CN103681902B - 基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法 - Google Patents

基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法 Download PDF

Info

Publication number
CN103681902B
CN103681902B CN201310650605.0A CN201310650605A CN103681902B CN 103681902 B CN103681902 B CN 103681902B CN 201310650605 A CN201310650605 A CN 201310650605A CN 103681902 B CN103681902 B CN 103681902B
Authority
CN
China
Prior art keywords
cadmium selenide
carbon hybrid
hybrid nano
nano structure
film substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310650605.0A
Other languages
English (en)
Other versions
CN103681902A (zh
Inventor
艾易龙
程抱昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201310650605.0A priority Critical patent/CN103681902B/zh
Publication of CN103681902A publication Critical patent/CN103681902A/zh
Application granted granted Critical
Publication of CN103681902B publication Critical patent/CN103681902B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法,包括普通玻璃、封装层、单根一维硒化镉/碳杂化纳米材料、导线、金属电极、薄膜基底;在平整的薄膜基底上放置单根一维硒化镉/碳杂化纳米结构材料;在硒化镉/碳杂化纳米结构两端点上金/银/铂浆,形成金属电极,与此同时在两端金属电极处分别粘接铜导线,在洁净的大气环境中放置3-5小时;将封装材料缓慢地贴覆在整个单根一维硒化镉/碳杂化纳米结构材料及薄膜基底上,之后再将普通玻璃平稳放在封装层上,在150℃真空烘箱保温30分钟。本发明制备工艺简单,具有较宽的波长响应范围以及可通过调制外加偏压实现正光电导到负光电导的转变,对实际应用非常有利。

Description

基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法
技术领域
本发明属于微纳米光电探测器件技术领域。
技术背景
光电探测器能将光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。由于传统的块体材料只能在比较窄的波长范围有响应,例如室温工作的(硫化铅)PbS光敏电阻响应波长范围为1.0~3.5微米,峰值响应波长在2.4微米左右;锑化铟InSb光敏电阻其响应波长3~5μm;碲镉汞器件的光谱响应在8~14微米,其峰值波长为10.6微米。
而本发明利用了纳米材料的量子点效应,不仅有较宽的波长响应范围(200nm~900nm),而且在红外波长(830nm)下外加20v偏压电压,会出现负光电导,而在1v外加偏压下出现正光电导,因此本发明可以通过调制外加偏压可以实现从正光电导到负光电导的转变。此外宽的波长响应范围可以用来实现紫外到红外光电探测,以及材料所具有的正负光电导特性可以用来实现光电探测器的正负光电导转换应用。
发明内容
本发明目的在于提出基于一维硒化镉/碳(CdSe/C)杂化纳米结构制作光电探测器件及其制备方法。
本发明是通过以下技术方案实现的。
本发明所述的基于一维硒化镉/碳杂化纳米结构光电探测器件,包括普通玻璃(1)、封装层(2)、单根一维硒化镉/碳杂化纳米材料(3)、导线(4)、金属电极(5)、薄膜基底(6)。单根一维硒化镉/碳杂化纳米材料(3)放置在薄膜基底(6)上,导线(4)接入单根一维硒化镉/碳杂化纳米材料(3)的两个金属电极(5)端,封装层(2)将单根一维硒化镉/碳杂化纳米材料(3)封装在薄膜基底(6)上,封装层(2)上为普通玻璃(1)层。
所述使用的薄膜基底材料是聚乙酰胺(Kapton)薄膜或聚对苯二甲酸乙二醇酯(PET)薄膜材料。
所述的金属电极为银(Ag)、金(Au)或铂(Pt)。
所述的导线为铜导线。
所述的封装层采用乙烯-醋酸乙烯共聚物(EVA)胶膜作为封装材料。
本发明所述的基于一维硒化镉/碳(CdSe/C)杂化纳米结构光电探测器件制备方法:在平整的薄膜基底上放置单根一维硒化镉/碳杂化纳米结构材料;在硒化镉/碳杂化纳米结构两端点上金/银/铂浆,形成金属电极,与此同时在两端金属电极处分别粘接铜导线,在洁净的大气环境中放置3-5小时;将封装材料缓慢地贴覆在整个单根一维硒化镉/碳杂化纳米结构材料及薄膜基底上,之后再将普通玻璃平稳放在封装层上,在150℃真空烘箱保温30分钟。
本发明的光电探测器件,制备工艺简单,具有较宽的波长响应范围以及可通过调制外加偏压实现正光电导到负光电导的转变,对实际应用非常有利。
附图说明
图1基于单根一维CdSe/C纳米结构的光电探测器件正面剖视示意图。其中,1为普通玻璃;2为EVA胶膜;3为单根一维CdSe/C纳米结构材料;4为铜导线;5为银浆;6为聚乙酰胺薄膜。
图2基于单根一维CdSe/C纳米结构的光电探测器件俯视示意图。
图3为单根一维CdSe/C纳米结构在狭缝宽度10nm和外加偏压为10V测得的波长与光电流响应图。从波长200nm到900nm均有一定强度的光吸收。可见其响应范围广,很适合用来探测宽波长范围的光。
图4为单根一维CdSe/C纳米结构在入射波长为830nm以及狭缝宽度为10nm的光源下,外加偏压为1V时的I-T曲线。从中可以看出在无光照(AB段)时,电流处于0.36nA,当有光照(CD段)时,光电流从0.36nA升到1.12nA。有很明显的正光电导现象。可以用来实现光电探测器的正增益应用。
图5为单根一维CdSe/C纳米结构在入射波长为830nm以及狭缝宽度为10nm的光源下,外加偏压为20V时的I-T曲线。从中可以看出在无光照(AB段)时,电流处于11.5nA左右,当有光照(CD段)时,光电流从11nA降到7.5nA。有很明显的负光电导现象。可以用来实现光电探测器的负增益应用。
结合图4和图5,可以通过调制外加偏压来实现光电探测器正负光电导的转换,具有非常重要的的实际意义。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
在平整洁净的聚乙酰胺薄膜(规格2cm×2cm×1mm)上放置单根一维CdSe/C杂化纳米结构材料;在CdSe/C杂化纳米结构两端点上金属电极银,与此同时在两端电极处分别粘接铜导线(直径为0.5mm),在洁净大气环境中放置3-5小时;将EVA胶膜缓慢地贴覆在整个单根一维纳米结构材料及基底上(规格为2cm×2cm×0.5mm),之后再将普通玻璃(规格2cm×2cm×1mm)平稳放在封装层上,在150℃真空烘箱保温30分钟。
实施例2。
在平整洁净的聚对苯二甲酸乙二醇酯薄膜(规格2cm×2cm×1mm)上放置单根一维PbSe/C杂化纳米结构材料;在PbSe/C杂化纳米结构两端点上金属电极银,与此同时在两端电极处分别粘接铜导线(直径为0.5mm),在洁净大气环境中放置3-5小时;将EVA胶膜缓慢地贴覆在整个单根一维纳米结构材料及基底上(规格为2cm×2cm×0.5mm),之后再将普通玻璃(规格2cm×2cm×1mm)平稳放在封装层上,在150℃真空烘箱保温30分钟。
实施例3。
在平整洁净的聚乙酰胺薄膜(规格2cm×2cm×1mm)上放置单根一维CdSeS2/C杂化纳米结构材料;在CdSeS2/C杂化纳米结构两端点上金属电极银,与此同时在两端电极处分别粘接铜导线(直径为0.5mm),在洁净大气环境中放置3-5小时;将EVA胶膜缓慢地贴覆在整个单根一维纳米结构材料及基底上(规格为2cm×2cm×0.5mm),之后再将普通玻璃(规格2cm×2cm×1mm)平稳放在封装层上,在150℃真空烘箱保温30分钟。
实施例4。
在平整洁净的聚对苯二甲酸乙二醇酯薄膜(规格2cm×2cm×1mm)上放置单根一维CdS/C杂化纳米结构材料;在CdS/C杂化纳米结构两端点上金属电极银,与此同时在两端电极处分别粘接铜导线(直径为0.5mm),在洁净大气环境中放置3-5小时;将EVA胶膜缓慢地贴覆在整个单根一维纳米结构材料及基底上(规格为2cm×2cm×0.5mm),之后再将普通玻璃(规格2cm×2cm×1mm)平稳放在封装层上,在150℃真空烘箱保温30分钟。
实施例5。
在平整洁净的聚对苯二甲酸乙二醇酯薄膜(规格2cm×2cm×1mm)上放置单根一维PbS/C杂化纳米结构材料;在PbS/C杂化纳米结构两端点上金属电极银,与此同时在两端电极处分别粘接铜导线(直径为0.5mm),在洁净大气环境中放置3-5小时;将EVA胶膜缓慢地贴覆在整个单根一维纳米结构材料及基底上(规格为2cm×2cm×0.5mm),之后再将普通玻璃(规格2cm×2cm×1mm)平稳放在封装层上,在150℃真空烘箱保温30分钟。
实施例6。
在平整洁净的聚乙酰胺薄膜(规格2cm×2cm×1mm)上放置单根一维PbSeS2/C杂化纳米结构材料;在PbSeS2/C杂化纳米结构两端点上金属电极银,与此同时在两端电极处分别粘接铜导线(直径为0.5mm),在洁净大气环境中放置3-5小时;将EVA胶膜缓慢地贴覆在整个单根一维纳米结构材料及基底上(规格为2cm×2cm×0.5mm),之后再将普通玻璃(规格2cm×2cm×1mm)平稳放在封装层上,在150℃真空烘箱保温30分钟。
本发明不局限与上述实例,很多金属盐的制备都具有上述实例的效果,而且很多细节的变化是可行的,但这并不因此违背本发明的范围和精神。

Claims (1)

1.基于一维硒化镉/碳杂化纳米结构的光电探测器件的制备方法,所述的光电探测器件包括普通玻璃、封装层、单根一维硒化镉/碳杂化纳米材料、导线、金属电极、薄膜基底;单根一维硒化镉/碳杂化纳米材料放置在薄膜基底上,单根一维硒化镉/碳杂化纳米材料的两个金属电极端分别与导线连接,封装层将单根一维硒化镉/碳杂化纳米材料封装在薄膜基底上,封装层上为普通玻璃层;
所述薄膜基底材料是聚乙酰胺薄膜或聚对苯二甲酸乙二醇酯薄膜;
所述封装层采用乙烯乙烯基醋酸盐胶膜作为封装材料;
其特征是在平整的薄膜基底上放置单根一维硒化镉/碳杂化纳米结构材料;在硒化镉/碳杂化纳米结构两端点上金或银或铂浆,形成金属电极,与此同时在两端金属电极处分别粘接铜导线,在洁净的大气环境中放置3-5小时;将封装材料缓慢地贴覆在整个单根一维硒化镉/碳杂化纳米结构材料及薄膜基底上,之后再将普通玻璃平稳放在封装层上,在150℃真空烘箱保温30分钟。
CN201310650605.0A 2013-12-03 2013-12-03 基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法 Expired - Fee Related CN103681902B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310650605.0A CN103681902B (zh) 2013-12-03 2013-12-03 基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310650605.0A CN103681902B (zh) 2013-12-03 2013-12-03 基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法

Publications (2)

Publication Number Publication Date
CN103681902A CN103681902A (zh) 2014-03-26
CN103681902B true CN103681902B (zh) 2016-02-24

Family

ID=50318825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310650605.0A Expired - Fee Related CN103681902B (zh) 2013-12-03 2013-12-03 基于一维硒化镉/碳杂化纳米结构的光电探测器件及制备方法

Country Status (1)

Country Link
CN (1) CN103681902B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185026A (zh) * 2011-04-06 2011-09-14 华中科技大学 一种柔性红外探测器的制备方法
CN103296204A (zh) * 2013-06-09 2013-09-11 南昌大学 基于单根一维纳米结构材料的压力响应存储器件及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185026A (zh) * 2011-04-06 2011-09-14 华中科技大学 一种柔性红外探测器的制备方法
CN103296204A (zh) * 2013-06-09 2013-09-11 南昌大学 基于单根一维纳米结构材料的压力响应存储器件及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Free-standing single-walled carbon nanotube-CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices;Zhun Shi等;《Nanoscale》;20120523;第4卷(第15期);摘要、第4515页左栏第1段-第4521页左栏第1段及图1-7 *
Individual ZnO nanowires for photodetectors with wide response range from solar-blind ultraviolet to near-infrared modulated by vias voltage and illumination intensity;Baochang Cheng等;《OPTICS EXPRESS》;20131202;第21卷(第24期);摘要、第29721页第11行-第29730页第31行及图1-9 *

Also Published As

Publication number Publication date
CN103681902A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
Ouyang et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge‐carrier engineering
Qi et al. Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system
Chen et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity
Han et al. An overview of the development of flexible sensors
Wang et al. Optimizing performance of silicon-based p–n junction photodetectors by the piezo-phototronic effect
Shin et al. Si–MoS2 vertical heterojunction for a photodetector with high responsivity and low noise equivalent power
Lin et al. Self-powered UV photosensor based on PEDOT: PSS/ZnO micro/nanowire with strain-modulated photoresponse
Hossain et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications
Zhang et al. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO–CdS core–shell micro/nanowire
Tsai et al. Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays
Yang et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect
Hsu et al. Supersensitive, ultrafast, and broad-band light-harvesting scheme employing carbon nanotube/TiO2 core–shell nanowire geometry
Peng et al. Pyro-phototronic effect enhanced ZnO nanowire-based tri-layer heterojunction for visible light sensing and communication
Yan et al. Network-enhanced photoresponse time of Ge nanowire photodetectors
Chang et al. Self-powered broadband Schottky junction photodetector based on a single selenium microrod
Wu et al. Impurity-dependent photoresponse properties in single CdSe nanobelt photodetectors
JP2005175436A5 (zh)
Ouyang et al. Dual-polarity output response-based photoelectric devices
Chen et al. Ga2O3-based solar-blind position-sensitive detector for noncontact measurement and optoelectronic demodulation
Liu et al. Lateral bipolar photoresistance effect in the CIGS heterojunction and its application in position sensitive detector and memory device
Jin et al. High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon
Wang et al. Tape-based photodetector: transfer process and persistent photoconductivity
CN109461789A (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
Xu et al. Flexible and highly photosensitive electrolyte-gated organic transistors with ionogel/silver nanowire membranes
Kumar et al. Light-induced all-transparent pyroelectric photodetector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160224

Termination date: 20191203

CF01 Termination of patent right due to non-payment of annual fee