CN103698745B - 室内无线定位设备及其实现定位的方法 - Google Patents

室内无线定位设备及其实现定位的方法 Download PDF

Info

Publication number
CN103698745B
CN103698745B CN201310721760.7A CN201310721760A CN103698745B CN 103698745 B CN103698745 B CN 103698745B CN 201310721760 A CN201310721760 A CN 201310721760A CN 103698745 B CN103698745 B CN 103698745B
Authority
CN
China
Prior art keywords
base station
locating base
locating
positioning
positioning equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310721760.7A
Other languages
English (en)
Other versions
CN103698745A (zh
Inventor
翟宇
张化良
韩暋
傅季安
韩全
唐学术
贾凡
杨增顺
朱瓅
张志�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aerospace Measurement and Control Technology Co Ltd
Original Assignee
Beijing Aerospace Measurement and Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Aerospace Measurement and Control Technology Co Ltd filed Critical Beijing Aerospace Measurement and Control Technology Co Ltd
Priority to CN201310721760.7A priority Critical patent/CN103698745B/zh
Publication of CN103698745A publication Critical patent/CN103698745A/zh
Application granted granted Critical
Publication of CN103698745B publication Critical patent/CN103698745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种室内无线定位设备及其实现定位的方法,其综合近场RFID射频识别技术、2.4GHz频段CSS无线通讯技术、125KHz低频场强信号分析识别技术等技术手段,利用不同频段无线信号传输特性,实现能适用于室内复杂结构的分区域的差别性定位。另外,本发明利用改进的TDOA定位方法,通过改变定位信号传输方向及对优化的定位算法,提高了系统容量及系统可靠性,降低了系统建设成本,使室内定位技术的大范围工程化应用得到了实现。

Description

室内无线定位设备及其实现定位的方法
技术领域
本发明涉及通信技术领域,尤其涉及一种室内无线定位设备及其实现定位的方法。
背景技术
目前主流的室内定位技术是到达时间差(TDOA,TimeDifferenceofArrival)法。TDOA法是利用测量无线电波在空气介质中的传播时间来完成目标定位,具有测量精度高、环境适应性好等特点。但该技术存在一些固有的缺陷,表现为同一区域内可同时实现定位的数量受到限制。在定位目标数量较多时,会出现定位丢失的现象。其对后台数据处理设备的配置要求较高,因此该方法较难实现大规模应用。
另外,由于室内建筑结构相对复杂,且楼宇内各功能区间多为狭窄空间与空旷区域交错结构,大面积工程化的室内定位设备需具有多种复杂环境的适应能力。单纯利用一种定位方法或手段很难达到对所有应用环境的通用性要求。因此,需要一种能够适应室内复杂环境的高精度定位设备。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的室内无线定位设备及其实现定位的方法。
依据本发明的一个方面,提供一种室内无线定位设备,包括:
RFID射频模块,与RFID读卡器通信,用于将所述RFID读卡器发送的定位人员信息发送至主控模块;
低频信号收发模块,与定位信标通信,用于接收所述定位信标发送的定位设备待进入的定位区域的类型,并将定位区域类型信息发送至主控模块;
CSS射频模块,至少与三个定位基站通信,用于将定位基站发送的定位信号和同步信号转发至主控模块,以及将主控模块计算得到的定位设备的位置信息发送至定位基站;
主控模块,用于接收所述RFID射频模块发送的定位人员信息,进行定位设备初始化;接收所述低频信号收发模块发送的定位区域类型信息,当定位区域为一维定位区域时,通过一维坐标解算,计算定位设备的位置信息;当定位区域为二维定位区域时,触发所述CSS射频模块,并基于定位基站发送的定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息;以及将计算得到的定位设备的位置信息通过CSS射频模块发送至定位基站。
依据本发明的另一个方面,提供一种室内无线定位设备实现定位的方法,包括:
步骤1,定位设备在接收到RFID读卡器发送的定位人员信息后,进行定位设备初始化;
步骤2,定位设备接收定位信标发送的定位设备待进入的定位区域的类型信息,并在定位区域的类型为一维定位区域时,执行步骤3;在定位区域的类型为二维定位区域时,执行步骤4;
步骤3,定位设备通过一维坐标解算,计算定位设备的位置信息,转步骤5;
步骤4,定位设备接收至少三个定位基站发送的定位信号和同步信号,基于该定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息,转步骤5;
步骤5,定位设备将计算得到的定位设备的位置信息广播至定位基站。
本发明有益效果如下:
首先,室内定位精度得到了改善;
由于采用CSS线性脉冲调制技术,信号多路径分辨能力得到了提升,二维区域定位可实现80%以上目标定位精度在3m~5m;一维区域定位精度优于2m;有效定位通讯距离不小于150m;区域识别控制精度优于3m,最大区域识别距离5m~7m。
其次,系统适应室内复杂环境的能力得到了提高;
定位设备可根据定位信标信号自动切换一维、二维及区域定位算法,实现复杂环境的自动区域识别
第三,系统定位容量得到了提高;
本发明所述的定位方法不再依赖基站信号时间分配实现时间同步,理论上系统容量无上限。
第四,降低了系统建设成本,提高系统工程的实用性;
由于采用了分区域的定位方法,对不需要精确定位的区域(如狭窄走廊、卫生间、电梯、楼梯等)以一维定位或区域定位方式实现替代了复杂的二维精确定位,减少了定位基站等基础设施的投入及调试成本,提高了系统工程的实用性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种室内无线定位设备的结构框图;
图2为本发明中定位设备进行循环迭代计算的示意图;
图3为本发明提供的一种室内无线定位设备实现定位的方法流程图;
图4为本发明中定位卡的应用实例图;
图5为本发明中定位原理示意图;
图6为本发明中信号流向时序分析图;
图7为本发明中定位卡进行定位信息解算的详细处理流程图。
具体实施方式
本发明提供一种室内无线定位设备及其实现定位的方法,其综合近场RFID射频识别技术、2.4GHz频段CSS无线通讯技术、125KHz低频场强信号分析识别技术等技术手段,利用不同频段无线信号传输特性,实现能适用于室内复杂结构的分区域的差别性定位。同时,利用改进的TDOA定位方法,通过改变定位信号传输方向及对优化的定位算法,提高了系统容量及系统可靠性,降低了系统建设成本,使室内定位技术的大范围工程化应用得到了实现。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
装置实施例
本发明实施例提供一种室内无线定位设备,如图1所示,主要包括:主控模块(MCU)、RFID射频模块、CSS射频模块、以及低频信号收发模块;进一步地,定位设备还包括:用于为定位设备供电的供电单元;
RFID射频模块,工作在13.56MHz频段,可完成10cm内近距离的主控模块与RFID读卡器数据交换功能。确切地讲,RFID射频模块在与RFID读卡器的距离低于设定的通信距离阈值时,将RFID读卡器发送的定位人员信息发送至主控模块,以使主控模块加载定位人员信息,完成定位设备的初始化;
低频信号收发模块,工作在125KHz频段,与定位信标通信,用于接收所述定位信标发送的定位设备待进入的定位区域的类型,并将定位区域类型信息发送至主控模块,以辅助主控模块进行1维、2维定位算法转换。进一步地,低频信号收发模块还用于从定位信标获取待进入的定位区域内的定位基站信息,并将该定位基站信息发送至主控模块,由主控模块通知CSS射频模块,以使CSS射频模块获取到有效的、可与其进行通信的定位基站信息。
CSS射频模块,工作在2.4GHz频段,为定位信号收发核心模块,通过收/发定位脉冲信号完成与定位基站间无线通信(有效通信距离大于150m),实现定位数据交换。确切地讲,CSS射频模块,至少与三个定位基站通信,用于将定位基站发送的定位信号和同步信号转发至主控模块,以及将主控模块计算得到的定位设备的位置信息发送至定位基站;
主控模块,主要完成定位数据存储、定位数据运算及各射频模块休眠唤醒操作。确切地讲,主控模块接收所述RFID模块发送的定位人员信息,进行定位设备初始化;接收所述低频信号收发模块发送的定位区域类型信息,当定位区域为一维定位区域时,通过一维坐标解算,计算定位设备的位置信息;当定位区域为二维定位区域时,触发所述CSS射频模块,并基于定位基站发送的定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息;以及将计算得到的定位设备的位置信息通过CSS射频模块发送至定位基站,由定位基站将定位设备的位置信息上报至上层中心系统。
其中,主控模块基于定位基站发送的定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息的方式包括:
在与CSS射频模块通信的定位基站中选取三个定位基站,并求取接收各定位基站发送的定位信号的时间差,以及利用同步信号对所述时间差进行校正;
利用校正后的时间差,求取定位设备到第一定位基站和第二定位基站的距离差,以及定位设备到第二定位基站和第三定位基站的距离差,分别建立以第一定位基站、第二定位基站为焦点、以及以第二定位基站、第三定位基站为焦点的两组双曲线方程,求取两组双曲线轨迹方程的交点,得到定位设备的位置信息。
其中,主控模块建立以两个定位基站为焦点的双曲线方程,具体包括:
主控模块以接收到定位基站i广播的定位信号为定位计时起点,以接收到定位基站i+1接收到定位基站i广播的定位信号后而广播的定位信号为定位计时终点,完成时间差测量;
主控模块以定位基站i+1发出的同步信号,对测量得到的时间差进行校正,利用校正后的时间差求取定位设备到定位基站i和定位基站i+1的距离差;其中,同步信号中携带有定位基站i+1从接收到定位基站i广播的定位信号,到定位基站i+1接收到自身广播的定位信号的时延信息;
主控模块基于定位基站i与定位基站i+1间的距离信息,以及定位设备到定位基站i和定位基站i+1的距离差信息,得到以定位基站i和定位基站i+1为焦点的双曲线轨迹方程;
主控模块以接收到定位基站i+1接收到定位基站i广播的定位信号后而广播的定位信号为定位计时起点,以接收到定位基站i+2接收到定位基站i+1广播的定位信号后而广播的定位信号为定位计时终点,利用上述双曲线轨迹建立流程,得到以定位基站i+1和定位基站i+2为焦点的双曲线轨迹方程。
由上述解算方式可知,利用三个定位基站,即可得到定位设备的位置信息。但考虑到定位区域环境因素影响,利用三个定位基站建立的两组双曲线间可能无交点,或者存在多个交点的情况,这会导致无法得到定位设备的位置信息。对此,本发明实施例还提供一种解算定位设备位置信息的优选方案,具体如下:
对与CSS射频模块通信的各定位基站进行顺序编号,分别求取接收到相邻两个定位基站i及i+1发送的定位信号的时间差,并利用同步信号对所述时间差进行校正;
利用校正后的时间差,求取定位设备到相邻两个定位基站i及i+1的距离差,建立以定位基站i、定位基站i+1为焦点的多组双曲线方程;
求取相邻两组双曲线方程的交点,得到定位设备的多个位置信息,并按照设定筛取规则,对多个位置信息中的伪位置信息进行剔除,并基于剔除后的各位置信息,计算定位设备的精确位置信息;
其中,i=1,…,N;N为与CSS射频模块通信的定位基站的个数;且当i取N时,令i+1=1,以实现循环迭代计算。具体循环示意图如图2所示。
由上述解算方式可知,主控模块利用定位区域内所有定位基站顺序发送的定位信号,可以建立多组双曲线方程,相邻两组双曲线方程即可求取一个位置信息,由此可以得到定位设备的多个位置信息,将多个位置信息中的伪位置信息(即:与其他位置信息偏差较大的位置信息)进行剔除后,采用数据优化算法,对多个位置信息进行处理,可以得到一个精确的位置信息。其中,在已知一个变量的多个取值的条件下,求取该变量的精确取值的优化算法有很多种,例如卡尔曼滤波算法、快速下降法等等,在此不作穷举。
方法实施例
与实施例一相对应,本发明实施例提供一种室内无线定位设备实现定位的方法,应用在包括定位设备、RFID读卡器、若干定位基站和若干定位信标的系统中。其中,定位设备利用13.56MHz频段与RFID读卡器通信,利用125KHz频段与定位信标通信,以及利用2.4GHz频段与定位基站通信。
如图3所示,本实施例所述方法具体包括:
步骤S301,定位设备在接收到RFID读卡器发送的定位人员信息后,进行定位设备初始化;
步骤S302,定位设备接收定位信标发送的定位设备待进入的定位区域的类型信息,并在定位区域的类型为一维定位区域时,执行步骤S303;在定位区域的类型为二维定位区域时,执行步骤S304;
步骤S303,定位设备通过一维坐标解算,计算定位设备的位置信息,转步骤S305;
步骤S304,定位设备接收至少三个定位基站发送的定位信号和同步信号,基于该定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息,转步骤S305;
具体地,该步骤中,定位设备完成定位设备位置信息的计算方式与实施例一中所述的方式相同,在此不作赘述。
步骤S305,定位设备将计算得到的定位设备的位置信息广播至定位基站。
基于上述装置实施例和方法实施例的阐述,下面根据图4~图7给出本发明一个较佳的实施例,并结合对实施例的描述,进一步给出本发明的技术细节,使其能够更好地说明本发明的提供的方法及装置的具体实现过程。
本发明实施例中所述的定位卡(即定位设备)为多频段无线定位卡,其集成了125KHz、13.56MHz及2.4GHz三个频段,利用各频段信号在不同环境及传输距离上的特点及优势,实现不同应用场合的定位。如图4所示,为本发明实施例所述定位卡的应用实例图。
本实施例中,13.56MHz频段为近距离无线识别频段,定位卡结合RFID读卡器实现对被定位人员信息读写功能。利用125KHz低频信号穿透力强的特点,实现对目标定位卡的区域识别、辅助定位参数校正及实现一维定位、二维定位的算法切换。2.4GHz频段为室内定位基础频段,利用2.4GHz频段提供的80MHz带宽结合CSS线性脉冲调制技术,实现室内环境下的二维精确定位。
其中,利用2.4GHz频段提供的80MHz带宽结合CSS线性脉冲调制技术进行二维精确定位时,还采用了改进型的TDOA算法,该算法对传统TDOA定位算法进行了改进,由定位基站作为定位信号的发起端,定位卡根据各定位基站信号时差完成其所在位置信息的计算,并通过定位基站将位置信息上传至中心系统,完成目标定位。
该方法在保证原有定位精度的基础上,避免了因系统时间同步而造成的系统定位容量限制。同时,由于位置信息数据处理工作由定位卡完成,数据处理服务器将不再需要进行庞大的数据计算工作,从而降低了后台设备数据处理压力,提高了系统运行的稳定性及可靠性。
下面对改进型的TDOA定位方法进行详细说明:
改进后的TDOA定位算法在双曲线定位法基本原理基础上进行了改进。基站发出定位计时起止信号及同步信号(时间延迟),定位卡根据计时起止信号完成到达时间差测量,同时结合基站同步信号中的延迟时间信息,完成一次双曲线轨迹方程的确认。
图5是本发明定位基本原理示意图。如图所示,定位基站间(Anchor1、2)距离已知,由Anchor1作为定位信号发起点向Anchor2及Tag(定位卡)发送定位信号。当Anchor2接收到Anchor1定位信号后,向Tag发送定位计时终止信号。Tag以Anchor1定位信号为定位计时起点,以Anchor2定位信号为定位计时终点,起止间时间代表定位信号经b、c段路径与a路径之差。利用双曲线定义,可将Tag视为落在以Anchor1、Anchor2为焦点的双曲线轨迹上的一点,且焦点间距离已知。同样方法可确定以Anchor2、Anchor3为焦点的双曲线轨迹方程。两个双曲线的交点即为Tag所在位置。
由于Anchor2处理Anchor1的定位信号时存在时延,为解决此问题,采用双信号定位校准方法,即同一基站发出两组定位信号(两组信号间隔通常在6ms),第一组为定位计时信号,第二组为同步校准信号(包含时延校准信息,即Anchor2处理Anchor1的定位信号所需的时间)。以图5中定位原理图为例,Anchor2以收到Anchor1的定位计时信号为计时起点,以收到自身广播的定位计时信号为计时终点,计时起止点间时间差为延误校准时间,该数据通过同步校准信号由Anchor2发给Tag。
图6为定位原理信号流向时序分析图。如图所示,Anchor1与Tag距离为a、Anchor2与Tag距离为b、Anchor1与Anchor2间距离为c,其中c为已知距离。信号时序如下所示:
(1)Anchor1在t0时刻广播定位计时信号;
(2)Anchor2在t2’’时刻收到Anchor1的定位计时信号,解析该定位计时信号后,于t2时刻广播定位计时信号。同时,Anchor2计算出t2’’与t2间时延△t2=t2-t2’’,并于t2’时刻发送给Tag;
(3)Tag在t1’’接收到Anchor1广播的定位计时信号(即为计时起点),于t1时刻接收到Anchor2广播的定位计时信号(计时终点),以及于t1’时刻接收到Anchor2发送的同步信号(包含处理时延信息)。
改进型的TDOA算法原理,有如下公式:
△=a-b=(t1’’-t0)·v-(t1-t0-△t2)·v-c公式1
整理公式1,得到:
△=a-b=(t1’’-t1-△t2)·v-c公式2
其中,v为无线电波在空气介质的传输速度,v=3000000km/s。
由上述公式即可求出定位卡到Anchor1和Anchor2的距离差,且Anchor1与Anchor2间的距离已知,由此即可得到以Anchor1和Anchor2为焦点的双曲线方程。
对于建立以Anchor2和Anchor3为焦点的双曲线方程的过程与上述过程相同,即:
(1)Anchor2在t2时刻广播定位计时信号;
(2)Anchor3在t3’’时刻收到Anchor2的定位计时信号,解析该定位计时信号后,于t3时刻广播定位计时信号。同时,Anchor3计算出t3’’与t3间时延△t3=t3-t3’’,并于t3’时刻发送给Tag;
(3)Tag以接收到Anchor2广播的定位计时信号为计时起点,以接收到Anchor3广播的定位计时信号为计时终点,以及以Anchor3发送的处理时延信息为同步信号。再利用公式1、2即可求得定位卡到Anchor2和Anchor3的距离差,且Anchor2与Anchor3间的距离已知,由此即可得到以Anchor2和Anchor3为焦点的双曲线方程。
以此类推,即可求得以Anchor3、4为焦点、Anchor4、5为焦点、Anchor5、6为焦点、….的双曲线方程。
基于上述原理阐述,下面给出定位卡进行定位信息解算的详细处理流程,如图7所示,包括:
步骤1,定位卡通过与RFID读卡器通信,进行RFID定位功能唤醒;
步骤2,利用RFID读卡器发送的定位信息,进行设备初始化;
步骤3,判断初始化是否成功,若是,执行步骤4,否则,返回步骤2;
步骤4,定位卡通过与定位信标进行通信,进行目标定位区域的一维二维状态判断,若为二维定位区域,执行步骤6;若为一维定位区域,执行步骤5;
步骤5,定位卡进行一维坐标解算,转步骤21;
步骤6,定位卡等待接收定位计时起点信号;
步骤7,定位卡判断是否接收到定位计时起点信号,若是,执行步骤8;否则,返回步骤6;
步骤8,定位卡记录接收定位计时起点信号的时间;
步骤9,定位卡等待接收定位计时终止信号;
步骤10,定位卡判断是否接收到定位计时终止信号,若是,执行步骤11;否则,返回步骤9;
步骤11,定位卡记录接收定位计时终止信号的时间;
步骤12,定位卡等待接收同步信号;
步骤13,定位卡判断是否接收到同步信号,若是,执行步骤14;否则,返回步骤12;
步骤14,定位卡计算定位信号时差,并利用同步信号对该时差进行校正;
步骤15,定位卡确定双曲线轨迹方程;
步骤16,定位卡查询上一组信号确定的双曲线方程;
步骤17,定位卡检测查询是否成功,若否,存储本组信号求得的双曲线方程,转步骤6;否则,执行步骤18;
步骤18,定位卡进行双曲线方程解算;
步骤19,定位卡判断是否求解成功,若否,执行步骤20;否则,执行步骤21;
步骤20,定位卡抛弃本次求得的数据;
步骤21,定位卡上传目标坐标信息;
步骤22,定位卡判断是否上传成功,若是,执行步骤23;否则,返回步骤21;
步骤23,结束。
由上述定位流程可知,定位卡通过RFID读卡器实现定位功能唤醒并进入初始化状态。默认情况下定位卡以二维定位模式开启,当收到定位基站的定位计时起点信号后,记录定位卡当前时间t1’’。当收到定位基站的定位计时终止信号后记录当前时刻t1,并根据时间差数据确定轨迹方程。同样原理完成多组轨迹方程式建立,再结合双曲线定位算法进行坐标计算。对通过多次迭代计算后存在与历史数据较大偏差的计算结果,将采取抛弃处理。对于剩余的计算结果,采用设定的数据优化处理算法,求取定位卡的精确坐标信息,再通过2.4GHz频段向定位基站(就近的定位基站)上传其坐标信息。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种室内无线定位设备,其特征在于,包括:
RFID射频模块,工作在13.56MHz频段,与RFID读卡器通信,用于将所述RFID读卡器发送的定位人员信息发送至主控模块;
低频信号收发模块,工作在125KHz频段,与定位信标通信,用于接收所述定位信标发送的定位设备待进入的定位区域的类型,并将定位区域类型信息发送至主控模块;
CSS射频模块,工作在2.4GHz频段,至少与三个定位基站通信,用于将定位基站发送的定位信号和同步信号转发至主控模块,以及将主控模块计算得到的定位设备的位置信息发送至定位基站;
主控模块,用于接收所述RFID射频模块发送的定位人员信息,进行定位设备初始化;接收所述低频信号收发模块发送的定位区域类型信息,当定位区域为一维定位区域时,通过一维坐标解算,计算定位设备的位置信息;当定位区域为二维定位区域时,触发所述CSS射频模块,并基于定位基站发送的定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息;以及将计算得到的定位设备的位置信息通过CSS射频模块发送至定位基站。
2.如权利要求1所述的室内无线定位设备,其特征在于,所述主控模块基于定位基站发送的定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息,具体包括:
在与所述CSS射频模块通信的定位基站中选取三个定位基站;
求取接收到选取的各定位基站发送的定位信号的时间差,并利用同步信号对所述时间差进行校正;
利用校正后的时间差,求取定位设备到第一定位基站和第二定位基站的距离差,以及定位设备到第二定位基站和第三定位基站的距离差,分别建立以第一定位基站、第二定位基站为焦点、以及以第二定位基站、第三定位基站为焦点的两组双曲线方程;
求取两组双曲线轨迹方程的交点,得到定位设备的位置信息。
3.如权利要求1所述的室内无线定位设备,其特征在于,所述主控模块基于定位基站发送的定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息,具体包括:
对与CSS射频模块通信的各定位基站进行顺序编号;
分别求取接收到相邻两个定位基站i及i+1发送的定位信号的时间差,并利用同步信号对所述时间差进行校正;
利用校正后的时间差,求取定位设备到相邻两个定位基站i及i+1的距离差,建立以定位基站i、定位基站i+1为焦点的多组双曲线方程;
求取相邻两组双曲线方程的交点,得到定位设备的多个位置信息,并按照设定筛取规则,对多个位置信息中的伪位置信息进行剔除,并基于剔除后的各位置信息,计算定位设备的精确位置信息;
其中,i=1,…,N;N为与CSS射频模块通信的定位基站的个数;且当i取N时,令i+1=1,以实现循环迭代计算。
4.如权利要求2或3所述的室内无线定位设备,其特征在于,所述主控模块建立以两个定位基站为焦点的双曲线方程,具体包括:
主控模块以接收到定位基站i广播的定位信号为定位计时起点,以接收到定位基站i+1接收到定位基站i广播的定位信号后而广播的定位信号为定位计时终点,完成时间差测量;
主控模块以定位基站i+1发出的同步信号,对测量得到的时间差进行校正,利用校正后的时间差求取定位设备到定位基站i和定位基站i+1的距离差;其中,同步信号中携带有定位基站i+1从接收到定位基站i广播的定位信号,到定位基站i+1接收到自身广播的定位信号的时延信息;
主控模块基于定位基站i与定位基站i+1间的距离信息,以及定位设备到定位基站i和定位基站i+1的距离差信息,得到以定位基站i和定位基站i+1为焦点的双曲线轨迹方程;
主控模块以接收到定位基站i+1接收到定位基站i广播的定位信号后而广播的定位信号为定位计时起点,以接收到定位基站i+2接收到定位基站i+1广播的定位信号后而广播的定位信号为定位计时终点,利用上述双曲线轨迹建立流程,得到以定位基站i+1和定位基站i+2为焦点的双曲线轨迹方程。
5.一种室内无线定位设备实现定位的方法,应用在包括定位设备、RFID读卡器、若干定位基站和若干定位信标的系统中,其特征在于,包括:
步骤1,定位设备在接收到RFID读卡器发送的定位人员信息后,进行定位设备初始化;
步骤2,定位设备接收定位信标发送的定位设备待进入的定位区域的类型信息,并在定位区域的类型为一维定位区域时,执行步骤3;在定位区域的类型为二维定位区域时,执行步骤4;
步骤3,定位设备通过一维坐标解算,计算定位设备的位置信息,转步骤5;
步骤4,定位设备接收至少三个定位基站发送的定位信号和同步信号,基于该定位信号和同步信号,利用双曲线定位法,计算定位设备的位置信息,转步骤5;
步骤5,定位设备将计算得到的定位设备的位置信息广播至定位基站;
其中,定位设备利用13.56MHz频段与RFID读卡器通信,利用125KHz频段与定位信标通信,以及利用2.4GHz频段与定位基站通信。
6.如权利要求5所述的方法,其特征在于,所述步骤4具体包括:
定位设备在与其通信的定位基站中选取三个定位基站;
求取接收到选取的各定位基站发送的定位信号的时间差,并利用同步信号对所述时间差进行校正;
利用校正后的时间差,求取定位设备到第一定位基站和第二定位基站的距离差,以及定位设备到第二定位基站和第三定位基站的距离差,分别建立以第一定位基站、第二定位基站为焦点、以及以第二定位基站、第三定位基站为焦点的两组双曲线方程;
求取两组双曲线轨迹方程的交点,得到定位设备的位置信息。
7.如权利要求5所述的方法,其特征在于,所述步骤4,具体包括:
定位设备对与其通信的各定位基站进行顺序编号;
分别求取接收到相邻两个定位基站i及i+1发送的定位信号的时间差,并利用同步信号对所述时间差进行校正;
利用校正后的时间差,求取定位设备到相邻两个定位基站i及i+1的距离差,建立以定位基站i、定位基站i+1为焦点的多组双曲线方程;
求取相邻两组双曲线方程的交点,得到定位设备的多个位置信息,并按照设定筛取规则,对多个位置信息中的伪位置信息进行剔除,并基于剔除后的各位置信息,计算定位设备的精确位置信息;其中,i=1,…,N;N为与定位设备通信的定位基站的个数;且当i取N时,令i+1=1,以实现循环迭代计算。
8.如权利要求6或7所述的方法,其特征在于,所述方法中,建立以两个定位基站为焦点的双曲线方程,具体包括:
定位设备以接收到定位基站i广播的定位信号为定位计时起点,以接收到定位基站i+1接收到定位基站i广播的定位信号后而广播的定位信号为定位计时终点,完成时间差测量;
定位设备以定位基站i+1发出的同步信号,对测量得到的时间差进行校正,利用校正后的时间差求取定位设备到定位基站i和定位基站i+1的距离差;其中,同步信号中携带有定位基站i+1从接收到定位基站i广播的定位信号,到定位基站i+1接收到自身广播的定位信号的时延信息;
定位设备基于定位基站i与定位基站i+1间的距离信息,以及定位设备到定位基站i和定位基站i+1的距离差信息,得到以定位基站i和定位基站i+1为焦点的双曲线轨迹方程;
定位设备以接收到定位基站i+1接收到定位基站i广播的定位信号后而广播的定位信号为定位计时起点,以接收到定位基站i+2接收到定位基站i+1广播的定位信号后而广播的定位信号为定位计时终点,利用上述双曲线轨迹建立流程,得到以定位基站i+1和定位基站i+2为焦点的双曲线轨迹方程。
CN201310721760.7A 2013-12-24 2013-12-24 室内无线定位设备及其实现定位的方法 Active CN103698745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310721760.7A CN103698745B (zh) 2013-12-24 2013-12-24 室内无线定位设备及其实现定位的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310721760.7A CN103698745B (zh) 2013-12-24 2013-12-24 室内无线定位设备及其实现定位的方法

Publications (2)

Publication Number Publication Date
CN103698745A CN103698745A (zh) 2014-04-02
CN103698745B true CN103698745B (zh) 2016-03-30

Family

ID=50360339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310721760.7A Active CN103698745B (zh) 2013-12-24 2013-12-24 室内无线定位设备及其实现定位的方法

Country Status (1)

Country Link
CN (1) CN103698745B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244405B (zh) * 2014-09-18 2018-04-24 电子科技大学 基于码分多址的室内定位装置及方法
CN105629967B (zh) * 2014-10-30 2019-01-22 丹东东方测控技术股份有限公司 基于高精度定位导航终端的井下矿机车无人驾驶系统
CN105699937B (zh) * 2014-11-27 2017-08-25 中国科学院沈阳自动化研究所 一种基于css定位技术的变电站高精度混合定位方法
CN104808176B (zh) * 2015-05-11 2017-09-15 上海新微技术研发中心有限公司 一种室内定位方法
TWI578011B (zh) * 2015-09-07 2017-04-11 Golden Smart Home Tech Corp Indoor positioning system and indoor positioning method
CN107015192A (zh) * 2017-03-23 2017-08-04 京信通信技术(广州)有限公司 室内定位系统
CN109975757A (zh) * 2019-03-29 2019-07-05 努比亚技术有限公司 室内定位导航方法、终端和计算机存储介质
CN116609724B (zh) * 2023-07-20 2023-10-27 厦门惟尔拓科技有限公司 一种基于tdoa的载具的定位追踪方法
CN117347948A (zh) * 2023-10-08 2024-01-05 深圳市南科物联科技有限公司 基于一维和二维无线混合的区域边缘精准定位系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975758A (zh) * 2006-12-15 2007-06-06 清华大学 基于超宽带无线脉冲方式的射频卡或射频标签
CN202713631U (zh) * 2012-08-13 2013-01-30 重庆恩菲斯软件有限公司 无线实时定位系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056456A (ko) * 2011-11-22 2013-05-30 한국전자통신연구원 첩 신호 확산 스펙트럼을 이용한 위치 추적 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975758A (zh) * 2006-12-15 2007-06-06 清华大学 基于超宽带无线脉冲方式的射频卡或射频标签
CN202713631U (zh) * 2012-08-13 2013-01-30 重庆恩菲斯软件有限公司 无线实时定位系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于Chirp 扩频技术的超宽带室内定位技术研究;欧汉杰;《大众科技》;20100531(第5期);15-17 *
基于WSN的射频定位技术;王振朝 等;《河北大学学报(自然科学版)》;20131031;第33卷(第5期);554-560 *

Also Published As

Publication number Publication date
CN103698745A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
CN103698745B (zh) 室内无线定位设备及其实现定位的方法
CN105403859B (zh) 机器人定位方法和装置
CN102014489B (zh) 环境自适应的rssi局部定位系统及方法
CN102761964B (zh) 基于ZigBee的井下人员定位方法
CN107861100A (zh) 一种基于三维波束的室内定位方法
CN103389487A (zh) 室内定位方法和装置
CN105828431A (zh) 基于uwb的自主跟随机器人定位方法及系统
CN104159291A (zh) 一种被动式tdoa定位方法
CN103777174A (zh) 基于有源多功能rfid标签室内定位系统
CN107357310A (zh) 无人机飞行控制设备、系统、方法和无人机控制方法
CN103630875A (zh) 一种射频识别定位方法及装置
CN110187333B (zh) 一种基于合成孔径雷达技术的rfid标签定位方法
CN109212474B (zh) 基于eiel电子标签的井下定位方法
CN111829525A (zh) Uwb室内外一体智能导航定位方法和系统
CN104735781A (zh) 一种室内定位系统及其定位方法
Zhou-guo et al. An improved indoor UHF RFID localization method based on deviation correction
JP2020524266A (ja) 測位方法、装置およびシステム、測位システムのレイアウト方法、および記憶媒体
CN110650517A (zh) 一种基于识别遮挡的uwb定位标签节电方案
CN103150527A (zh) 射频识别标签定位方法及设备
CN102542227B (zh) 一种基于rfid的组合夹具装配检测方法
CN110888108A (zh) 一种基于rfid与相位校准的定位方法
CN110557720A (zh) 基于动态基准标签的超宽带室内定位系统及补盲定位方法
CN102761960A (zh) 一种移动终端的定位方法与装置
CN112799014A (zh) 基于椭球交汇的超宽带定位系统、方法、无线终端及服务器
CN104457757B (zh) 一种基于前项反馈修正的井下动目标定位方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant