CN103693199B - 冰保护系统 - Google Patents

冰保护系统 Download PDF

Info

Publication number
CN103693199B
CN103693199B CN201310414810.7A CN201310414810A CN103693199B CN 103693199 B CN103693199 B CN 103693199B CN 201310414810 A CN201310414810 A CN 201310414810A CN 103693199 B CN103693199 B CN 103693199B
Authority
CN
China
Prior art keywords
temperature
lwc
oat
heating equipment
caking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310414810.7A
Other languages
English (en)
Other versions
CN103693199A (zh
Inventor
R·J·卡皮诺二世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodrich Corp
Original Assignee
Goodrich Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodrich Corp filed Critical Goodrich Corp
Publication of CN103693199A publication Critical patent/CN103693199A/zh
Application granted granted Critical
Publication of CN103693199B publication Critical patent/CN103693199B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/12De-icing or preventing icing on exterior surfaces of aircraft by electric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing
    • B64D15/22Automatic initiation by icing detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Tires In General (AREA)

Abstract

一种冰保护系统(20),包括电热设备(30),其负责将飞机表面(14)保持在比0℃高的防结冰温度。对电热设备(30)的最优功率输入是基于OAT传感器(30)感应的外部空气温度和LWC检测器(50)检测的液态水含量。优选地,系统(20)的特征在于无表面温度传感器。

Description

冰保护系统
相关申请的交叉引用
本申请要求2012年9月26日提交的美国临时专利申请No.61/706,052和2012年7月31日提交的美国临时专利申请No.61/678,050的优先权,它们的全部内容被引用到本申请中。
背景技术
飞机一般包括其表面的一个或多个冰保护系统,这些表面在飞行中易受结冰影响。在电热防结冰系统中,电热设备将电能转化成热,以将飞机表面的温度保持水的凝固点之上。传统方法中,这通过周期性或连续性地测量要结冰表面的温度并此后据此调节电热设备实现。
发明内容
本发明提供了一种冰保护系统,其中,电热设备将表面保持在预定防结冰温度,而不需要感测表面的温度。该系统用由OAT传感器感测的外部空气温度与由LWC检测器检测的液态水含量来确定电热设备的合适的功率输入。优选地,本冰保护系统的特征在于在要防结冰表面上无表面温度传感器和/或在功率确定步骤中无表面温度输入。
附图说明
图1显示了在其上安装有冰保护系统的飞机,图2显示了冰保护系统。
图3-4显示了一些可能构成数据的曲线图。
图5A-5F、图6A-6F、图7A-7F和图8A-8D显示了根据构成数据的构成确定;以及
图9-12显示了图5A-5F、图6A-6F、图7A-7F和图8A-8D的确定的收集和比较。
具体实施方式
现在参见附图,先看图1,显示了旋转翼飞机10(即直升机)。飞机10可包括机身11、主旋翼12和尾部旋翼13。当有液态水含量存在时,打算让尾部旋翼13的桨叶14在飞行中一直保持在防结冰温度。
防结冰可通过两种方法完成,大家熟知的湿式运行和蒸发。湿式运行防结冰系统将表面温度保持足够温暖,以防止凝固结冰。滴在上面的小水滴向后流动离开湿式运行表面,如果流动到无防护或除冰表面,则会重新结冰。对这些系统而言,防结冰温度可能高于0℃、高于2℃和/或高于4℃。
蒸发防结冰系统将表面温度保持足够高,以在碰撞时蒸发滴在上面的小水滴。该类型的防结冰系统消除了向后流动和在下游表面上再结冰。就蒸发系统而言,防结冰温度可能高于80℃、高于90℃和/或高于100℃。
飞机10包括其尾部旋翼13的冰保护系统20,其包括每个旋翼桨叶14的电热设备30。每个电热设备30将电能转化为热,并且其热输出与电能输入成比例。热输出最好优化成保持相应旋翼桨叶14处于防结冰温度或刚好略高于防结冰温度。电能能同时、按顺序地或交替地被提供给旋翼桨叶14,这取决于功率汲取限制和/或对称性考虑因素。
电能可被选择性地以多个非零功率电平被供应给电热设备30。例如,以50%功率间隔差(即50%、100%)、20%功率水平间隔差(即20%、40%、60%、80%、100%)、10%功率水平间隔差(即10%、20%、30%、40%、50%、60%、70%、80%、90%、100%)、5%功率水平间隔差(即5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%)被供应。
功率电平可通过调节实际功率供应水平、通过脉冲或调制基本上恒定的供应水平调制、和/或通过调节供应递增量来实现。通过一些水平改变技术(如脉冲调制),非常小的功率水平间隔差可被采用。因此,具有非常小的间隔差的多个功率水平的冰保护系统20是可行的、可预知的。
冰保护系统20可包括OAT传感器40、LWC检测器50,OAT传感器40感应外部空气温度,LWC检测器50检测液态水含量。OAT传感器40和LWC检测器50可安装在飞机10的外部,例如其机身11上的某处。例如,在附图所示的实施例中,它们定位在远离旋翼桨叶14和电热设备30的位置。
优选地,冰保护系统20的特征在于无直接感应表面14温度的温度传感器。除此之外或可选择地,优选地,其特征在于在功率确定步骤中无表面温度输入。
加热器控制按传统方法在飞机工业中通过周期性或连续性地测量要防结冰表面的温度并此后据此调节电热设备实现。为此目的,表面温度电传感器嵌入形成电热设备30的层的固化层压材料中。每个温度电传感器需要一个在传感器和与机载电源连接点之间延伸的引线。
本冰保护系统20没有这样的传感器,这能减少加热器部件的数量、简化加热器组件和/或消除因多重引线引起的令人头疼的安装问题。
本冰保护系统20进一步包括优化器60,其确定最佳功率水平,并以该最佳功率水平供应电能到电热设备30。具体来说,优化器60计算OAT构成和LWC构成,并至少基于这两个构成确定最佳功率水平。
OAT构成对应在没有滴落的水(即,零液体水含量)的情况下,在所感测的外部空气温度下,由电热设备20维持表面21处于防结冰温度所需要的功率。OAT构成可仅基于传感器50感应的外部空气温度。
LWC构成对应在所检测的液体水含量的情况下电热设备20维持防结冰温度所需要的额外功率。LWC构成可基于传感器50感应的外部空气温度和检测器60检测的液态水含量。其它因素,例如速度,也可参与飞机表面的分析。
OAT构成和LWC构成数据可通过热量分析、数学建模、历史记录、风洞测试、飞行测试或相关范围的外部空气温度(例如,从从大约-40℃到大约+2℃)和相关范围的液体水含量9(例如从大约0.05g/m3到大约3.0g/m3)的其它技术进行收集和/或证实。
如图3所示,OAT构成数据能被制作成(但不必一定是)曲线图。在展示的实施例中,外部空气温度相对功率百分比绘制曲线图,数据落在基本上平滑的曲线上,该曲线随着温度的增加斜坡向下。
如图4所示,LWC构成数据能被制作成(但不必一定是)曲线图。在展示的实施例中,液态水含量相对功率百分比在一系列外部空气温度下绘制成曲线图。数据落入一族直线中,这些直线在液态水含量增加时斜坡向上。当外部空气温度增加时,直线的斜率也在增加。
OAT构成和LWC构成的确定在一系列外部空气温度(如-6℃、-10℃、-14℃、-18℃)的第五至第八组附图中被描述,每个温度都横跨了液态水含量层的增加(如0.2g/m3、0.4g/m3、0.6g/m3、0.8g/m3、1.0g/m3、1.2g/m3)。
在图9-12中,最优功率水平通过被调整到可获得的多个功率水平中的最接近一个来确定。可通过比较该最优功率水平与没有LWC构成时会确定的功率水平来计算节约。并且可通过比较该最优功率水平与传统系统来计算节约,其中,传统系统中,在任何结冰情况下、不论是否严重,功率水平都为100%。如图12(显示5%功率间隔差)所反映的,可获得的功率水平选择越多,实现的节约越多。然而,如图9所示,甚至在仅使用两个功率水平时(即高的100%、低的50%),也能实现功率节约。
虽然飞机10和冰保护系统20已根据一定的实施例展示和描述,但是,本领域技术人员在阅读和理解本发明后能够对其进行等价替换和改进。例如,易结冰受损表面不一定在直升机上,因此系统20可以用于需要维持防结冰温度的任何表面。

Claims (19)

1.一种为电热设备(30)供应功率以将表面(14)保持在预定防结冰温度的方法,该方法包括:
通过OAT传感器(40)感应外部空气温度;
通过LWC检测器(50)检测液态水含量;
基于OAT构成和LWC构成确定最优功率输入;以及
以确定的最优功率输入为电热设备(30)供应功率,
其中OAT构成对应在所感应的外部空气温度和零液态水含量的情况下维持表面(14)处于所述防结冰温度所需要的功率输入;
LWC构成对应在所感应的外部空气温度和所检测的液态水含量的情况下维持表面(14)处于所述防结冰温度所需要的额外的功率输入。
2.如权利要求1所述的方法,其中,所述最优功率输入确定步骤的特征在于无表面温度测量输入。
3.如权利要求1所述的方法,其中,OAT构成和LWC构成一起作为功率确定的组合设置。
4.如权利要求3所述的方法,其中,飞机速度是确定最优功率输入的第三个构成。
5.如权利要求1所述的方法,其中,防结冰温度高于0℃。
6.如权利要求1所述的方法,其中,防结冰温度高于2℃。
7.如权利要求1所述的方法,其中,防结冰温度高于4℃。
8.如权利要求1所述的方法,其中,防结冰温度高于80℃。
9.如权利要求1所述的方法,其中,防结冰温度高于90℃。
10.如权利要求1所述的方法,其中,防结冰温度高于100℃。
11.如权利要求1所述的方法,其中,表面(14)在飞机(10)上。
12.如权利要求11所述的方法,其中,飞机(10)为直升机。
13.如权利要求12所述的方法,其中,表面(14)为旋转桨叶。
14.如权利要求12所述的方法,其中,表面(14)为尾部旋翼(13)的一部分。
15.一种冰保护系统,用于执行前面任意一项权利要求所述的方法,其包括电热设备(30)、OAT传感器(40)和LWC检测器(50),其中,OAT传感器(40)感应外部空气温度,LWC检测器(50)检测液态水含量。
16.如权利要求15所述的系统,进一步包括飞机速度传感器。
17.如权利要求15所述的系统,其特征在于,无感应表面(14)温度的温度传感器。
18.如权利要求15所述的系统,其中,OAT传感器(40)远离电热设备(30)安装。
19.如权利要求15所述的系统,其中,LWC检测器(50)远离电热设备 (30)安装。
CN201310414810.7A 2012-07-31 2013-07-31 冰保护系统 Expired - Fee Related CN103693199B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261678050P 2012-07-31 2012-07-31
US61/678050 2012-07-31
US201261706052P 2012-09-26 2012-09-26
US61/706052 2012-09-26

Publications (2)

Publication Number Publication Date
CN103693199A CN103693199A (zh) 2014-04-02
CN103693199B true CN103693199B (zh) 2017-07-11

Family

ID=48877133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310414810.7A Expired - Fee Related CN103693199B (zh) 2012-07-31 2013-07-31 冰保护系统

Country Status (5)

Country Link
US (1) US20140191083A1 (zh)
EP (1) EP2692640A3 (zh)
CN (1) CN103693199B (zh)
BR (1) BR102013019575A2 (zh)
CA (1) CA2822630C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2613227B1 (es) * 2015-11-23 2018-02-27 Fco. Javier Porras Vila Cuña de aire para compuerta del tren de aterrizaje
US10442539B2 (en) 2017-05-12 2019-10-15 Bell Helicopter Textron Inc. Anti-ice system for thermally fragile materials
US10994849B2 (en) * 2019-01-02 2021-05-04 Goodrich Corporation Aircraft ice protection control system preheat logic

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706911A (en) * 1986-01-27 1987-11-17 Briscoe James A Method and apparatus for deicing a leading edge
US5704567A (en) * 1995-10-16 1998-01-06 The United States Of America As Represented By The Secretary Of The Army Blade de-icer for rotary wing aircraft
US5934617A (en) * 1997-09-22 1999-08-10 Northcoast Technologies De-ice and anti-ice system and method for aircraft surfaces
US7175136B2 (en) * 2003-04-16 2007-02-13 The Boeing Company Method and apparatus for detecting conditions conducive to ice formation
DE60329634D1 (de) * 2003-08-20 2009-11-19 Boeing Co Verfahren und systeme zur erkennung von vereisungsbedingungen
BRPI0418889A (pt) * 2004-06-10 2007-12-11 Bell Helicopter Textron Inc sistema anti-gelo para cúpulas
US8550402B2 (en) * 2005-04-06 2013-10-08 Sikorsky Aircraft Corporation Dual-channel deicing system for a rotary wing aircraft
AU2005331929A1 (en) * 2005-05-16 2006-11-23 Bell Helicopter Textron Inc. Ice management system for tiltrotor aircraft
US8260522B2 (en) * 2009-02-10 2012-09-04 Goodrich Corporation Aircraft electrical power system
CN101695959B (zh) * 2009-10-22 2012-01-11 北京航空航天大学 直升机旋翼防除冰装置
US20110233340A1 (en) * 2010-03-29 2011-09-29 Christy Daniel P Aircraft ice protection system
US8746622B2 (en) * 2010-06-08 2014-06-10 Textron Innovations Inc. Aircraft de-icing system and method
US8430359B2 (en) * 2010-10-18 2013-04-30 Cox & Company, Inc. Energy-efficient electro-thermal and electro-mechanical ice-protection method
CA2778024C (en) * 2011-05-23 2015-08-11 Ice Corporation Electrothermal wing ice protection system

Also Published As

Publication number Publication date
CN103693199A (zh) 2014-04-02
EP2692640A2 (en) 2014-02-05
EP2692640A3 (en) 2017-04-19
US20140191083A1 (en) 2014-07-10
CA2822630A1 (en) 2014-01-31
BR102013019575A2 (pt) 2015-10-20
CA2822630C (en) 2017-11-28

Similar Documents

Publication Publication Date Title
US10018580B2 (en) Apparatus and method for detecting water or ice
US8517601B2 (en) Ice detection system and method
Palacios et al. Icing environment rotor test stand liquid water content measurement procedures and ice shape correlation
CN109661348A (zh) 结冰控制系统
CN102407942A (zh) 结冰条件探测器
CN103693199B (zh) 冰保护系统
US9352841B2 (en) Virtual ice accretion meter display
RU2011129689A (ru) Система и способ применения датчика обледенения
CN109696290A (zh) 一种风力机翼段防冰热载荷需求测量系统
WO2011064531A2 (en) Improved sensor arrangement
WO2013177695A1 (en) Method and apparatus for determining an icing condition status of an environment
US11242152B2 (en) Method and apparatus for detecting ice accretion
Oleskiw et al. In-flight icing simulation capabilities of NRC's altitude icing wind tunnel
Schlegl et al. Wireless and flexible ice detection on aircraft
US20220411079A1 (en) Apparatus and method for detecting water or ice
RU2341414C1 (ru) Способ обнаружения обледенения несущего винта вертолета
Hann et al. Experimental Heat Loads for Electrothermal Anti-Icing and De-Icing on UAVs. Aerospace 2021, 8, 83
Benmeddour Experimental investigation of tolerance for icing of small RPAS propellers at high RPM
Pellicano et al. Propeller icing tunnel test on a full-scale turboprop engine
Irani et al. Calibration and recent upgrades to the Cox icing wind tunnel
US11390387B2 (en) De-icing system and method
Tapia et al. Experimental study of ice formation on an aeronautical Pitot probe
RU148076U1 (ru) Самолетная метеорологическая система измерения температуры

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170711

Termination date: 20200731

CF01 Termination of patent right due to non-payment of annual fee