CN103691384A - 一种微泡发生器及其制作方法与应用 - Google Patents

一种微泡发生器及其制作方法与应用 Download PDF

Info

Publication number
CN103691384A
CN103691384A CN201310674638.9A CN201310674638A CN103691384A CN 103691384 A CN103691384 A CN 103691384A CN 201310674638 A CN201310674638 A CN 201310674638A CN 103691384 A CN103691384 A CN 103691384A
Authority
CN
China
Prior art keywords
nano material
optical fiber
conversion nano
photo
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310674638.9A
Other languages
English (en)
Other versions
CN103691384B (zh
Inventor
邢晓波
朱德斌
郑嘉鹏
孙朝
孔瑞轩
陈伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201310674638.9A priority Critical patent/CN103691384B/zh
Publication of CN103691384A publication Critical patent/CN103691384A/zh
Application granted granted Critical
Publication of CN103691384B publication Critical patent/CN103691384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开一种微泡发生器及其制作方法与应用。该微泡发生器包括样品池、微光纤、光热转换纳米材料沉积物、光信号输入端口和光信号输出端口;该微泡发生器的制作方法,包括如下步骤:将光热转换纳米材料的DMF分散液放入样品池中;将微光纤浸没在样品池中的光热转换纳米材料的DMF分散液里;从光信号输入端口向微光纤输入光信号;待光热转换纳米材料吸附于微光纤表面,形成光热转换纳米材料沉积物,形成线性热源;继续输入光信号,在光热转换纳米材料沉积物和DMF的交界面,产生微泡。该制作方法,快捷方便,成本低廉且有效。本发明的微泡发生器可用于富集介质微球、细胞、生物分子等;适用于传感、微流控、病毒检测或生物芯片技术等领域。

Description

一种微泡发生器及其制作方法与应用
技术领域
本发明属于微流控技术领域,具体涉及一种微泡发生器及其制作方法与应用。
背景技术
近几年,微泡技术在各大领域(例如医学成像,生物医学分析,药物传输,微流操控等)得到了广泛的应用。在液体中产生微泡的技术也引起了越来越多的关注。目前,多种光流控系统已应用于微泡的产生。研究者发现,利用高度聚焦的激光束照射光吸收基底[Y.Zheng,et al.Lab Chip11,3816(2011)]、光吸收微粒[Z.Liu,et al.Nanotechnology21,105304(2010)]和光吸收液体[K.Y.Lim,etal.Phys.Rev.E81,016308(2010)],可产生微泡。利用纳米颗粒包覆的光纤端面[R.Pimentel-Domínguez,et al.Opt.Express20,8732(2012)]和光纤尖锥[R.Xu,etal.Appl.Phys.Lett.101,054103(2012)]也可产生单个微泡。由此得知,产生气泡的两个关键因素是:材料的光热特性和光能量的利用率。然而,聚焦的激光光束和光纤尖锥的热源面积太小,利用上述方法难以同时产生多个微泡。
发明内容
为了克服现有技术的缺点与不足,本发明的目的在于提供一种微泡发生器。该微泡发生器具有构造简单、成本低廉的特点。
本发明的另一目的在于提供所述的微泡发生器的制作方法。
本发明的再一目的在于提供所述的微泡发生器在富集细胞或生物分子上的应用。
本发明的目的通过下述技术方案实现:一种微泡发生器,包括样品池、微光纤、光热转换纳米材料沉积物、光信号输入端口和光信号输出端口;
所述的光热转换纳米材料沉积物包覆于微光纤表面,形成线性热源;
所述的微光纤是浸没在样品池中,被光热转换纳米材料沉积物包覆之后也是浸没在样品池中;
所述的微光纤的折射率为1.45,直径约为1~5μm,通光后可在周围形成较强倏逝场;
所述的光信号输入端口、微光纤和光信号输出端口依次连接;
所述的光热转换纳米材料优选为氧化石墨烯、纳米金、纳米银或碳纳米管等;更优选为氧化石墨烯;
所述的样品池优选可盛放DMF、水或PBS缓冲液等;
所述的微泡发生器的制作方法,包括如下步骤:
(1)将光热转换纳米材料的DMF(N,N-二甲基甲酰胺)分散液放入样品池中;
(2)将微光纤浸没在样品池中的光热转换纳米材料的DMF分散液里;
(3)从光信号输入端口向微光纤输入光信号;
(4)待光热转换纳米材料吸附于微光纤表面,形成光热转换纳米材料沉积物,形成线性热源;
(5)继续输入光信号,在光热转换纳米材料沉积物和DMF的交界面,产生微泡;获得微泡发生器。
所述的微光纤优选采用火焰加热拉伸法拉制单模石英光纤制得,折射率为1.45,直径为1~5μm,具有较好的表面光滑度和长度均匀性,以及优良的机械性能,通光之后,微光纤周围存在较强倏逝场;
所述的微光纤的直径优选为1.8~3μm;
所述的光热转换纳米材料的DMF分散液优选通过如下步骤制备:将光热转换纳米材料分散于DMF中,置于水浴中超声处理2.5~3.5小时,制备得到浓度为0.01~0.10mg/mL的光热转换纳米材料的DMF分散液;其在波长800~1600nm范围内,光的吸收率随着光热转换纳米材料浓度的增加而增大;
所述的光热转换纳米材料优选为氧化石墨烯、纳米金、纳米银或碳纳米管等;更优选为氧化石墨烯;
所述的N,N-二甲基甲酰胺的折射率为1.428,低于微光纤的折射率1.45,可以作为微光纤的包覆层;
所述的光信号的波长范围优选为800~1600nm;
所述的光信号的波长范围更优选为1527~1566nm;
所述的PBS缓冲液通过如下步骤制备:取磷酸二氢钾(KH2PO4)0.27g/L,磷酸氢二钠(Na2HPO4)1.42g/L,氯化钠(NaCl)8g/L,氯化钾(KCl)0.2g/L,用浓盐酸调pH值至7.4,得到PBS缓冲液;
步骤(5)中所述的继续输入光信号,随着光能不断转化为热能,光热转换纳米材料沉积物周围的DMF的温度不断升高,当达到DMF沸点时,便在DMF和光热转换纳米材料沉积物的交界面产生微泡;其中,光热转换纳米材料沉积物紧密地吸附在微光纤上,不容易剥落,因此,本微泡发生系统也可置于其他溶液中产生微泡;
所述的微泡发生器在富集介质微球、细胞或生物分子上的应用。该微泡发生器适用于传感、微流控、病毒检测、生物芯片技术等领域。
应用过程中样品池中的溶液优选为DMF、水或PBS缓冲液等;
所述的介质微球优选为聚苯乙烯微球;
本发明的机理是:本发明基于微光纤倏逝场和光热转换纳米材料光热特性的相互作用,通光后,可在样品池内产生光热能量转换,在溶液中产生热梯度,形成热对流,被对流牵引至微光纤附近光热转换纳米材料,受到光梯度力以及范德瓦尔兹力的作用,吸附并沉积于微光纤表面,形成光热转换纳米材料沉积物,随着光热转换纳米材料沉积物的不断增长,光热转换效应液不断增强,使溶液温度持续升高,当达到溶液沸点时,在沉积物和溶液交界处产生气泡。
本发明相对于现有技术,具有如下优点及效果:
(1)本发明从成本和可行性出发,利用光纤传输光信号比用复杂的光学系统产生激光束照射更加合适。已有研究表明,利用微光纤周围的强倏逝场可以在液体中大量地捕获和输运介质颗粒和细胞。再者,光热转换纳米材料中的氧化石墨烯具有良好的光热转换性能。随着DMF中氧化石墨烯浓度的增加,分散液对光的吸收逐渐增加,显示出氧化石墨烯良好的光热特性。由此,本发明提出了一种在微光纤表面包裹光热转换纳米材料形成线性热源的方法,来产生大量微泡。
(2)本发明的制作方法,快捷方便,成本低廉且有效。本发明所用的光热转换纳米材料,不局限于氧化石墨烯,可以推广到其他光热转换纳米材料如碳纳米管,纳米金,纳米银等。
(3)本发明所用的为微光纤系统,也可用于富集介质微球、细胞、生物分子等。因此,该项技术在传感、病毒检测、生物芯片技术等方面都具有应用前景。
附图说明
图1为微泡发生器的装置示意图;1为光信号输入端口;2为微光纤;3为氧化石墨烯沉积;4为光信号输出端口;5为样品池。
图2为对于氧化石墨烯的DMF分散液,光吸收随氧化石墨烯浓度变化关系图;其中,氧化石墨烯浓度分别为0、0.05、0.10、0.20、0.50mg/mL,光波长范围为800~1600nm。
图3为实施例1得到的微泡发生器及其在不同溶液中产生气泡的光学显微镜图像;3a:将直径为3.0μm微光纤浸没在氧化石墨烯的DMF分散液中,输入波长为1527~1566nm,功率为40mW的连续光信号,在微光纤表面形成氧化石墨烯沉积物,其最大的厚度约31μm;3b~3d:继续输入光信号,产生微泡;3e~3h:抽干样品池5中的DMF,重新滴入去离子水,继续通光,也会产生微泡;3i~3l:抽干样品池5中的去离子水,重新滴入PBS缓冲液,也能产生微泡。
图4为实施例2得到的微泡发生器在DMF中产生气泡的光学显微镜图像;将直径为1.8μm微光纤浸没在氧化石墨烯的DMF分散液中,输入波长为1527~1566nm,功率为40mW的连续光信号,在微光纤表面形成氧化石墨烯沉积物,产生微泡。
图5为实施例3得到的微泡发生器在DMF中产生气泡并吸附聚苯乙烯微球的光学显微镜图像。将直径为2.6μm微光纤浸没在氧化石墨烯的DMF分散液中,输入波长为1527~1566nm,功率为40mW的连续光信号,在微光纤表面形成氧化石墨烯沉积物,产生微泡。往样品池5中继续滴加含有直径为2.0μm的聚苯乙烯微球的DMF悬浮液,发现聚苯乙烯微球被吸附在氧化石墨烯沉积物上。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
利用高温拉伸法将单模石英光纤(SMF-28,美国Corning公司)拉制出直径为3.0μm、长度为1.2mm的微光纤。如图1所示,将微光纤2浸没于0.05mg/mL的氧化石墨烯的DMF分散液中。将放大自发辐射宽带光源(ASE,20mW,1527~1566nm)连接到掺铒光纤放大器(EDFA,1546~1562nm)上,从而得到波长在1527~1566nm、功率为40mW的输出光信号。将来自EDFA的光信号输入到光信号输入端口1中,分散液中的氧化石墨烯在光梯度力和热对流的作用下,吸附于微光纤2表面,形成氧化石墨烯沉积物3,形成线性热源。继续通光,光能不断转化为热能,使氧化石墨烯沉积物3周围的温度不断升高,当达到DMF的沸点时,在氧化石墨烯沉积物3和DMF的交界面就会产生微泡。图3给出了本实例所述微泡发生器及其在不同溶液中产生气泡的光学显微镜图像。如图3a所示,将直径为3.0μm微光纤浸没在氧化石墨烯的DMF分散液中,输入波长为1527~1566nm,功率为40mW的连续光信号,在微光纤表面形成氧化石墨烯沉积物3,其最大的厚度约31μm。如图3b~3d所示,继续输入光信号,产生微泡。如图3e~3h所示,抽干样品池5中的DMF,重新滴入去离子水,继续通光,也会产生微泡。如图3i~3l所示,抽干样品池5中的去离子水,重新滴入PBS缓冲液,也能产生微泡。
将线性热源放入含有生物分子的PBS缓冲液中,通光之后,溶液中产生气泡,形成热毛细对流,生物分子沿热毛细流运动,当生物分子运动至氧化石墨烯沉积物周围时,被范德瓦尔兹力吸引,富集于氧化石墨烯沉积物表面;达到利用该微泡发生器富集生物分子的目的。
对于氧化石墨烯的DMF分散液,光吸收随氧化石墨烯浓度变化关系图。如图2所示,其中氧化石墨烯浓度分别为0、0.05、0.10、0.20、0.50mg/mL时,氧化石墨烯的DMF分散液的光波长范围为800~1600nm。
实施例2
利用高温拉伸法将单模石英光纤拉制出直径为1.8μm、长度为1.2mm的微光纤。如图1所示,将微光纤2浸没于0.05mg/mL的氧化石墨烯的DMF分散液中。将放大自发辐射宽带光源(ASE,20mW,1527~1566nm)连接到掺铒光纤放大器(EDFA,1546~1562nm)上,从而得到波长在1527~1566nm、功率为40mW的输出光信号。将来自EDFA的光信号输入到光信号输入端口1中,分散液中的氧化石墨烯在光梯度力和热对流的作用下,吸附于微光纤2表面,形成氧化石墨烯沉积物3,形成线性热源。继续通光,光能不断转化为热能,使氧化石墨烯沉积物3周围的温度不断升高,当达到DMF的沸点时,在氧化石墨烯沉积物3和DMF的交界面就会产生微泡。图4给出了本实例所述微泡发生器在DMF中产生气泡的光学显微镜图像。
实施例3
利用高温拉伸法将单模石英光纤拉制出直径为2.6μm、长度为1.5mm的微光纤。如图1所示,将微光纤2浸没于0.05mg/mL的氧化石墨烯的DMF分散液中。将放大自发辐射宽带光源(ASE,20mW,1527~1566nm)连接到掺铒光纤放大器(EDFA,1546~1562nm)上,从而得到波长在1527~1566nm、功率为40mW的输出光信号。将来自EDFA的光信号输入到光信号输入端口1中,分散液中的氧化石墨烯在光梯度力和热对流的作用下,吸附于微光纤2表面,形成氧化石墨烯沉积物3,形成线性热源。继续通光,光能不断转化为热能,使氧化石墨烯沉积物3周围的温度不断升高,当达到DMF的沸点时,在氧化石墨烯沉积物3和DMF的交界面就会产生微泡。往样品池5中继续滴加含有直径为2.0μm的聚苯乙烯微球(天津贝思乐生物技术公司,型号为6-1-0200)的DMF悬浮液,发现聚苯乙烯微球被吸附在氧化石墨烯沉积上。图5给出了本实例所述微泡发生器在DMF中产生气泡并吸附聚苯乙烯微球的光学显微镜图像。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种微泡发生器,其特征在于包括样品池、微光纤、光热转换纳米材料沉积物、光信号输入端口和光信号输出端口;
所述的光热转换纳米材料沉积物包覆于微光纤表面,形成线性热源;
所述的微光纤是浸没在样品池中;
所述的微光纤的折射率为1.45,直径为1~5μm;
所述的光信号输入端口、微光纤和光信号输出端口依次连接;
所述的光热转换纳米材料为氧化石墨烯、纳米金、纳米银或碳纳米管。
2.权利要求1所述的微泡发生器的制作方法,其特征在于包括如下步骤:
(1)将光热转换纳米材料的DMF分散液放入样品池中;
(2)将微光纤浸没在样品池中的光热转换纳米材料的DMF分散液里;
(3)从光信号输入端口向微光纤输入光信号;
(4)待光热转换纳米材料吸附于微光纤表面,形成光热转换纳米材料沉积物,形成线性热源;
(5)继续输入光信号,在光热转换纳米材料沉积物和DMF的交界面,产生微泡;获得微泡发生器。
3.根据权利要求2所述的微泡发生器的制作方法,其特征在于:
所述的微光纤采用火焰加热拉伸法拉制单模石英光纤制得,折射率为1.45,直径为1~5μm。
4.根据权利要求2所述的微泡发生器的制作方法,其特征在于:
所述的光热转换纳米材料的DMF分散液通过如下步骤制备:将光热转换纳米材料分散于DMF中,置于水浴中超声处理2.5~3.5小时,制备得到浓度为0.01~0.10mg/mL的光热转换纳米材料的DMF分散液。
5.根据权利要求2所述的微泡发生器的制作方法,其特征在于:所述的光热转换纳米材料为氧化石墨烯、纳米金、纳米银或碳纳米管。
6.根据权利要求2所述的微泡发生器的制作方法,其特征在于:所述的DMF的折射率为1.428,低于微光纤的折射率1.45,作为微光纤的包覆层。
7.根据权利要求2所述的微泡发生器的制作方法,其特征在于:所述的光信号的波长范围为800~1600nm。
8.权利要求1所述的微泡发生器在富集介质微球、细胞或生物分子上的应用。
9.根据权利要求8所述的微泡发生器的应用,其特征在于:所述的微泡发生器适用于传感、微流控、病毒检测或生物芯片技术领域。
10.根据权利要求8所述的微泡发生器的应用,其特征在于:应用过程中样品池中的溶液为DMF、水或PBS缓冲液。
CN201310674638.9A 2013-12-11 2013-12-11 一种微泡发生器及其制作方法与应用 Active CN103691384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310674638.9A CN103691384B (zh) 2013-12-11 2013-12-11 一种微泡发生器及其制作方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310674638.9A CN103691384B (zh) 2013-12-11 2013-12-11 一种微泡发生器及其制作方法与应用

Publications (2)

Publication Number Publication Date
CN103691384A true CN103691384A (zh) 2014-04-02
CN103691384B CN103691384B (zh) 2016-01-13

Family

ID=50353144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310674638.9A Active CN103691384B (zh) 2013-12-11 2013-12-11 一种微泡发生器及其制作方法与应用

Country Status (1)

Country Link
CN (1) CN103691384B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808287A (zh) * 2015-05-19 2015-07-29 南通大学 一种石墨烯被覆微光纤长周期光栅及其制备方法
CN106582903A (zh) * 2016-12-26 2017-04-26 华南师范大学 基于光热波导的微流控芯片及其微流控方法
CN106999933A (zh) * 2014-11-19 2017-08-01 Imec 非营利协会 微泡产生器装置、系统及其制造方法
CN107789054A (zh) * 2017-11-13 2018-03-13 中国医学科学院生物医学工程研究所 一种用于激光外科手术的光纤活化装置及其方法
CN109158137A (zh) * 2018-10-26 2019-01-08 江苏德林环保技术有限公司 一种微流控芯片的制备方法
CN112245389A (zh) * 2020-10-15 2021-01-22 佳木斯大学 一种基于三种病灶的复合载药纳米级超声多功能微泡及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEN KASHIWAGI ET AL.: "Deposition of carbon nanotubes around microfiber via evanascent light", 《OPTICS EXPRESS》, vol. 17, no. 20, 28 September 2009 (2009-09-28), pages 18364 - 18370, XP009143075, DOI: 10.1364/OE.17.018364 *
PHILIPPE MARMOTTANT ET AL.: "A bubble-driven microfluidic transport element for bioengineering", 《PROC. NATL. ACAD. SCI. U. S. A.》, vol. 101, no. 26, 29 June 2004 (2004-06-29), pages 9523 - 9527 *
REINHER PIMENTEL-DOMÍNGUEZ ET AL.: "Microbubble generation using fiber optic tips coated with nanoparticles", 《OPTICS EXPRESS》, vol. 20, no. 8, 9 April 2012 (2012-04-09), pages 8732 - 8740 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106999933A (zh) * 2014-11-19 2017-08-01 Imec 非营利协会 微泡产生器装置、系统及其制造方法
CN106999933B (zh) * 2014-11-19 2019-10-18 Imec 非营利协会 微泡产生器装置、系统及其制造方法
CN104808287A (zh) * 2015-05-19 2015-07-29 南通大学 一种石墨烯被覆微光纤长周期光栅及其制备方法
CN106582903A (zh) * 2016-12-26 2017-04-26 华南师范大学 基于光热波导的微流控芯片及其微流控方法
CN106582903B (zh) * 2016-12-26 2018-12-07 华南师范大学 基于光热波导的微流控芯片及其微流控方法
CN107789054A (zh) * 2017-11-13 2018-03-13 中国医学科学院生物医学工程研究所 一种用于激光外科手术的光纤活化装置及其方法
CN109158137A (zh) * 2018-10-26 2019-01-08 江苏德林环保技术有限公司 一种微流控芯片的制备方法
CN109158137B (zh) * 2018-10-26 2021-02-02 江苏德林环保技术有限公司 一种微流控芯片的制备方法
CN112245389A (zh) * 2020-10-15 2021-01-22 佳木斯大学 一种基于三种病灶的复合载药纳米级超声多功能微泡及其制备方法

Also Published As

Publication number Publication date
CN103691384B (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
CN103691384B (zh) 一种微泡发生器及其制作方法与应用
Otanicar et al. Nanofluid-based direct absorption solar collector
CN106582903B (zh) 基于光热波导的微流控芯片及其微流控方法
CN102036757A (zh) 涂覆基材的方法
TW201249984A (en) Photobioreactor in a closed environment for the culture of photosynthetic microorganisms
CN103352255B (zh) 一种具有反蛋白石结构的光子晶体的制备方法
Li et al. Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion
Yang et al. Low‐Cost and High‐Efficiency Solar‐Driven Vapor Generation Using a 3D Dyed Cotton Towel
Li et al. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer
CN104698533A (zh) 一种基于光纤的微小粒子移动装置
CN106622436B (zh) 基于光流漩涡阵列的材料分布式控制平台及控制方法
CN108034703A (zh) 基于ewod驱动和恒温源的数字pcr系统
CN206351047U (zh) 基于微纳光纤的微流体镊子
CN107021449A (zh) 制备有序微观结构和可控化学组成界面的制备方法及其应用
Kang et al. Plasmonic absorption activated trapping and assembling of colloidal crystals with non-resonant continuous gold films
Xia et al. Hierarchical structure design of sea urchin Shell-Based evaporator for efficient omnidirectional Solar-Driven steam generation
CN101942700B (zh) 基于光纤的圆柱环状胶体晶体的制备方法
CN102218595B (zh) 一种微流芯片的制备方法
CN112099149B (zh) 一种基于光泳效应的微流开关
CN102789128A (zh) 一种制备图案化ZnO纳米棒阵列的方法
CN111774020A (zh) 一种基于等离激元效应的高效率光汽转换方法
Zhu et al. Efficient microfluidic photocatalysis in a symmetrical metal-cladding waveguide
Liu et al. All-fiber impurity collector based on laser-induced microbubble
CN104927787A (zh) 一种等离激元纳米流体及其制备方法
Wang et al. Femtosecond Laser Direct Writing of Flexible Electronic Devices: A Mini Review

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant