、第三弯月负透镜15、第四弯月负透镜16、第六弯月正透镜17、第四双凸正透镜18、第五双凸正透镜19和第五弯月负透镜20。第四透镜组G4具有正光焦度,它对矫正系统的球差、畸变和匹兹瓦场曲很有效果。
本发明所包含的第五透镜组G5由五块透镜组成,它们分别是:第六双凸正透镜21、第七双凸正透镜22、第七弯月正透镜23、第八弯月正透镜24和第九弯月正透镜25。第五透镜组G5具有正光焦度,它的主要作用是将经过第四透镜组G4整形的中间像最终成像到像面上,它在保证像方大数值孔径的同时避免产生高阶球差和负畸变,能有效平衡系统的像差。
本发明所包含的第五透镜组G5最后一块透镜是平凸透镜,最后一面为平面,平面的设计有利于测量晶片和物镜之间的距离、且有利于对晶片和物镜的清洁。
本发明所包含的第四透镜组G4和第五透镜组G5之间有一孔径光阑。该孔径光阑可以调节系统数值孔径的大小。
本发明所包含的大数值孔径的折反射的干式投影光学系统适用于深紫外照明光源,例如波长为193.3nm的光源,当然也可以采用波长为248nm和157nm的光源。系统中的光学元件对于相应的深紫外照明光是透明的。
本发明所包含的大数值孔径的折反射的干式投影光学系统所使用的折射材料具有低膨胀系数和其它良好的光学特性,例如SIO2。本发明为了制作方便,所有透射材料都采用了SIO2,当然其它玻璃材料如CAF2等同样可以使用。
为了提高分辨率,本发明除了选用较短波长的光源外,还尽可能增大系统的像方数值孔径,保证其最大可达0.93。光学系统的物方工作距为40.55mm,像方工作距为3.1mm,其它的参数请参阅表1。
表2给出了本实施例的大数值孔径的折反射的干式投影光学系统的每一片镜片的具体参数,其中,表2中的“表面序号”是从光线入射端开始对表面的计数,如第一透镜组G1中仅有的平行平板透镜的光束入射面为序号S1,光束出射面为序号S2,其它镜面序号以此类推;表2中的“半径”分别给出了每个表面顶点处所对应的曲率半径,如果顶点的曲率中心位于顶点左边,则曲率半径为负,反之为正,如果某个表面顶点区域为平面,则将之曲率半径记为“∞”;表2中的“厚度/间隔”给出了相邻两表面之间沿光轴的间隔距离,如果两个表面属于同一片透镜,则为该透镜的厚度,“厚度/间隔”的正负由光线的走向决定,如果光线由左向右,则“厚度/间隔”为正,反之为负。表2中的“半口径”给出了各个透镜半口径大小,如果调整数值孔径,则半口径也会改变,本发明给出的半口径是在数值孔径为0.93情况下给出的。表2中的“材料”给出了各个透镜材料,缺省处为空气。
表2中的所有长度单位为mm。
表2A为表2的补充,它给出了各个非球面的非球面系数。
表1
工作波长 193.368nm
像方数值孔径 0.93
放大倍率 -0.25
像方视场 26mm×9mm
物像距离 1250mm
物方工作距 40.55mm
像方工作距 3.1mm
SIO2折射率 1.560219
表2
表面序号 半径 厚度/间隔 半口径 材料
物面 40.55
S1 21.35 82.55 SIO2
S2 6.58 85.78
S3(ASP) 157.11 41.71 93.88 SIO2
S4 2616.02 7.50 92.96
S5 113.86 53.48 89.54 SIO2
S6(ASP) 104.85 51.48 72.78
S7 174.81 23.12 63.23 SIO2
S8(ASP) -281.48 7.17 60.85
S9 178.04 17.22 52.79 SIO2
S10(ASP) 1408.55 3.51 48.47
S11 163.78 21.98 44.37 SIO2
S12 5391.08 9.11 37.32
S13(ASP) -130.03 8.34 33.69 SIO2
S14 -159.34 19.53 34.28
S15(ASP) 3962.90 11.62 40.70 SIO2
S16 1455.74 43.19 43.50
S17(ASP) -1558.99 22.63 59.39 SIO2
S18 -282.08 0.91 63.03
S19(ASP) 359.45 21.50 66.13 SIO2
S20 -1257.53 244.25 67.38
S21(ASP) -179.40 -214.64 133.73 MIRROR
S22(ASP) 174.07 243.12 114.08 MIRROR
S23 231.71 46.72 97.83 SIO2
S24 -1011.32 55.25 95.67
S25 273.49 15.85 79.65 SIO2
S26(ASP) 127.12 11.61 73.01
S27 229.70 13.65 72.94 SIO2
S28(ASP) 129.56 62.99 69.55
S29 542.70 12.98 73.04 SIO2
S30(ASP) 147.59 26.20 72.96
S31 -444.05 19.23 73.30 SIO2
S32(ASP) -223.39 16.77 77.12
S33(ASP) 1167.64 29.87 87.49 SIO2
S34 -299.47 0.10 89.60
S35 303.54 28.11 91.40 SIO2
S36 -636.00 0.10 90.86
S37(ASP) -674.49 14.53 91.01 SIO2
S38 -743.70 0.10 90.99
S39 0.27 90.71
S40(ASP) 152417.00 49.45 90.66 SIO2
S41 -203.98 0.96 92.46
S42 199.64 38.95 84.59 SIO2
S43(ASP) -4666.00 6.43 78.97
S44 368.28 17.28 72.78 SIO2
S45(ASP) 503.23 0.97 67.20
S46 81.67 40.15 58.80 SIO2
S47(ASP) 558.74 0.91 48.50
S48 126.85 32.57 42.35 SIO2
S49 3.10 24.54
像面 0 18.26
表2A
以上各元件的具体参数在实际操作中,可根据数值孔径的大小做调整及优化,以满足不同的系统参数要求。
对本实施例制作的深紫外大数值孔径的折反射的干式投影光学系统采用两种手段进行评价:
1、光学调制传递函数
图2为大数值孔径的折反射的干式投影光学系统在全场范围内光学调制传递函数示意图。光学调制传递函数(MTF)用于评价不同空间频率的图形经过光学系统传递到像面处的效率,光学调制传递函数(MTF)曲线横坐标是空间频率,单位是线对/毫米,纵坐标是调制函数。如图2所示的本实施例所述的大数值孔径的折反射的干式投影光学系统MTF已经达到衍射极限。
2、像散、场曲与畸变
图3为投影光刻物镜细光束场曲与畸变示意图,左侧是细光束场曲示意图,横坐标代表不同视场像点偏离焦面的量,纵坐标是物方视场高度,虚线表示像点在弧矢面上的细光束场曲大小,实线表示像点在子午面上的细光束场曲大小,而虚线与实线的差值为像点的细光束像散;右侧是畸变示意图,横坐标代表畸变百分比,纵坐标是物方视场高度。由图3可以看出,本实施例制作的深紫外大数值孔径的折反射的干式投影光学系统的细光束场曲和像散控制在50nm以内,畸变都控制在10nm以内。
以上所述,仅为本发明的部分实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解到的替换或增减,都应涵盖在本发明的包含范围之内,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

1.一种大数值孔径的折反射的干式投影光学系统,用于将位于物平面的图案投影到像平面上,所述大数值孔径的折反射的干式投影光学系统包括第一透镜组(G1)、第二透镜组(G2)、第三反射镜组(G3)、第四透镜组(G4)和第五透镜组(G5),其特征在于:从光束入射方向的第一透镜组(G1)没有光焦度,第二透镜组(G2)具有正光焦度,第三反射镜组(G3)具有负光焦度,第四透镜组(G4)具有正光焦度,第五透镜组(G5)具有正光焦度,所述所述大数值孔径的折反射的干式投影光学系统包含了二十三片透镜和两片反射镜,且包含有非球面表面。
2.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述的第一透镜组(G1)为一块平行平板。
3.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述的第二透镜组(G2)包括第一弯月正透镜(2)、第二弯月正透镜(3)、第一双凸正透镜(4)、第三弯月正透镜(5)、第一平凸正透镜(6)、第四弯月正透镜(7)、第一弯月负透镜(8)、第五弯月正透镜(9)和第二双凸正透镜(10)。
4.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述的第三反射镜组(G3)包括第一反射镜(11)、第二反射镜(12)两个凹面反射镜。
5.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述的第四透镜组(G4)包括第三双凸正透镜(13)、第二弯月负透镜(14)、第三弯月负透镜(15)、第四弯月负透镜(16)、第六弯月正透镜(17)、第四双凸正透镜(18)、第五双凸正透镜(19)和第五弯月负透镜(20)。
6.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述的第五透镜组(G5)包括第六双凸正透镜(21)、第七双凸正透镜(22)、第七弯月正透镜(23)、第八弯月正透镜(24)和第九弯月正透镜(25)。
7.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述的第四透镜组(G4)和第五透镜组(G5)之间设置有一孔径光阑。
8.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:第一透镜组(G1)、第二透镜组(G2)、第四透镜组(G4)和第五透镜组(G5)均采用SIO2玻璃。
9.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述大数值孔径的折反射的干式投影光学系统为双远心系统。
10.如权利要求1所述的大数值孔径的折反射的干式投影光学系统,其特征在于:所述的大数值孔径的折反射的干式投影光学系统适用于深紫外照明光源,波长为157nm、193.3nm或248nm的光源。
CN201410024170.3A 2014-01-17 2014-01-17 一种大数值孔径的折反射的干式投影光学系统 Expired - Fee Related CN103713379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410024170.3A CN103713379B (zh) 2014-01-17 2014-01-17 一种大数值孔径的折反射的干式投影光学系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410024170.3A CN103713379B (zh) 2014-01-17 2014-01-17 一种大数值孔径的折反射的干式投影光学系统

Publications (2)

Publication Number Publication Date
CN103713379A CN103713379A (zh) 2014-04-09
CN103713379B true CN103713379B (zh) 2016-03-30

Family

ID=50406485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410024170.3A Expired - Fee Related CN103713379B (zh) 2014-01-17 2014-01-17 一种大数值孔径的折反射的干式投影光学系统

Country Status (1)

Country Link
CN (1) CN103713379B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707474B (zh) * 2017-02-17 2022-03-18 苏州协尔智能光电有限公司 一种物像双侧远心光学系统
CN110045492B (zh) * 2019-04-26 2024-03-15 中国科学院长春光学精密机械与物理研究所 宽谱段大数值孔径超高通量的显微物镜光学系统
CN116954028A (zh) * 2022-04-12 2023-10-27 上海微电子装备(集团)股份有限公司 光刻投影物镜及光刻机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278912A (zh) * 2013-06-19 2013-09-04 中国科学院光电技术研究所 一种折反式紫外光刻物镜
CN103499877A (zh) * 2013-10-10 2014-01-08 中国科学院光电技术研究所 一种大数值孔径的投影光学系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1890191A1 (en) * 2006-08-14 2008-02-20 Carl Zeiss SMT AG Catadioptric projection objective with pupil mirror

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278912A (zh) * 2013-06-19 2013-09-04 中国科学院光电技术研究所 一种折反式紫外光刻物镜
CN103499877A (zh) * 2013-10-10 2014-01-08 中国科学院光电技术研究所 一种大数值孔径的投影光学系统

Also Published As

Publication number Publication date
CN103713379A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103499877B (zh) 一种大数值孔径的投影光学系统
US7203008B2 (en) Very high-aperture projection objective
CN103499876B (zh) 一种大数值孔径的纯折射式投影光学系统
US7339743B2 (en) Very-high aperture projection objective
WO2022151838A1 (zh) 一种大孔径的四片式光学镜头
CN102789044B (zh) 一种非球面变焦距光刻物镜系统
US20040004757A1 (en) Very-high aperture projection objective
CN104062746B (zh) 一种大数值孔径的折反射浸没投影光学系统
CN111596532B (zh) 一种双远心镜头及数字投影光刻系统
CN102662307B (zh) 一种高分辨率投影光学系统
CN103713379B (zh) 一种大数值孔径的折反射的干式投影光学系统
CN104035187B (zh) 一种大数值孔径的纯折射式干式投影光学系统
TWI715392B (zh) 一種光刻投影物鏡及光刻機
CN104950427B (zh) 一种大视场高数值孔径全球面光刻机投影物镜
WO2015149427A1 (zh) 折反射式光刻照明中继镜组
CN101320122B (zh) 一种投影光学系统
CN104111518B (zh) 一种大数值孔径的投影物镜光学系统
CN100587539C (zh) 一种投影光学系统
CN103472586B (zh) 一种投影光学系统
CN102508353B (zh) 高分辨率福布斯非球面光刻物镜
CN117369084A (zh) 投影光刻物镜及光刻机
CN103105664B (zh) 光刻投影物镜
KR20230000964A (ko) 투영 광학계, 노광 장치, 및 물품 제조 방법
CN115542675A (zh) 投影光刻物镜及光刻机
CN115524927A (zh) 大视场投影物镜及光刻机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20220117

CF01 Termination of patent right due to non-payment of annual fee