【发明内容】
基于此,有必要提供一种快速且准确的磁共振参数成像方法。
一种磁共振参数成像方法,包括以下步骤:
采集磁共振仪上磁共振图像序列对应的欠采样信号,所述信号为对生物组织进行磁共振参数成像形成的欠采样信号;
利用参数图像和质子密度分布函数的稀疏性,通过基于模型的最大后验概率估计求解所述生物组织的参数图像和质子密度分布函数,所述模型为所述磁共振图像序列与所述参数图像和所述质子密度分布函数之间的关系模型。
在其中一个实施例中,所述磁共振图像序列的第m帧图像所对应的欠采样信号dm=Fumρm,
其中:1≤m≤M,M表示所述磁共振图像序列中图像的个数;;Fum表示与所述dm相对应的欠采样博立叶编码矩阵;ρm表示所述磁共振图像序列的第m帧图像;
所述关系模型为:ρm(r)=ρ0(r)φ(θ(r),χm),
其中:ρ0(r)表示所述生物组织的质子密度分布函数;θ(r)表示参数图像;χm表示ρm(r)所对应的采集参数集合;r表示空间坐标;函数φ(θ(r),χm)的表达式形式与所述磁共振参数成像所指的种类相对应;
所述基于模型的最大后验概率估计表示为:
其中:
Φm(θ)表示一个对角矩阵,其对角线上元素由函数φ(θ(r),χm)各空间坐标上的值构成;
R1(θ)和R2(ρ0)分别表示θ和ρ0的稀疏惩罚函数,λ1和λ2分别为与R1(θ)和R2(ρ0)相应的正则化参数。
在其中一个实施例中,所述磁共振参数成像是指T2参数成像,所述参数图像θ(r)为T2图像并表示为T2(r);
所述R1(θ)表示为|GT2|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在其中一个实施例中,所述磁共振参数成像是指T1参数成像,所述参数图像θ(r)为T1图像并表示为T1(r);
所述R1(θ)表示为|GT1|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在其中一个实施例中,所述磁共振参数成像是指弥散张量成像,所述参数图像θ(r)为弥散张量并表示为D(r);
所述
表示相位,b为弥散加权因子,g
m为与所述欠采样信号对应的弥散加权图像序列的第m幅图像的弥散梯度向量且g
m=(g
xm,g
ym,g
zm)
T;
所述ρ0表示通过生物组织的全采样磁共振信号获得的无弥散梯度加权的参考图像;
所述R1(D)表示为
表示所述D(r)的6个方向的弥散张量在有限差分域内的稀疏性;
所述基于模型的最大后验概率估计表示为:
此外,还有必要提供一种快速且准确的磁共振参数成像系统。
一种磁共振参数成像系统,包括:
采集模块,用于采集磁共振仪上磁共振图像序列对应的欠采样信号,所述信号为对生物组织进行磁共振参数成像形成的欠采样信号;
求解模块,用于利用参数图像和质子密度分布函数的稀疏性,通过基于模型的最大后验概率估计求解所述生物组织的参数图像和质子密度分布函数,所述模型为所述磁共振图像序列与所述参数图像和所述质子密度分布函数之间的关系模型。
在其中一个实施例中,所述磁共振图像序列的第m帧图像所对应的欠采样信号dm=Fumρm,
其中:1≤m≤M,M表示所述磁共振图像序列中图像的个数;Fum表示与所述dm相对应的欠采样博立叶编码矩阵;ρm表示所述磁共振图像序列的第m帧图像;
所述关系模型为:ρm(r)=ρ0(r)φ(θ(r),χm),
其中:ρ0(r)表示所述生物组织的质子密度分布函数;θ(r)表示参数图像;χm表示ρm(r)所对应的采集参数集合;r表示空间坐标;函数φ(θ(r),χm)的表达式形式与所述磁共振参数成像所指的种类相对应;
所述基于模型的最大后验概率估计表示为:
其中:
Φm(θ)表示一个对角矩阵,其对角线上元素由函数φ(θ(r),χm)各空间坐标上的值构成;
R1(θ)和R2(ρ0)分别表示θ和ρ0的稀疏惩罚函数,λ1和λ2分别为与R1(θ)和R2(ρ0)相应的正则化参数。
在其中一个实施例中,所述磁共振参数成像是指T2参数成像,所述参数图像θ(r)为T2图像并表示为T2(r);
所述R1(θ)表示为|GT2|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在其中一个实施例中,所述磁共振参数成像是指T1参数成像,所述参数图像θ(r)为T1图像并表示为T1(r);
所述R1(θ)表示为|GT1|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在其中一个实施例中,所述磁共振参数成像是指弥散张量成像,所述参数图像θ(r)为弥散张量并表示为D(r);
表示相位,b为弥散加权因子,g
m为与所述欠采样信号对应的弥散加权图像序列的第m幅图像的弥散梯度向量且g
m=(g
xm,g
ym,g
zm)
T;
所述ρ0表示通过生物组织的全采样磁共振信号获得的无弥散梯度加权的参考图像;
所述R
1(D)表示为
表示所述D(r)的6个方向的弥散张量在有限差分域内的稀疏性;
所述基于模型的最大后验概率估计表示为:
上述磁共振参数成像方法和系统,采集磁共振仪上对生物组织进行磁共振参数成像形成的欠采样信号,通过基于模型的最大后验概率估计求解所述生物组织的参数图像和质子密度分布函数。上述方法和系统直接通过采集的欠采样信号估计生物组织的参数图像和质子密度分布函数,避免了由欠采样重建的磁共振图像序列估计参数图像所引起的误差传递。并且,该方法利用参数图像和质子密度分布函数的稀疏性,有效地抑制了欠采样所带来的图像伪影。因此,上述方法和系统通过欠采样K空间,可实现快速且准确的磁共振参数成像。
【具体实施方式】
如图1所示,在一个实施例中,一种磁共振参数成像方法,包括以下步骤:
步骤S20,采集磁共振仪上磁共振图像序列对应的欠采样信号,所述欠采样信号为对生物组织进行磁共振参数成像形成的欠采样信号。
步骤S40,利用参数图像和质子密度分布函数的稀疏性,通过基于模型的最大后验概率估计求解所述生物组织的参数图像和质子密度分布函数,所述模型为磁共振图像序列与所述参数图像和所述质子密度分布函数之间的关系模型。
在其中一个实施例中,所述磁共振图像序列的第m帧图像所对应的欠采样信号dm=Fumρm,
其中:1≤m≤M,M表示所述磁共振图像序列中图像的个数;;Fum表示与所述dm相对应的欠采样博立叶编码矩阵;ρm表示所述磁共振图像序列的第m帧图像;
所述关系模型为:ρm(r)=ρ0(r)φ(θ(r),χm);
其中:ρ0(r)表示所述生物组织的质子密度分布函数;θ(r)表示参数图像;χm表示ρm(r)所对应的采集参数集合,例如回波时间TE、采集时间TR、翻转角等;r表示空间坐标。函数φ(θ(r),χm)的表达式形式与所述磁共振参数成像所指的种类相对应。
所述基于模型的最大后验概率估计表示为:
其中:
Φm(θ)表示一个对角矩阵,其对角线上元素由函数φ(θ(r),χm)各空间坐标上的值构成。
R1(θ)和R2(ρ0)分别表示θ和ρ0的稀疏惩罚函数,λ1和λ2分别为与R1(θ)和R2(ρ0)相应的正则化参数。
在一个实施例中,可采用最优化算法,例如非线性共轭梯度法,求解上述基于模型的最大后验概率估计中的参数图像θ(r)和质子密度分布函数ρ0(r)。
上述磁共振参数成像方法中,参数最大后验概率估计表达式中包含θ的稀疏惩罚函数R1(θ)和ρ0的稀疏惩罚函数R2(ρ0),即上述方法运用了磁共振参数的先验信息(稀疏性),区别于以往运用磁共振图像序列的先验信息的方法,可有效抑制欠采样所带来的参数图像中的伪影,提高欠采样时参数估计的精度。
在一个实施例中,上述对生物组织进行的磁共振参数成像是指T2参数成像,所述参数图像θ(r)为T2图像并表示为T2(r);
所述R1(θ)表示为|GT2|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在一个实施例中,可采用优化算法,例如非线性共轭梯度法等,求解上述基于模型的最大后验概率估计中的T2图T2(r)和质子密度分布函数ρ0(r)。
在其中一个实施例中,上述对生物组织进行的磁共振参数成像是指T1参数成像,所述参数图像θ(r)为T1图像并表示为T1(r);
所述R1(θ)表示为|GT1|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在一个实施例中,可采用优化算法,例如非线性共轭梯度法等,求解上述基于模型的最大后验概率估计中的T1图T1(r)和质子密度分布函数ρ0(r)。
在一个实施例中,上述对生物组织进行的磁共振参数成像是指弥散张量成像,所述参数图像θ(r)为弥散张量并表示为D(r);
所述
表示相位,b为弥散加权因子,g
m为与所述欠采样信号对应的弥散加权图像序列的第m幅图像的弥散梯度向量且g
m=(g
xm,g
ym,g
zm)
T;
所述ρ0表示通过生物组织的全采样磁共振信号获得的无弥散梯度加权的参考图像。
所述R
1(D)表示为
表示所述D(r)的6个方向的弥散张量在有限差分域内的稀疏性;
所述基于模型的最大后验概率估计表示为:
在一个实施例中,可采用优化算法,例如非线性共轭梯度法等,求解该参数最大后验概率估计中的弥散张量D(r)。
如图2所示,在一个实施例中,一种磁共振参数成像系统,包括采集模块20和求解模块40,其中:
采集模块20用于采集磁共振仪上磁共振图像序列对应的欠采样信号,所述欠采样信号为对生物组织进行磁共振参数成像形成的欠采样信号。
求解模块40用于利用参数图像和质子密度分布函数的稀疏性,通过基于模型的最大后验概率估计求解所述生物组织的参数图像和质子密度分布函数,所述模型磁共振图像序列与所述参数图像和所述质子密度分布函数之间的关系模型。
在一个实施例中,,所述磁共振图像序列的第m帧图像所对应的欠采样信号dm=Fumρm,
其中:1≤m≤M,M表示所述磁共振图像序列中图像的个数;;Fum表示与所述dm相对应的欠采样博立叶编码矩阵;ρm表示所述磁共振图像序列的第m帧图像;
所述关系模型为:ρm(r)=ρ0(r)φ(θ(r),χm);
其中:ρ0(r)表示所述生物组织的质子密度分布函数;θ(r)表示参数图像;χm表示ρm(r)所对应的采集参数集合,例如回波时间TE、采集时间TR、翻转角等;r表示空间坐标。函数φ(θ(r),χm)的表达式形式与所述磁共振参数成像所指的种类相对应。
所述基于模型的最大后验概率估计表示为:
其中:
Φm(θ)表示一个对角矩阵,其对角线上元素由函数φ(θ(r),χm)各空间坐标上的值构成。
R1(θ)和R2(ρ0)分别表示θ和ρ0的稀疏惩罚函数,λ1和λ2分别为与R1(θ)和R2(ρ0)相应的正则化参数。
在一个实施例中,求解模块40可采用最优化算法,例如非线性共轭梯度法,求解上述基于模型的最大后验概率估计中的参数图像θ(r)和质子密度分布函数ρ0(r)。
上述磁共振参数成像系统中,参数最大后验概率估计表达式中包含θ的稀疏惩罚函数R1(θ)和ρ0的稀疏惩罚函数R2(ρ0),即上述方法运用了磁共振参数的先验信息(稀疏性),区别于以往运用磁共振图像序列的先验信息的方法,可有效抑制欠采样所带来的参数图像中的伪影,提高欠采样时参数估计的精度。
在一个实施例中,上述对生物组织进行的磁共振参数成像是指T2参数成像,所述参数图像θ(r)为T2图像并表示为T2(r);
所述R1(θ)表示为|GT2|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在一个实施例中,求解模块40可采用优化算法,例如非线性共轭梯度法等,求解上述基于模型的最大后验概率估计中的T2图T2(r)和质子密度分布函数ρ0(r)。
在其中一个实施例中,上述对生物组织进行的磁共振参数成像是指T1参数成像,所述参数图像θ(r)为T1图像并表示为T1(r);
所述R1(θ)表示为|GT1|1,G表示有限差分变换矩阵;
所述R2(ρ0)表示为|Ψwρ0|1,Ψw表示小波变换矩阵;
所述基于模型的最大后验概率估计表示为:
在一个实施例中,求解模块40可采用优化算法,例如非线性共轭梯度法等,求解上述基于模型的最大后验概率估计中的T2图T1(r)和质子密度分布函数ρ0(r)。
在一个实施例中,上述对生物组织进行的磁共振参数成像是指弥散张量成像,所述参数图像θ(r)为弥散张量并表示为D(r);
所述 表示相位,b为弥散加权因子,gm为与所述欠采样信号对应的弥散加权图像序列的第m幅图像的弥散梯度向量且gm=(gxm,gym,gzm)T;
所述ρ0表示通过生物组织的全采样磁共振信号获得的无弥散梯度加权的参考图像。
所述R
1(D)表示为
表示所述D(r)的6个方向的弥散张量在有限差分域内的稀疏性;
所述基于模型的最大后验概率估计表示为:
在一个实施例中,求解模块40可采用优化算法,例如非线性共轭梯度法等,求解该参数最大后验概率估计中的弥散张量D(r)。
上述磁共振参数成像方法和系统,采集磁共振仪上对生物组织进行磁共振参数成像形成的信号序列,通过基于模型的最大后验概率估计求解所述生物组织的参数图像和质子密度分布函数。上述方法和系统直接通过采集的欠采样信号估计生物组织的参数图像和质子密度分布函数,避免了由欠采样重建的磁共振图像序列估计参数图像所引起的误差传递。并且,该方法利用参数图像和质子密度分布函数的稀疏性,有效地抑制了欠采样所带来的图像伪影。因此,上述方法和系统通过欠采样K空间,可实现快速且准确的磁共振参数成像。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序控制相关的硬件来完成的,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。