CN103688288B - 用于修改输入图像数据的方法以及投影系统 - Google Patents

用于修改输入图像数据的方法以及投影系统 Download PDF

Info

Publication number
CN103688288B
CN103688288B CN201280035989.9A CN201280035989A CN103688288B CN 103688288 B CN103688288 B CN 103688288B CN 201280035989 A CN201280035989 A CN 201280035989A CN 103688288 B CN103688288 B CN 103688288B
Authority
CN
China
Prior art keywords
follow
parameter
characteristic
system performance
projecting apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280035989.9A
Other languages
English (en)
Other versions
CN103688288A (zh
Inventor
谭玮宁
S·C·雷德
M·奥多尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imax Corp
Original Assignee
Imax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imax Corp filed Critical Imax Corp
Priority to CN201710800236.7A priority Critical patent/CN107566689B/zh
Publication of CN103688288A publication Critical patent/CN103688288A/zh
Application granted granted Critical
Publication of CN103688288B publication Critical patent/CN103688288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/211Ghost signal cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)
  • Image Analysis (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

某些方面涉及一种方法和系统,其中可以规范化任何定义的系统特性、性质或者参数以用于进一步提高显示的图像质量。规范化处理可以使用广义校准过程,并且可以规范化系统特性或者系统性质和/或参数,以使用广义图像处理方法来产生更均匀或者准确显示的图像。

Description

用于修改输入图像数据的方法以及投影系统
有关申请的交叉引用
本申请要求对标题为“Projector Normalization for Improving ImageProjection”、并且于2011年7月21日提交的第61/510,273号美国临时申请的优先权,其整体内容通过引用结合于此。
技术领域
本发明总体涉及图像投影系统,并且更具体地(但是未必排他地)涉及可以规范化系统特性、性质和/或参数并且使用该规范化以增强显示的图像的图像投影系统。
背景技术
正在努力提高运动图片演示的质量。随着向数字投影设备转变,出现了新机会以用于以不可能或者难以应用于胶片投影设备的方式解决可视质量问题。例如可以操纵每个图像像素的属性以补偿投影系统中的缺点。
可以用许多不同方式描述显示的图像质量。例如可以在图像亮度均匀性、图像重影(ghosting)数量、色平衡方面描述二维(2D)演示中的图像质量,或者在示出三维(3D)演示时有需要考虑的附加质量方面、比如在左眼和右眼图像之间亮度平衡、亮度分布或者色彩。在一个显示图像内的图像质量变化可以称为投影仪内图像质量变化,并且在两个图像、比如3D演示中的左眼和右眼图像之间的图像质量问题可以被称为投影仪间图像质量变化。在3D演示中,可以有可能投影仪间图像质量劣化可能造成观看演示的顾客的观看不舒适。图像质量改变可能随时间出现,并且一些图像质量改变可能要求更频繁的校正。可能存在许多能使图像质量劣化的因素。一些因素可能在投影或者显示设备内出现,而一些因素可以在投影仪或者显示器外部,这些因素可能影响所显示的图像。在投影或者显示设备内的因素的示例可以包括光源劣化、光学器件内的光反射、双投影系统中的投影仪之间的特性差异。在投影设备以外的可能影响图像质量的因素的示例可以包括来自显示器或者屏幕的、由观众或者其它剧院表面反射回的光,或者剧院中的来自地面照明或者出口灯的杂散光。
为了保证与既定图像质量匹配的一致图像质量随时间并且从剧院到剧院进行显示而未劣化,期望一种实施起来实用并且可以被自动化以在显示的图像中的多种质量问题出现时补偿它们的解决方案。
以下公开一种能够解决以上提到的问题的系统和方法。
发明内容
某些方面和特征涉及使用规范化的系统特性、性质和/或参数来增强图像数据。
在一个方面中,提供一种用于修改输入图像数据的方法。接收在目标位置处测量的初始系统特性。接收在远程位置处测量的系统特性的系统参数。计算初始规范化的系统特性。接收从远程位置测量的后续系统参数。使用初始规范化的系统特性和后续系统参数来计算目标位置的后续系统特性。使用后续系统特性来修改输入图像数据,以产生用于系统功能处理的规范化的输入图像数据,该系统功能处理输出增强的图像数据用于显示。
在另一方面中,一种投影系统包括系统特性和参数处理器、输入图像规范化模块和投影仪。系统特性和参数处理器可以确定至少一个规范化的系统参数或者规范化的系统特性。输入图像规范化模块可以在投影增强系统功能之前使用规范化的系统参数或者规范化的系统特性中的至少一项来修改输入图像数据以创建虚拟投影仪系统。投影仪可以根据利用规范化的系统参数或者规范化的系统特性中的至少一项而修改的输入图像数据、显示增强的图像数据。
提及这些示例方面和特征并非为了限制或者限定本发明而是提供示例以辅助理解在本公开内容中公开的发明概念。本发明的其它方面、优点和特征将在回顾整个公开内容之后变得清楚。
附图说明
图1描绘根据一个方面的一种用虚拟投影仪内的至少一个系统特性规范化输入图像数据的方法。
图2描绘根据一个方面的一种用于将虚拟投影仪内的规范化的重影系数和规范化的亮度用于去重影函数来规范化输入图像数据的方法。
图3描绘根据一个方面的将虚拟投影仪以内的规范化的投影仪亮度用于系统功能来规范化输入图像数据的方法。
图4描绘根据一个方面的用于系统功能的可以规范化输入图像数据的虚拟投影仪系统中的数据流程。
图5描绘根据一个方面的用于应用重影系数和投影仪亮度校准更新的模型。
图6描绘根据一个方面的被配置用于规范化输入图像数据以增强投影的图像的投影系统。
图7描绘根据一个方面的测试图案。
图8描绘根据一个方面的一种用于将虚拟投影仪以内的规范化的环境光反射比和规范化的亮度用于环境感知反射补偿增强函数来规范化输入图像数据的方法。
具体实施方式
某些方面涉及一种方法和系统,其中可以规范化任何定义的系统特性、性质或者参数用于进一步提高显示的图像质量。规范化处理可以使用广义校准过程并且可以规范化系统特性或者系统性质和/ 或参数以使用广义图像处理方法来产生更均匀或者准确显示的图像。其中应用规范化过程的显示设备或者投影仪这里称为“虚拟显示设备”或者“虚拟投影仪”。
在一些方面中,通过在用数字投影仪在剧院接收之前修改图像数据和/或在用投影系统内的数字增强例程在剧院修改图像数据来增强来自数字投影仪的显示的图像。在剧院执行图像数据修改的一个可选、非唯一优点在于可以包括专属于剧院投影系统配置的属性。根据一些方面的某些方法可以进一步提高演示图像质量并且克服与更新随着小时、天或者周的进程改变的显示系统特性和参数有关的问题中的一个或者多个问题。根据一些方面的一种系统可以使用反馈方案来实施某些方法,该反馈方案可以更准确地反应观看者看见什么,其中反馈可以易于实施从而产生向观看者中的任何观看者显示的有效和无阻碍图像。
在一个方面中,可以接收已经在剧院中的目标位置测量的初始系统特性。可以接收投影系统的测量的特性的系统参数。可以计算初始规范化的系统特性。可以接收投影系统的后续测量的系统参数。可以使用初始规范化的系统特性和后续测量的系统参数来计算用于目标位置的后续系统特性。后续系统特性可以用来修改输入图像数据以生成规范化输入图像数据。与输入图像数据在未规范化的情况下被投影相比较,投影规范化的输入图像数据可以产生改进的观看体验。
剧院可以包括能够以如下方式处理输入图像数据的数字投影仪,该方式使用图像增强处理器模块来增强显示的图像。在这一类型的系统中,输入图像数据可以被图像增强器接收,该图像增强器可以修改输入图像数据并且输出修改的图像数据以显示。这些类型的投影仪不能基于在相对短的时间段(即小时、天或者周)内经历显著改变的显示系统参数或者特性的频繁更新来修改输入图像数据。用于向改变的参数和/或特性补偿投影系统的自动化的能力可以用来在维护例程之间的时间期间保证提高的演示质量并且可以解决调整系统以纠正改变。图4概括根据一个方面的不同系统,在该系统中,处理器设备可以接收图像数据,该处理器设备可以使用投影系统的规范化的显示系统参数和规范化的显示系统特性,从而投影仪可以在已经规范化的一个或者多个具体系统特性方面作为更理想投影仪工作。这一类型的投影仪或者显示设备可以被称为虚拟投影仪或者更一般地被称为虚拟显示设备。在图4中描绘的示例中,虚拟投影仪系统(402)包含规范化的显示系统参数集(420)、规范化的显示系统特性集(430),并且可以执行增强函数集(440)。输入数据(440)进入虚拟投影仪系统并且基于可以在屏幕之上空间优化的并且可以用来创建规范化的输入图像数据的、规范化的显示系统参数(420)和规范化的显示系统特性(430)来修改。规范化的图像输入数据(405a,405b,405c,405d)可以由系统增强功能(440)处理并且由虚拟处理器输出(410),因此可以显示修改的输入图像数据。系统增强功能或者系统功能(440)可以是多个系统功能过程。去重影特征处理、亮度均匀特征处理、图像卷包处理、环境感知反射补偿特征处理、2D至3D转换处理和帧速率改变处理是系统功能过程或者增强系统功能的示例。
根据一些方面的某些系统和方法可以生成规范化的显示系统参数和规范化的显示系统特性,这些参数和特性可以被提供用于修改输入图像数据并且可以被分别称为规范化的系统参数图(map)和规范化的系统特性图。这些图的生成可以用来修改输入图像数据并且可以允许虚拟投影仪作为更理想投影仪工作。在虚拟处理器内使用规范化的图像数据可以允许剧院中的投影仪保证随时间并且从剧院到剧院与待显示的既定图像质量匹配并且未退化的一致图像质量。各种方法可以用来修改输入图像数据。
在一个方面中,虚拟投影仪可以通过修改已经规范化的至少一个有关系统参数来处理立体显示系统的至少一个规范化的系统特性。系统特性可以是如下属性或者特点,该属性或者特定描述投影系统功能或者特征的一个方面。这样的特性的示例包括用于立体显示的屏上亮度、屏上图像对比度和重影系数比。系统特性可以具有至少一个系统参数(或者本身),该系统参数可以确定它的结果。系统参数可以是系统输入、系统配置设置或者另一系统特性的结果。例如用于重影的这样的系统参数之一是投影仪间对比度,并且投影对比度这一系统参数是个体投影仪的亮度。可以通过操纵至少一个系统参数来操作至少一个系统特性的规范化以实现特性的期望简档。
规范化可以应用于典型剧院环境,该剧院环境在剧院的一端具有屏幕而在另一端具有投影厅,该投影厅具有图像投影设备。投影仪可以通过投影厅窗从投影厅向屏幕上投影出图像。在屏幕与投影厅之间可以是座位或者成排座位,一个或者多个观看者可以在该座位或者成排座位以体验虚拟演示。
图1图示根据广义规范化至少一个系统特性以修改输入图像数据用于在系统功能中处理的一个方面的方法。可以假设系统功能对至少一个系统特性和一个系统参数操作。各种方法可以被使用而不限于图1中描绘的方法。例如可以使用多个系统特性和多个系统参数。虚拟投影仪系统也可以具有多于一个系统功能。这一幅图仅图示那些系统功能之一。
可以将图1的方法划分成三个序列。第一序列(100,102,104,106,108,110)包括在系统被初始地校准时或者在时间t=0时捕获系统参数和系统特性。特性可以包括相对稳定或者“恒定”的参数和/或在时间段(即为小时、天、周)内改变的参数。可以在更晚时间=N周期性地更新校准数据以匹配显示系统的当前情形。第二序列(112,116,114,118,120)包括使用具有约束的优化方法在屏幕/显示器的区域内空间优化系统特性和系统参数以产生最优规范化的系统特性图和最优规范化的系统参数图。第三序列(122)包括应用最优规范化的系统特性图和最优规范化的系统参数图以修改输入图像数据并且产生规范化的输入图像数据(405a)。
在图1中,可以在初始时间t=0执行在左侧上的块,并且可以在时间t=N之后再次执行右侧的块。时间N可以代表比将重复在时间t=0的校准序列相对更频繁的时段。校准序列可以并非出现一次,但是如果重复,则它可以在相对于时间t=N长得多的时间段之后出现。在时间t=0执行的动作可以捕获相对稳定并且不可能改变的系统性质,而时间N可以是相对频繁事件。在时间N执行的动作可以捕获为动态的并且随时间改变的系统性质。在图1中,在时间t=0执行块(100,102,104,106,112,114),并且在时间t=n执行块(108,110,116,118,120),并且在时间t=N+1迭代地执行块(108,110,116,118,120)。
有可能不能为每个观看座位创建最佳可能图像,因为不同地修改输入图像数据以优化用于每个参数的投影系统特性和参数可能有困难。为了补偿,可以确定最有代表性的用于获得最佳平均观看质量的单个观看位置。这一单个观看位置可以被称为目标观看位置或者目标位置。可以对于校准序列标识目标位置以获得如下数据,该数据代表用于每个剧院座位位置的数据。
对于校准序列,有可能将传感器放置于目标位置处。对于后续测量,目标座位位置可以不是用于测量传感器的实际位置。传感器可以从目标位置进行系统特性测量以确定用于屏幕上的每个像素的特性值或者参数值。对于在t=N的后续测量,目标位置可能并不实用,因为传感器可能未总是在顾客存在时具有屏幕的清楚视图,或者为了获得屏幕的清楚视图,传感器将在屏幕的顾客的视图中;或者在目标位置安装或者拆除这样的传感器可能不方便或者成本高;或者如果目标位置确定获得改变,则移动这样的传感器安装可能不方便或者成本高。在另一方面,为了将传感器放在除了目标位置之外的位置,系统特性测量可以未与在目标位置的测量相同。用于在系统功能(440)中的图像增强算法中使用的最优后续数据可能不可获得。
图1中的方法可以通过如在块100所示在目标位置取“初始系统特性”测量来开始。可以在已经在剧院中恰当设置投影系统、屏幕在它的最终形式中并且剧院观众席在完成状态中之后完成这一测量。在相同时间t=0,如在块102所示在远程传感器位置处取得系统特性的至少一个初始参数。这一系统参数可以与系统特性有关。远程传感器的位置可以更接近投影厅或者在投影厅中或者集成到投影仪中。
在块106,关于在远程传感器位置测量的系统特性的参数(102)来规范化在目标位置处测量的系统特性(100)。
系统特性的示例是重影系数g。初始系统特性可以是在t=0在目标座位位置的g测量。系统特性g与之有关的一个参数的示例是可以在时间t=0在传感器位置处从传感器测量的、在屏幕上的左眼和右眼图像亮度“βL”和“βR”。由于图像亮度可以在屏幕区域之上变化,所以图像亮度图可以用来代表用于屏幕上的位置的左眼和右眼图像亮度值。
使用在时间t=0在目标位置的校准的初始期望系统特性(100),可以计算在时间t=0在远程传感器位置的测量的系统参数和规范化的系统特性(106)。规范化的系统特性(106)可以是实际系统在去除系统参数依赖性时的相对测量,或者它可以是实际系统特性在单位系统参数依赖性时的相对测量。可以比对测量的系统参数(102)来规范化在(100)中校准的初始系统特性。
在另一方面中,在块(106)中的规范化可以使用来自块(104)的系统建模知识。系统特性建模(104)可以提供数学系统模型,该数学系统模型描述在与不同系统参数和/或不同系统特性之间的关系,该关系可以用来推导在目标座位的规范化的系统特性。
在使用数学系统模型(104)时,可以推导一个或者多个系统参数。系统参数可以是多个因素的函数,这些因素比如是来自投影仪积分棒的亮度、投影仪镜头特性、在屏幕、座位位置和投影点之间的几何关系、在双投影仪之间的间距、投影场视角、屏幕去极化性质和增益函数或者其它静态或者动态系统性质。剧院内或者投影仪内远程传感器可以实时捕获动态系统性质。例如远程相机可以捕获给定的测试图案的来自每个投影仪的在屏幕上的亮度分布。可以根据相机捕获的历史和当前数据来推导对亮度分布的相对改变。可以根据模型推导系统特性(104)以获得初始规范化的系统特性(106)。如果系统的模型(104)推导用于目标位置的初始系统特性,则可以无需在目标位置测量初始系统特性(100)以及初始参数测量(102)。使用系统的模型可以提供用于目标位置的系统特性的合理近似。然而在目标位置处测量初始系统特性和在远程传感器位置测量初始参数可以提供更准确结果。
规范化的系统特性(106)可以关于具体参数来被规范化。在更晚时间t=N来自远程传感器位置的另一测量(108)后续更新具体参数时,可以确定用于目标位置的后续系统特性(110)。远程传感器位置可以对于后续测量与初始测量相同以确定用于目标位置的正确后续系统特性。
可以执行块(100,102,104,106)中的动作一次,而可以在后续时间在根据需要的多次迭代中执行块(108和110)中的动作以将用于目标位置的系统特性保持为当前。
系统功能(440)可以直接使用(110)中的计算的结果而无任何进一步处理。
图1中的方法还可以通过比较目标位置的后续系统特性(110)与预定义的期望系统特性简档(112)来规范化系统特性以产生关于期望特性简档(112)优化(116)和规范化的后续系统特性图。可以用后续系统特性的每个更新来更新(120)最优图。在最优图修改输入图像数据(122)时,显示的图像数据可以在目标位置在规范化的特性方面最优出现
分布或者简档规范化可以始于在块(116)中在预定义的标准之下用期望系统特性简档(112)规范化后续系统特性(110)。期望系统特性简档(112)可以包括与从现有系统测量(或者计算)的更新的系统特性(110)不同的系统特性分布。为了规范化现有测量(或者计算)的系统特性(110)以匹配期望系统特性简档(112),可以通过修改系统特性(110)的系统参数中的至少一个系统参数的一部分来重塑该系统特性。每个像素的修改的系统参数可以改变每个像素的系统特性的值以尽可能接近地匹配期望系统特性简档(112)中的值。可能由于其它系统约束、比如非负系统参数值限制、非侵入空间像素值改变的小梯度等而不能执行修改。(116)中的规范化的最终结果可以在与其它系统约束组合时是优化方程集的求解。
系统特性和参数期望简档可以在规范化过程中使用时基于投影仪内(即在一个投影仪内)或者投影仪间(即在两个投影仪之间)变化/简档或者其组合。如果使用投影仪内简档,则规范化可以是投影仪内规范化。如果使用投影仪间简档,则规范化可以是投影仪间规范化。对于投影仪间规范化,可以使一个投影仪的期望系统特性或者系统参数简档的目标是匹配与另一投影仪有关的预定义的简档。一般而言,在两投影仪系统中,预定义的简档可以是用于每个投影仪的相同简档,或者它可以不同。可以使在给定的系统特性或者系统参数的左投影仪和右投影仪之间的差值的分布的目标是匹配预定义简档。可以从一个投影仪到另一投影仪计算差值作为参考。对于投影仪内规范化,期望简档可以在投影仪内均匀。
投影系统可以包括虚拟投影系统,对于该虚拟投影系统,可以使投影系统的测量的系统特性或者参数匹配多个投影系统的期望简档,从而期望系统特性或者参数分布对于所有投影系统相同。这可以在一个剧院中的投影系统可以显示如下图像时有利,该图像具有与另一剧院中的另一投影系统显示图像相同的系统特性和参数。通过具有可以从剧院中的投影系统到投影系统相同的预定义的简档,剧院中的每个剧院中的投影系统可以显示具有在剧院之间的更强质量一致性的图像。
以上简档规范化过程(116)可以是优化过程,该优化过程标识约束的最佳平衡点并且尽可能多地匹配期望简档。最佳情况是它可以恰好匹配(112)的期望简档。最坏情况是它无法在任何程度上加以匹配而是保持原有值。在后一种情况下,后续系统特性可以被用来修改图像数据(122)。
图2图示图1中的方法在应用于虚拟投影系统时的一个示例,在该虚拟投影系统中,重影系数是系统特性,并且亮度是系统特性的参数。可以优化并且使用被规范化成预定义的期望重影系数简档的后续重影系数图以修改输入图像数据以产生可以与系统功能(440)算法、比如去重影增强算法使用的规范化的修改的输入图像数据。该方法可以假设去重影函数对重影系数比操作并且期望重影系数简档可以基于投影仪间规范化并且可以通过修改图像像素值来调整投影仪亮度。
在这一示例中,(200,202,204,206,208,210)可以被用来获得初始和后续重影系数值。重影系数值可以是未既定信号(泄漏的串扰)和既定信号的信号强度的比率。这一比率可能受到两个系统参数的影响:一个可能是极化器滤波器和屏幕去极化确定的系统重影串扰比;另一个可能是左投影仪和右投影仪亮度(信号强度)。该方法可以假设重影系数并不随时间恒定。来自极化器滤波器和屏幕去极化的第一重影系数参数可以相对稳定或者视为“恒定”,并且投影仪亮度这第二参数可以在相对短的时间段内改变。可以随时间更新初始重影系数校准数据为当前。
初始重影系数可以是在t=0在目标位置测量的初始系统特性。测量可以在已经初始地设置投影系统之后出现并且可以针对剧院而优化。可以在维护服务例程期间的晚得多的时间再次执行测量。可以如在标题为“Methods and Systems for Reducing orEliminating Perceived Ghosting in Displayed Stereoscopic Images”、并且提交于2009年6月15日的第CPT/IB2009/005945号PCT专利申请中描述的那样,以人工或者自动化方式在目标座位使用传感器来测量初始重影系数。在这一PCT专利申请中,重影传递函数可以等效于重影系数这一项、但是在软件码中表达。重影传递函数可以涉及码值中的既定图像亮度相对于码值中的非既定图像亮度如何可以代表等效于感知的重影。在时间t=0,在整个屏幕区域之上,可以从目标位置分别测量用于左投影仪和右投影仪的初始重影系数(200)gtarget,L和gtarget,R;类似地,数字相机(即远程传感器)可以在投影仪厅位置测量左投影仪和右投影仪亮度(202)Bbooth,L和Bbooth,R。可以使用在远程传感器位置测量的亮度数据(202)与初始测量的重影系数数据(200)或者通过使用根据重影模型G(x)(204)推导的重影系数数据来确定规范化的重影系数(206)。
这一规范化的重影系数(206)可以是实际重影系数的相对测量而未考虑在左投影仪和右投影仪之间的亮度差值。
存在可以在计算规范化的重影系数(206)时使用来自模型(204)的信息的多种方式。模型可以考虑可以影响重影的多个因素、比如观看者可感知的投影的亮度以及编码和解码滤波器的串扰。在一个示例中,模型可以用来确定规范化的重影系数。在另一示例中,模型被用来确定重影系数和/或亮度在屏幕区域之上的简档。
通过基于重影和亮度来构建数学系统重影模型,模型考虑可以与确定重影或者亮度有关的主要输入、然后可以根据模型计算来推导重影系数分布和/或亮度分布。如果模型正确,则可以根据在方便的远程传感器位置测量的一个或者多个动态参数计算和更新来自目标位置的期望特性而不是在不方便的目标位置处直接测量重影或者亮度。
根据以上基于数学模型对串扰和亮度的计算,可以通过发现用于每个像素的串扰和亮度的比率来估计规范化的重影比率分布。可以在线性空间中定义这一重影比率。可以通过将码空间重影比率提高至系统伽马校正的幂来推导该比率。
若干因素可以影响亮度并且可以用多种方式来建模。例如假设在投影仪以内的积分设备在SLM产生均匀亮度,可以对于投影镜头对比如针缓冲或者桶失真这样的效果建模。这一类型的失真的严重性可以依赖于镜头孔径,其中观看者识别这一失真为渐晕效应。
可以影响亮度的另一因素可以与如下屏幕有关,这些屏幕往往具有圆柱形状以向观看者提供更多图像光。这一屏幕影响也可以在它对观看者的亮度效果方面来被建模。
可以影响图像亮度的另一因素是何时在屏幕上反射光。屏幕增益函数可以确定图像亮度。银屏或者屏幕涂料可以是BRDF(双向反射率分布函数)设备,并且增益可以是光入射角、反射角、方位角和天顶角的四维函数。入射角和反射角可以与剧院几何形状、投影仪放置和观看者的位置有关。入射角θi是入射光线和表面法线取向形成的角度,而反射角是反射光线和表面法线取向形成的角度。Fred Nicodemus定义的现代模型可以用来以如下方式描述屏幕的性能》
L是辐射率,E是辐射照度,ωi是指入射光,并且ωo是指传出光。对于具体银屏,以入射角和反射角为参数的实际增益函数也可以由制造商提供或者通过内部测量来获取。可以通过使用这一数学模型来估计对于每个观看位置输出的来自屏幕和投影仪的反射的图像亮度。反射的图像亮度可以表现为如下分布、比如一组同心椭圆,该分布的中心区域具有最高亮度并且亮度从中心向外边界消退。在观看位置改变成就座层的左侧或者右侧时,同心分布的中心可以相应地略微左移或者右移。
可以在亮度建模时考虑的另一因素可以在使用双投影仪系统时出现,其中在左投影仪和右投影仪之间的间距在左图像和右图像在屏幕上重叠时贡献光分布移位。
为了在模型中计算重影比率或者信噪比(SNR),可以对系统的串扰建模。在光穿过极化的编码和解码滤波器对时,透射消光比可以遵循如下分布,该分布沿着两个极化轴最大化并且从极化轴更远程而消退。串扰分布可以稳定并且在极化系统中,在该极化系统中,一个极化轴沿着0度(例如对于左眼图像为水平)而另一极化轴沿着90度(对于右眼图像为竖直)。可以沿着水平轴和竖直轴最小化串扰。然而沿着每个对角轴,串扰可以更显著。
在串扰中的一个因素可以来自银屏对极化光的去极化效果。屏幕去极化比率可以被视为几乎恒定而未考虑观看者的就坐位置和图像颜色。除了极化器滤波器引起的影响之外,去极化对串扰的影响也可以具有增益函数相似的分布。可以根据极化器和屏幕制造商提供的规格计算影响串扰的因素。
在其中重影特性是由g代表的重影系数的示例中,重影系数在左眼图像的部分泄漏到右眼上时可以对于目标座位由g(L→R),target代表。重影系数在右眼图像的部分泄漏到左眼上时可以对于目标座位由g(R→L),target代表。在后续时间在目标座位的重影系数可以是g’(L→R),target和g’(R→L),target,并且可以与初始重影系数g(L→R),target和g(R→L),target有关。在远程感测位置(例如厅)的亮度测量可以基于以下关系:
B’booth,L和B’booth,R是在目标座位处确定初始重影系数时分别在远程传感器位置测量的左眼和右眼图像光的亮度。可以在远程传感器位置在后续时间测量B’booth,L和B’booth,R。在图2的方法中,在时间0,可以在块(200)中在目标座位位置确定重影系数(g(L→R),target和g(R→L),target)。在相同时间,可以在块(202)中在远程传感器位置处测量初始左眼和右眼图像亮度Bbooth,L和Bbooth,R。基于g(L→R),target、g(R→L),taret、Bbooth,L和Bbooth,R,可以在块(206)中计算用于目标座位的规范化的重影系数如下:
在更晚时间N、比如在放映之前或者之后或者每天或者每周,可以在远程相机位置处进行投影仪左投影仪和右投影仪亮度的后续测量(208)。可以基于后续左图像亮度值和右图像亮度值以及规范化的重影系数来计算用于目标位置的后续重影系数值(210)。可以基于可以从定位于投影仪厅位置的远程传感器获得的亮度测量来确定重影系数的更新版本。可以无需反复涉及到在目标座位的传感器的校准过程以保持重影系数因数为当前。可以执行过程(200,202,204,206)一次,而可以在时间N+1在按照需要的多次迭代中执行过程(208和210)以保持重影系数校准为最新。
在其中计算规范化的重影特性的示例中,g(L→R),norm,target和g(R→L),norm,target(在块206中)可以与后续亮度测量B’booth,L和B’booth,R(208)用来使用以下关系来确定用于目标座位的后续重影系数g’(L→R),target和g’(R→L),target(在块210中):
进一步规范化可以在块216中出现,在该块中,可以关于在预定义的标准之下确定的期望重影系数简档(212)规范化后续重影系数因数以产生规范化的重影系数图。可以存在如下情形,在这些情形中,重影系数分布匹配与从现有系统测量(或者计算)的重影系数分布(210)不同的重影系数简档(212)。在重影系数分布的这一重塑中使用的方法可以优化重影系数的规范化过程。可以使用各种过程来执行(216)中的最优规范化过程。一个过程可以是投影仪内规范化。可以在投影仪内规范化重影系数。重影系数的空间分布可以目标为匹配预定义的简档,但是可以比较差值与如下参考,该参考与给定的投影仪关联。这一投影仪内规范化可以对设计在每个投影仪内具有期望重影系数分布的虚拟公共投影仪有用。可以优化这一希望和预定义的重影系数分布用于最小化感知的总重影或者匹配某些剧院几何设计或者用于仿真或者另一目的。一旦定义虚拟投影仪重影系数简档,可以规范化实际投影仪以匹配它们的固有重影系数分布与这一虚拟投影仪重影系数简档。利用这一最优规范化,投影仪可以具有公共重影行为而未考虑它们的硬件和几何差异。这一均匀性水平可以产生更佳图像质量和投影仪性能以及使用容易可部署和可升级软件来实施。
另一过程可以包括投影仪间规范化,其中可以在左投影仪和右投影仪之间最优地规范化重影系数分布。可以使在重影系数分布的左投影仪和右投影仪之间的差异的分布的目标是匹配预定义的简档。可以从一个投影仪到另一投影仪计算差异作为参考。在虚拟投影仪的抽象化中,重塑的一个投影仪的重影目标系数简档可以具有与另一投影仪的重塑的重影系数简档的预定义关系。在一个示例中,对于平衡的虚拟投影仪,重塑的左重影系数简档可以为了最佳图像质量而与重塑的右重影系数相同。
在重影系数分布规范化的任一方式中,可以分别表达预定义的匹配目标为用于左投影仪和右投影仪的后续重影系数图。
为了规范化现有测量(或者计算)的后续重影系数(210)以匹配期望重影系数简档(212),可以通过修改左投影仪和右投影仪亮度来重塑重影系数(210)。可以改变左图像值和右图像值以影响左投影仪和右投影仪亮度。每个像素的修改的投影仪亮度可以改变每个像素的重影系数值以尽可能接近地匹配期望重影系数简档(212)中的值。可能由于其它系统约束、比如非负系统参数值限制、非入侵空间像素值改变的小梯度等而不能执行修改。(216)中的规范化的最终结果可以是具有组合的系统约束的优化方程集的求解。
在相似过程中,可以用投影仪内或者投影仪间简档规范化左投影仪和右投影仪亮度。可以通过求解用于期望简档(214)的另一优化方程集和约束来优化规范化。通过用最优规范化的亮度图(218,220,222)修改输入图像数据,图像的投影的亮度可以如同它从具有期望亮度简档的投影仪而被投影一样匹配图像。用于投影仪的所得投影仪亮度可以被配置用于在规范化过程之后匹配目标关系。规范化的投影仪亮度的一个可选、非唯一优点在于可以对于2D(投影仪内规范化)和3D(投影仪间规范化)提高总体图像质量。可以有可能的是图像亮度简档可以是均匀恒定值或者与当前投影仪亮度分布不同的跨屏幕的期望分布。在投影仪亮度规范化的任一方式中,可以表达预定义的匹配目标为亮度图,这些亮度图修改用于投影仪的输入图像数据或者分别修改用于左投影仪和右投影仪的左图像输入数据和右图像输入数据。
在(216和218)中的以上规范化过程可以是如下优化过程,该优化过程尝试找到约束的最佳平衡点,并且尽可能多地匹配期望简档。在最佳情况下,过程可以精确匹配(212)或者(214)的简档。在最坏情况下,过程可能无法在任何程度上匹配并且保持原有值。在后一种情况下,后续重影系数可以用来修改输入图像数据以产生由去重影函数后续使用的修改的输入图像数据。
在当前示例中,可以按照以下方式优化重影系数分布和亮度分布。重影系数系统特性可以由gR->L,gL->R代表,gR->L,gL->R分别是用于左投影仪和右投影仪的在线性空间中的重影系数比。g'R->L,g'L->R是可以在块(210)中计算的分别用于左投影仪和右投影仪的在线性空间中的更新的重影系数比。gR->L,profile,gL->R,profile是预定义和期望重影系数比简档(212)。g'R->L,optimal,g'L->R,optimal分别是用于左投影仪和右投影仪的在线性空间中的调整(优化)的规范化的重影系数比图(216)。可以确定将原有图像码值I(I∈[0,1])转换成新投影仪亮度的亮度传递函数NL(I)和NR(I)。下文提到的投影仪亮度值是指来自在厅位置的相机传感器的值读数。重影系数调整传递函数GL(B)和GR(B)可以将输入投影仪亮度图到用于实现规范化的重影系数的对两个投影仪的必需投影仪亮度调整。因此与以上方程相似,以下关系描述在时间N的规范化的重影系数分量:
相似地,假设BL,profile,BR,profile是预定义和期望投影仪亮度简档(214),可以通过相机测量B'L,B'R.B'L,B'R来建立从图像码值到亮度简档BL,profile,BR,profile的传递函数,这些B'L,B'R.B'L,B'R是左图像和右图像的最终图像亮度。利用亮度传递函数NL(I)和NR(I),以下关系可以描述在时间N的投影仪亮度和在屏幕上的最终总图像亮度的规范化分量:
以及
广义优化的求解可以包括发现具有变元映射函数N和G的以下误差表达式的加权最小平方:
α,β是用于每个约束的权值。这可以向用户提供用于选择最终结果是否更多地聚焦于重影系数匹配简档或者亮度匹配简档或者对全图像改变施加更多限制的灵活性。平滑求解约束被隐含在简档图gprofile和Bprofile中。以上表达式的附加约束可以是:
B(0)≤N(I)+G(N(I))≤B(1) (9)
公式(8)可以表达规范化过程为优化问题的原因在于可以在找到一对传递函数N和G时达到来自图像动态范围改变的最小化的误差、重影系数与简档的未匹配和投影仪亮度与简档的未匹配。
本发明的另一方面可以将(216)和(218)中的优化分成两个步骤。在该情况下,可以在迭代中执行以下两个优化操作而对于第一迭代假设G(B)=0:
在这一情况下,可以在投影仪亮度简档匹配和图像保真的最小化约束之下首先找到优化的N函数。可以在重影系数简档匹配和图像保真的最小化约束之下找到优化的G函数。在下一迭代中,新发现的G可以在公式(10)中用来找到下一个最优化的N函数,并且这一新N可以在公式(11)中用来找到下一个优化的G函数。在迭代结束时找到优化的映射函数N和G时,可以通过查找表(LUT)集合或者别的方式使用规范化的投影仪重影系数图(216)来将输入图像数据转换成规范化的输入图像数据(222)并且通过系统功能 (440)处理规范化的输入图像数据(405b)获得更佳图像质量。利用这一优化方法,可以有可能实现提高期望投影仪内和投影仪间亮度均匀性和减少的重影。
许多有效方法可以用来对于更小规模地求解陈述的优化问题、比如信任区域和Levenberg-Marquardt方法或者高斯-牛顿方法。
通过操纵左输入图像数据/像素和右输入图像数据/像素,可以重塑左图像亮度和右图像亮度。可以将图像像素的总体修改抽象化并且分解为两级改变。第一级可以包括重塑左和右图像亮度。第二级可以包括重塑系统规范化的重影系数分布。对系统规范化的重影系数分布的重塑可以用来将具有不同个别系统特性和参数的不同投影仪规范化成一个期望总体系统特性和参数。这一广义级别的规范化可以向虚拟数字投影仪(例如抽象虚拟IMAX数字投影仪)提供标准特性,这可以对于应用标准下一级图像处理过程或者系统(即系统功能440)有用,并且可以提高总图像质量和可靠性。利用虚拟数字投影仪和均匀数字处理模块输入输出数据接口,用于图像增强器(IE)的一般规范化架构可以进行其它处理、例如数字重新灌录(IMAX)、色平衡、色调映射、高动态范围(HDR)、主动锐化等,这些处理更易于部署并且在操作上更简化以表现一种提供一致演示质量的更可靠系统。
可以定义预定义的规范化的重影系数简档,从而可以重塑立体显示系统以具有这一规范化的重影系数简档或者将立体显示系统转换成这一虚拟投影仪。这一虚拟投影仪可以未受重影问题困扰。例如虚拟投影仪可以在重塑之后在虚拟投影仪的屏幕上的每个像素产生如下重影时未受重影问题困扰:该重影少于或者等于在可接受水平以下的用简档定义的重影。
这一种将投影仪特性规范化成期望虚拟投影仪特性的方法可以用于比如去重影和亮度不均匀这样的应用以及在3D显示设备内的任何应用。可以基于一个特性的参数集标识和规范化这一特性。规范化的特性可以独立于系统中的其它未包括的参数并且重塑为预定义的值集合。使用这些优化的规范化的特性的系统功能可以具有可靠、可预测输入并且因此可以递送可靠和提高的输出质量。
图3图示图1中的方法应用于虚拟投影系统的一个示例,在该虚拟投影系统中,亮度是可以规范化的另一系统特性。可以将后续投影仪亮度图规范化(或者优化)(316)成预定义的期望亮度简档(312),该亮度简档可以用来修改输入图像数据以产生可以与系统功能(440)算法、比如去重影增强算法使用的规范化的修改的输入图像数据。
尽管投影仪亮度可以是在去重影系统功能中作为系统参数的一个积分规范化步骤,但是它可以在另一方面中被规范化为系统特性。将图3的方法应用于投影仪内和投影仪间亮度,序列可以如下。
在图3的块(300)中,可以使用光计量器或者校准的相机在目标座位位置处获得屏幕上的初始亮度读数Bt arg et。在相同时间,远程传感器(例如投影厅相机)可以用在远程传感器位置处观测的左投影仪和右投影仪亮度的不同测试图案最大值测量Bbooth。步骤可以与对于图2中的(202)和(208)描述的步骤相似。可以在投影系统的校准期间执行这些步骤,这可以出现于在剧院中安装投影系统的时间t=0或者更晚。在块(304)中,投影仪亮度系统建模可以定义投影仪亮度并且可以使用线性模型、比如其中I是非线性空间中的图像码值。可以在块(306)使用在目标位置处和在远程位置处的测量的亮度按照确定投影仪亮度规范化。在后续时间t=N,在目标座位位置处的亮度可能由于多个因素、比如以上标识的因素而改变。为了计算在后续时间t=N在目标座位的亮度,可以在远程传感器位置处进行后续亮度测量B′booth(308)。使用B′booth和Bnorm,可以计算在目标座位位置处的亮度B′t arg et=B′booth·Bnorm(310)。可以用预定简档(312)优化在目标座位位置的计算的后续亮度,并且可以在块(316)中通过求解表达式(16)来发现求解。可以在块316中在一对左投影仪和右投影仪亮度简档中表达投影仪间和投影仪内规范化要求以实现投影仪间和投影仪内规范化并且产生规范化(优化)的投影仪亮度图。可以后续更新这些图(320),并且更新的图然后可以用来在块322中修改输入数据以产生规范化的输入图像数据(405c)。虚拟投影仪系统(402)中的系统功能模块(440)可以接收规范化的输入图像数据。
剧院光反射和在剧院中的可能杂散光在与投影的图像光组合时可能引起投影的亮度分布中的非均匀以及图像亮度不准确。在图5中图示剧院光反射或者可能杂散光。来自投影仪530的投影的图像光E可以从G(s,x,y)512所示屏幕向示出为B(target,x,y)523的座椅反射开。在剧院和观看者上反射的光可以向R(x’,y’)533和G(s,x,y)512代表的屏幕反射回。观看者在R(x’,y’)和G(s,x,y)二者的位置523处感知的亮度可以变成原有投影的图像光以及在R(x’,y’)和G(s,x,y)向屏幕反射回的光的求和。到达屏幕的任何剧院光反射或者其它杂散光可能通过使图像对比度降低或者改变图像颜色来劣化图像质量。可能引起误差光的另一光反射源可以从投影仪系统光学器件、例如投影镜头内出现。并非原有投影的图像光的到达屏幕的光可能是误差光。误差光如果被正确测量、校准和计算则可以从原有投影的图像被去除,从而在补偿之后,观看者感知的最终图像可以更准确地代表既定原有图像光。可以实施这一特征的投影系统可以称为环境感知投影系统。
图8图示用于创建虚拟投影系统的图1中的方法的一个示例,在该虚拟投影系统中,反射亮度比或者环境反射亮度比是系统特性,并且投影仪亮度是系统特性的参数。反射亮度比可以是在屏幕像素位置处的光部分——该光部分不是原有投影的光——除以在屏幕像素位置处的光部分——该光部分是原有投影的光。可以优化后续反射亮度比图(816),该反射亮度比图被规范化成预定义的期望反射亮度比简档(812)。在(816和818)中的以上规范化过程可以是如下优化过程,该优化过程尝试发现约束的最佳平衡点并且尽可能多地匹配期望简档。在最佳情况中,过程可以精确匹配(812)或者(814)的简档。在最坏情况中,过程可能无法在任何程度上匹配并且保持原有值。在后一种情况下,后续反射亮度比可以用来修改输入图像数据以产生系统功能(440)后续使用的修改的输入图像数据。来自规范化过程(816和818)的图可以用来修改输入图像数据(822)以产生可以与系统功能(440)算法、比如环境感知反射光补偿增强算法使用的规范化的输入图像数据(405d)。在图4中,虚拟投影仪(402)可以使用最优规范化的反射亮度比图(430)与系统功能(440)的方法,其中该方法是环境感知反射光补偿增强函数,并且其中虚拟投影仪系统输出图像数据(410)可以具有修改的图像像素亮度值。
环境感知反射光补偿增强函数可以是通过寻求比如以下方程的稳定求解或者与该稳定求解的最近近似来制定的函数:
u=u'+rC(u') (27)
变量u是原有图像像素亮度值,r是根据估计(804)或者校准(800)来自剧院光反射、杂散光、投影仪光学器件反射的误差光来计算的反射亮度比,并且C(u)可以是对比度或者锐化或者颜色映射或者其它增强函数并且预计为局部和全局图像内容的函数。根据选择的函数C(u),可以通过封闭形式或者求助于数值方法来发现u’的求解。u’通常可以小于或者等于原有图像像素亮度值u、但是大于或者等于零。如果反射亮度比和误差反射光的估计或者校准合理地准确,则补偿的输出图像数据在显示时可以一般具有更高对比度、更少颜色合成和更佳图像质量。
图6示出其中可以实施描述的方法的系统的一个示例。系统包括放置于投影厅(605)中的一个投影仪(601)或者多个投影仪(601和602)。投影仪601可以经由投影镜头(617)向观众席(620)中的屏幕(610)上投影图像。如果有多个投影仪(601和602),则每个投影仪可以经由相应投影镜头(617和619)向屏幕(610)上投影图像。如果投影系统是3D,则左眼和右眼图像投影仪可以在图像光路中分别具有图像编码设备629和627。在观众席(620)中有座位(623)或者成排座位(625),在该座位或者成排座位中,观看者可以观看屏幕(610)上的演示。一个投影仪(601)或者多个投影仪(601和602)可以具有用于从图像数据服务器(640)接收图像数据的图像增强处理器(635或者635和637)。一个或者多个图像增强器可以修改来自图像数据服务器(640)的图像数据以提高投影的图像质量。如果在图像增强器内的软件中实施用于规范化输入图像数据的方法,则虚拟投影仪(607和608)可以设置于图像增强器中。图像增强器可以执行未受规范化的输入图像数据影响的多个其它图像处理函数。这样的系统增强功能并未被描述、而是可以是图像增强器或者虚拟投影仪的一部分。远程(厅)传感器或者相机(630)被定位用于提供测量,这些测量可以被图像增强器(635或者635和637)用来修改输入图像数据。如果投影系统是3D,则可以在左解码状态和右解码状态之间切换的解码设备(628)可以被置于相机镜头前面以分别捕获既定用于左眼或者右眼的图像数据。可以移动远程传感器或者相机以从厅位置或者观众席位置获得数据。数据可以被相机获得、存储于相机或者PC(未示出)内或者直接发送到图像增强器(635)内的系统特性和参数处理器(643)。来自图像服务器(640)的图像数据分别发送到在投影仪系统(607)和(608)以内的图像增强器(635和637)。系统特性和参数处理器模块(643)生成向输入图像规范化模块(645和647)提供的更新的最优规范化系统特性和参数图。可以修改输入图像数据以产生通过输入图像规范化模块(645和647)产生规范化的输入图像数据。向图6中的可以例如进行重影减少的系统功能模块(650和652)传递规范化的输入图像数据。在系统功能模块增强规范化的输入图像数据之后,向显示投影仪(601和602)提供输出图像数据以在剧院屏幕(610)上显示。可以如图6中所示或者不同地分布处理模块(643,645,647,650和652)或者处理模块可以都放置于一个投影仪中或者处理模块可以放置于投影仪外部,或者其组合。
在剧院——已经在该剧院中设置如图6中所示系统——中,可以进行多个测量以校准投影系统。为了在进行亮度测量时校准系统,可以投影如图7中所示测试图案。测试图案(700)可以包括分布于屏幕之上的黑背景(704)上的多个亮斑(702)。可以获得测试图案的每个亮斑的中心的来自在目标座位位置处的传感器(623)的传感器读数。在相同时间,在厅位置的传感器(630)可以获得用于相同亮斑中的每个亮斑的亮度读数。可以向系统特性和参数处理器(643)传送来自厅传感器和目标座位位置的亮度数据。可以在分析可以在未示出特征内容时的时间自动投影的亮度测量测试图案时用远程传感器进行后续测量。
在块(202)和(208)中使用的亮度数据捕获和处理的方法和步骤如下:假设码空间中的左眼投影仪亮度的模型是并且码空间中的右眼投影仪亮度模型是可以使用以上描述的测试图案,在该测试图案中,实心黑图像具有N个高斯亮绿点。这可以是在标题为“Methods and Systems for Reducing or EliminatingPerceived Ghosting in Displayed Stereoscopic Images”并且提交于2009年7月15日的第PCT/IB2009/005945号PCT专利申请中描述的相同测试图案。在亮度测量中,可以去除任何图像编码设备(627和629、比如极化器)和解码设备(628)使其不在图像光路中。可以将测试图案中的投影的亮斑设置成两个不同值,其中远程传感器(即相机)可以用来捕获屏幕测试图案图像和点的亮度。首先可以将高斯点的最大值设置成1。相机可以用来在右投影仪示出以上描述的测试图案而左投影仪显示完整黑图像时捕获屏幕的灰度快照。可以标识这一快照图像为Z1。可以在左投影仪投影测试图案并且右投影仪显示黑图像时重复相机测量。可以标识相机捕获的这一快照图像为Z2。可以在已经将高斯点的最大值减少成0.766时重复两个先前测量。可以相对于先前快照标识这两个后续快照图像为Z1’和Z2’。现在有新的四个测量,这些测量形成以下方程的集合:
求解方程产生:
来自目标位置的投影的左和右亮度测量的比率可以用来规范化重影系数。以上述方式进行的后续左和右亮度测量然后可以用来计算后续重影系数。
为了在进行反射亮度比测量时校准系统,可以投影如图7中所示测试图案。测试图案(700)可以包括在背景(704)上分布于屏幕之上的多个亮斑(702),其中背景的亮度可调整。将背景704初始地设置成黑色。可以在将具有高斯分布的点的最大值设置成1时获得测试图案中的每个亮斑的中心的、来自在目标座位位置的传感器(623)的第一传感器读数。在相同时间,在厅位置的传感器(630)可以获得用于相同亮斑中的每个亮斑的第一亮度读数。接着将背景704的亮度设置成等于1的白电平。可以获得测试图案中的每个原有亮斑位置的中心的、来自在目标座位位置的传感器(623)的第二传感器读数。在相同时间,在厅位置的传感器(630)可以获得用于每个原有亮斑位置的第二亮度读数。可以向系统特性和参数处理器(643)传送来自厅传感器和目标座位位置的亮度数据。可以在分析测试图案的亮度测量时用远程传感器进行后续测量。可以在未示出特征内容的时间、比如在放映之间或者在当天的放映之前或者之后自动执行校准。
在块(800)中的用于每个投影仪的反射亮度比校准的方法和步骤可以包括以下各项:假设在码空间中具有反射亮度项的所得总亮度的模型是其中a、b是参数,r是反射亮度比,是总屏幕亮度,并且I是码值中的图像强度。假设可以在时标识来自目标座位位置的图像的第一传感器读数为B1≈(a·I2.6+b),因为背景是0;可以标识来自厅位置的图像的第一传感器读数为B1’。可以在背景亮度是1时标识在目标座位位置的传感器捕获的图像的第二传感器读数为B2=(1+r)·(a·I2.6+b);可以标识在厅位置捕获的图像的第二传感器读数为B2’;在所有情况下,保持投影的亮斑702的强度I相同。然后,在目标位置的反射亮度比可以是:
并且在厅位置的反射亮度比可以是:
来自目标位置和厅位置二者的亮度测量的比率可以用来获得反射亮度比的初始校准r和厅参考r’。可以在厅位置进行用于每个投影仪的后续亮度测量(808)并且使用这些测量以按照下式计算和更新后续反射亮度比:
可以对于每个投影的颜色、例如RGB单独完成这一校准。
描述根据一些方面的重影传递函数校准过程。左眼和右眼投影仪可以在它们的相应图像光路中具有编码设备(分别为629和627)。例如为了在这一方式中确定左眼重影系数,左眼图像投影仪可以在点之间用黑背景显示在屏幕区域之上展开的大白点的测试图案(例如图7)。右眼投影仪可以显示在投影的左眼测试图案图像上叠加定位的左眼图像投影仪测试图案的负图像(即图7的负图像)。左眼和右眼图像测试图案的白区域可以具有相同输入图像像素亮度值。在目标座位中的观看者通过左眼解码设备观看两个测试图案。在观看者看来,在任何调整之前,白点的亮度大于在白点周围的区域的亮度。可以调整左眼测试图案的每个白点的输入图像像素亮度值,从而观看者不再能够区分每个点的亮度与在每个点周围的区域的亮度。用于每个白点的在码空间中的所得输入图像像素亮度值除以周围区域的在码空间中的输入图像像素亮度值可以代表对于每个点、用于左眼的在目标座位的重影系数。
为了在这一方式中确定右眼重影系数,右眼图像投影仪可以在点之间用黑背景显示在屏幕区域之上展开的大白点的测试图案(例与图7相同)。左眼投影仪显示在第一测试图案上叠加定位的相同测试图案的负图像。可以对右眼和左眼测试图案图像编码分别用于右眼和左眼观看。右眼和左眼图像测试图案的白区域可以具有相同输入图像像素亮度值。在目标座位中的观看者仅用右眼解码单元观看两个测试图案。在观看者看来,在任何调整之前,白点的亮度大于在白点周围的区域的亮度。可以调整右眼测试图案的每个白点的输入图像像素亮度值,从而观看者不再能够区分每个点的亮度与在每个点周围的区域的亮度。用于每个白点的在码空间中的所得输入图像像素亮度值除以周围区域的在码空间中的输入图像像素亮度值可以代表对于每个点、用于右眼的在目标座位的重影系数。
可以通过相对比较手段确定在目标座位的重影系数,因为观看者着眼于抵消在每个白点与周围区域之间的任何感知的亮度差值。像数码值的比率在满足抵消条件时代表在目标座位的重影系数。为了自动化该过程,对每个白斑定位,并且可以准确地确定它的亮度
以下算法可以用来可靠地配准点位置并且从相机的有噪声、捕获的图像取回亮度信息。
通过使用描述的测试图案,图像配准可以自动和准确。在检测到N个高斯点及其中心之后,可以在其中完成原有重影校准匹配的位置估计亮度信息。算法可以不受随机噪声、附加杂散光、非线性失真和仿射变换类型影响。为了可靠地检测高斯点,可以使用高斯-拉普拉斯算符。比例s的高斯内核是:
表达应用于原有图像f(x,y)的滤波为:
L(x,y,s)=g(x,y,s)*f(x,y) (18)
在应用拉普拉斯算符时:
对于多比例LOG检测器,可以使用比例规范化的拉普拉斯:
该检测可以关于空间和比例二者发现同时局部最大值/最小值。
对于一些应用,如果测试图案具有已知结构和点大小,则可以简化该过程为单比例滤波。也可以简化空间搜索为全局阈值化。在LoG滤波之后,校准点可以产生强的正响应(这些正响应可以被强的负响应包围),并且其它地方是0。在分割LoG响应之后,可以从发现局部响应最大值或者局部最大值的质心获得实际点坐标。这可以实现在一个像素内的配准准确性。
在可靠的点配准之后,可以通过在相机捕获的原有图像中发现每个分割的点区域的加权平均值来在每个点位置取回亮度信息。可以选择平均加权作为LoG响应值。线性滤波器可以对其它非点位置的亮度平滑地插值。
以下描述根据一些方面说明来自远程感测位置的数据如何可以用来更新从目标座位测量的参数或者特性。
图5示出系统模型的一个示例,该系统模型包括剧院布置,该剧院布置具有屏幕(510)、在成排堆叠的座位(525)的斜面中的座位位置(523)、具有E代表的原有源亮度的投影仪灯(501)和传感器(530)。G(s,x,y)是与传感器位置s(530)和屏幕位置(x,y)(512)有关的增益函数。B(target,x,y)是在目标座位位置的亮度,并且B(s,x,y)是在远程传感器位置的亮度。假如传感器的亮度读数改变随着投影仪的亮度改变为线性并且编码器和解码器单元未随时间改变,可以使用以下关系来表达系统:
B(s,x,y)=a·G(s,x,y)·E+b (22)
a、b是对一般线性关系建模的参数。参数b可以由许多因素、比如DMD产生的黑电平亮度、镜头间反射,尤其在大型沉浸剧院环境、比如在IMAX剧院——其中座位排与屏幕更接近得多——中来自剧院墙壁和座位排引起。尽管可以在实现方式中使用一般形式(2),但是因素b可以为小并且可以在多数描述中被忽略。
在校准投影系统期间,传感器可以定位于目标座位位置以确定用于目标位置的亮度B(target,x,y),并且传感器可以定位于投影仪厅以确定在远程传感器位置的亮度B(booth,x,y)。B(target,x,y)=α·G(target,x,y)·E可以对于目标座位为已知,并且在厅位置的B(booth,x,y)=α·G(booth,x,y)·E为已知。可以表达在这两个传感器位置之间的关系为:
在不同时间隙(t和t’)之间的又一关系可以基于在任何位置(s,x,y)的屏幕增益函数随时间恒定:
将(3)中的E代入(4)中:
因此,用于任何剧院内位置的在更晚时间t的亮度可以被它的在时间t的先前测量和在时间t的厅测量加上在时间t’的新厅测量更新。表达如下,其中B(booth,x,y)不是零。
依赖于亮度参数的两个特性的示例是重影系数和投影仪间亮度。可以表达投影仪间亮度为左眼和右眼亮度的比率,并且如果优选地匹配,则左眼和右眼亮度的比率是1。使用以上关系和图1的方法,有可能基于来自远程传感器位置的后续亮度测量来更新在目标座位的特性。
然而以上广义规范化可以通过其它方法来执行,并且本发明不应限于这里公开的方面中的一个或者多个方面。
尽管已经关于本主题内容的具体方面和示例具体描述本主题内容,但是本领域技术人员在获得前文的理解时可以容易产生这样的方面和示例的备选、变化和等效。因而应当理解已经出于示例而不是限制的目的而呈现本公开内容并且本公开内容未排除包括如本领域普通技术人员将容易清楚的对本主题内容的这样的修改、变化和/或者添加。

Claims (25)

1.一种用于修改输入图像数据的方法,所述方法包括:
接收在目标位置处测量的初始系统特性;
接收在非所述目标位置的远程位置处测量的系统特性的系统参数;
通过将在所述目标位置处测量的所述系统特性关于在所述远程位置处测量的所述系统特性的所述系统参数规范化,来计算初始规范化的系统特性;
接收从所述远程位置测量的后续系统参数;
使用所述初始规范化的系统特性和从所述远程位置测量的所述后续系统参数,来计算所述目标位置的后续系统特性;以及
使用所述后续系统特性来修改所述输入图像数据,以产生用于系统功能处理的规范化的输入图像数据,所述系统功能处理输出增强的图像数据用于显示。
2.根据权利要求1所述的方法,其中使用所述后续系统特性来修改所述输入图像数据包括:
比较所述后续系统特性与预定义的期望简档,以产生最优规范化的后续系统特性图;以及
使用所述最优规范化的后续系统特性图来修改所述输入图像数据,以产生用于系统功能处理的所述规范化的输入图像数据,所述系统功能处理输出所述增强的图像数据用于显示。
3.根据权利要求2所述的方法,其中使用所述后续系统特性来修改所述输入图像数据还包括:
比较所述后续系统参数与所述预定义的期望简档,以产生最优规范化的后续系统参数图;以及
使用所述最优规范化的后续系统特性图和所述最优规范化的后续系统参数图来产生用于系统功能处理的所述规范化的输入图像数据,所述系统功能处理输出所述增强的图像数据用于显示。
4.根据权利要求3所述的方法,其中比较所述后续系统参数与所述预定义的期望简档以产生所述最优规范化的后续系统参数图包括:
基于投影仪内参数简档,产生所述最优规范化的后续系统参数图。
5.根据权利要求3所述的方法,其中比较所述后续系统参数与所述预定义的期望简档以产生所述最优规范化的后续系统参数图包括:
基于投影仪间参数简档,产生所述最优规范化的后续系统参数图。
6.根据权利要求3所述的方法,其中比较所述后续系统参数与所述预定义的期望简档以产生所述最优规范化的后续系统参数图包括:
基于优化投影仪内参数简档,来产生所述最优规范化的后续系统参数图。
7.根据权利要求3所述的方法,其中所述系统参数是投影仪亮度。
8.根据权利要求2所述的方法,其中比较所述后续系统特性与所述预定义的期望简档以产生所述最优规范化的后续系统特性图包括:
基于投影仪内特性简档,产生所述最优规范化的后续系统特性图。
9.根据权利要求2所述的方法,其中比较所述后续系统特性与所述预定义的期望简档以产生所述最优规范化的后续系统特性图包括:
基于投影仪间特性简档,产生所述最优规范化的后续系统特性图。
10.根据权利要求2所述的方法,其中所述系统特性是重影系数。
11.根据权利要求2所述的方法,其中所述系统特性是投影仪亮度。
12.根据权利要求2所述的方法,其中所述系统特性是环境反射亮度比。
13.根据权利要求1所述的方法,还包括:
根据所述系统特性的数学模型,推导在所述目标位置处的所述初始规范化的系统特性。
14.根据权利要求1所述的方法,其中所述系统功能处理包括去重影特征处理。
15.根据权利要求1所述的方法,其中所述系统功能处理包括亮度均匀特征处理。
16.根据权利要求1所述的方法,其中所述系统功能处理包括用于环境感知反射补偿特征的处理。
17.根据权利要求1所述的方法,其中计算所述初始规范化的系统特性包括:使用来自所述目标位置和所述远程位置的测量的数据,来确定所述初始规范化的系统特性。
18.根据权利要求1所述的方法,其中接收在所述目标位置处测量的所述初始系统特性包括:
显示测试图案;
由在所述目标位置处的第一传感器使用所述测试图案来测量所述初始系统特性;以及
由在所述远程位置处的第二传感器使用所述测试图案来测量所述初始系统特性的初始参数,
其中计算所述初始规范化的系统特性包括:基于由所述第一传感器测量的所述初始系统特性并且基于由所述第二传感器测量的所述初始参数,来确定所述初始规范化的系统特性。
19.一种投影系统,包括:
系统特性和参数处理器,被配置用于:
通过将在目标位置处测量的系统特性关于在不同于所述目标位置的远程位置处测量的所述系统特性的系统参数规范化,来计算初始规范化的系统特性;以及
使用所述初始规范化的系统特性和从所述远程位置测量的后续系统参数,来计算所述目标位置的后续系统特性;
输入图像规范化模块,用于在投影增强系统功能之前使用所述后续系统特性来修改输入图像数据以创建虚拟投影仪系统;以及
投影仪,被配置用于根据利用所述后续系统特性而修改的所述输入图像数据,显示增强的图像数据。
20.根据权利要求19所述的投影系统,其中所述系统特性和参数处理器还被配置用于:
接收在目标位置处测量的所述系统特性;
接收在远程位置处测量的所述系统特性的所述系统参数;以及
接收从所述远程位置测量的所述后续系统参数。
21.根据权利要求20所述的投影系统,其中所述系统特性和参数处理器被配置用于通过比较所述后续系统特性与预定义的期望简档来修改所述后续系统特性,以产生最优规范化的后续系统特性图,
其中所述输入图像规范化模块被配置用于使用所述最优规范化的后续系统特性图来修改所述输入图像数据,以产生用于系统功能处理的所述规范化的输入图像数据,所述系统功能处理输出所述增强的图像数据用于显示。
22.根据权利要求21所述的投影系统,其中所述系统特性和参数处理器被配置用于通过以下操作来修改所述后续系统特性:
比较所述后续系统参数与所述预定义的期望简档,以产生最优规范化的后续系统参数图;以及
使用所述最优规范化的后续系统特性图和所述最优规范化的后续系统参数图,来产生用于系统功能处理的所述规范化的输入图像数据,所述系统功能处理输出所述增强的图像数据用于显示。
23.根据权利要求19所述的投影系统,其中所述投影仪包括被配置用于同时操作以用于二维演示或者用于三维演示的双投影仪。
24.根据权利要求19所述的投影系统,其中所述投影仪是被配置用于二维演示或者三维演示的单个投影仪。
25.根据权利要求19所述的投影系统,其中所述投影系统是第一剧院中的所述虚拟投影仪系统,其中有以下各项中的至少一项:
所述投影系统的测量的系统特性被配置为匹配期望特性简档,所述期望特性简档是第二剧院中的第二投影系统的所述期望特性简档;或者
所述投影系统的测量的系统参数被配置为匹配期望系统参数简档,所述期望系统参数简档是所述第二剧院中的所述第二投影系统的所述期望系统参数简档。
CN201280035989.9A 2011-07-21 2012-07-20 用于修改输入图像数据的方法以及投影系统 Active CN103688288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710800236.7A CN107566689B (zh) 2011-07-21 2012-07-20 用于修改输入图像数据的系统和方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161510273P 2011-07-21 2011-07-21
US61/510,273 2011-07-21
PCT/IB2012/053716 WO2013011491A1 (en) 2011-07-21 2012-07-20 Generalized normalization for image display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710800236.7A Division CN107566689B (zh) 2011-07-21 2012-07-20 用于修改输入图像数据的系统和方法

Publications (2)

Publication Number Publication Date
CN103688288A CN103688288A (zh) 2014-03-26
CN103688288B true CN103688288B (zh) 2017-09-29

Family

ID=47557732

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710800236.7A Active CN107566689B (zh) 2011-07-21 2012-07-20 用于修改输入图像数据的系统和方法
CN201280035989.9A Active CN103688288B (zh) 2011-07-21 2012-07-20 用于修改输入图像数据的方法以及投影系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710800236.7A Active CN107566689B (zh) 2011-07-21 2012-07-20 用于修改输入图像数据的系统和方法

Country Status (4)

Country Link
US (1) US9106811B2 (zh)
EP (2) EP3522109B1 (zh)
CN (2) CN107566689B (zh)
WO (1) WO2013011491A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150529A1 (en) 2008-06-13 2009-12-17 Imax Corporation Methods and systems for reducing or eliminating perceived ghosting in displayed stereoscopic images
JP2015095779A (ja) 2013-11-12 2015-05-18 ソニー株式会社 画像処理装置、画像処理方法及び電子機器
JP2015162718A (ja) * 2014-02-26 2015-09-07 ソニー株式会社 画像処理方法、画像処理装置及び電子機器
JP2016080712A (ja) * 2014-10-09 2016-05-16 株式会社リコー 画像投射装置および画像投射装置の制御方法
FR3050060B1 (fr) * 2016-04-12 2018-11-30 Highlands Technologies Solutions Mesures de parametres de projection cinematographique
CN108528341B (zh) * 2018-05-14 2020-12-25 京东方科技集团股份有限公司 用于演示车载抬头显示装置的功能的方法
CN108632593B (zh) * 2018-05-31 2020-05-19 歌尔股份有限公司 彩色汇聚误差的修正方法、装置及设备
DE102018115991B4 (de) * 2018-07-02 2023-12-07 Basler Ag Digitale schaltung zur korrektur eines vignettierungseffekts in werten von pixeln eines bildes einer elektronischen kamera
WO2020110224A1 (ja) 2018-11-28 2020-06-04 Eizo株式会社 情報処理方法及びコンピュータプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233299A (en) 1991-03-25 1993-08-03 General Electric Company Projection methods for producing two-dimensional images from three-dimensional data
US5758036A (en) 1995-01-31 1998-05-26 The Rowland Institute For Science Production of improved digitized stereoscopic polarizing images
US6157424A (en) 1998-03-30 2000-12-05 Dimension Technologies, Inc. 2D/3D imaging display
US7092003B1 (en) 1999-01-21 2006-08-15 Mel Siegel 3-D imaging arrangements
US6532008B1 (en) 2000-03-13 2003-03-11 Recherches Point Lab Inc. Method and apparatus for eliminating steroscopic cross images
US7038727B2 (en) * 2002-10-30 2006-05-02 The University Of Chicago Method to smooth photometric variations across multi-projector displays
EP1460857A1 (en) 2003-03-17 2004-09-22 Deutsche Thomson-Brandt Gmbh Method and device for compensating ghost images in time sequential stereoscopic images
EP1460611A1 (en) 2003-03-17 2004-09-22 Deutsche Thomson-Brandt Gmbh Method and device for compensating the phosphor lag of display devices
US20050180006A1 (en) 2004-01-22 2005-08-18 Mendoza Roberto V. Curved wide angle 3-D picture
WO2005078663A1 (en) 2004-02-17 2005-08-25 Newsouth Innovations Pty Limited Improved method for motion adaptive transformation of video
EP1587035A1 (en) 2004-04-14 2005-10-19 Koninklijke Philips Electronics N.V. Ghost artifact reduction for rendering 2.5D graphics
KR101423592B1 (ko) * 2005-05-26 2014-07-30 리얼디 인크. 개선된 입체투사를 위한 고스트 보정
US20090244266A1 (en) 2008-03-26 2009-10-01 Thomas Carl Brigham Enhanced Three Dimensional Television
WO2009150529A1 (en) 2008-06-13 2009-12-17 Imax Corporation Methods and systems for reducing or eliminating perceived ghosting in displayed stereoscopic images
US20100321382A1 (en) * 2009-06-18 2010-12-23 Scalable Display Technologies, Inc. System and method for injection of mapping functions
JP2011091516A (ja) 2009-10-21 2011-05-06 Sharp Corp プロジェクタおよびプロジェクタの表示調整方法
JP5503750B2 (ja) 2009-12-08 2014-05-28 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 3dディスプレイにおいてクロストークを補償する方法

Also Published As

Publication number Publication date
CN103688288A (zh) 2014-03-26
EP3522109A2 (en) 2019-08-07
EP3522109A3 (en) 2019-12-18
EP2734976A4 (en) 2015-03-18
WO2013011491A1 (en) 2013-01-24
EP2734976A1 (en) 2014-05-28
CN107566689B (zh) 2020-10-09
EP3522109B1 (en) 2022-08-03
CN107566689A (zh) 2018-01-09
EP2734976B1 (en) 2019-02-20
US9106811B2 (en) 2015-08-11
US20140160301A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
CN103688288B (zh) 用于修改输入图像数据的方法以及投影系统
US9497447B2 (en) System and method for color and intensity calibrating of a display system for practical usage
US8736674B2 (en) Method and system for 3D display calibration with feedback determined by a camera device
US9420276B2 (en) Calibration of light-field camera geometry via robust fitting
US10750141B2 (en) Automatic calibration projection system and method
US20210152796A1 (en) Image calibration for projected images
US11210839B2 (en) Photometric image processing
US20080095468A1 (en) Method And Device For Representing A Digital Image On A Surface Which Is Non-Trivial In Terms Of Its Geometry And Photometry
US20040070565A1 (en) Method and apparatus for displaying images
US9330587B2 (en) Color adjustment based on object positioned near display surface
CN102124490A (zh) 用于缩减或者清除在显示的立体图像中感知到的重像的方法和系统
US20200019041A1 (en) Lighting assembly for producing realistic photo images
JP2019012090A (ja) 画像処理方法、画像表示装置
US9319649B2 (en) Projector drift corrected compensated projection
CN105072427B (zh) 一种多投影仪之间的自动色彩平衡方法
CN108377383A (zh) 一种多投影3d系统光场对比度调整方法及其系统
JP6897291B2 (ja) 画像評価装置及び画像評価方法
Mazikowski Analysis of luminance distribution uniformity in CAVE-type virtual reality systems
He et al. Calibrating lighting simulation with panoramic high dynamic range imaging
CN116546173A (zh) 投影参数自校正的方法、装置、设备及计算机存储介质
WO2024006987A2 (en) Systems, methods, and devices for image processing
Song Photometric calibration and out-of-focus blur compensation for projector camera systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant