CN103674924A - Raman spectrum test probe and manufacturing method thereof - Google Patents

Raman spectrum test probe and manufacturing method thereof Download PDF

Info

Publication number
CN103674924A
CN103674924A CN 201210338058 CN201210338058A CN103674924A CN 103674924 A CN103674924 A CN 103674924A CN 201210338058 CN201210338058 CN 201210338058 CN 201210338058 A CN201210338058 A CN 201210338058A CN 103674924 A CN103674924 A CN 103674924A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
raman spectrum
array
metal
test probe
substrate
Prior art date
Application number
CN 201210338058
Other languages
Chinese (zh)
Inventor
吴砺
凌吉武
赵振宇
林磊
卢秀爱
张杨
张新汉
Original Assignee
福州高意光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to the optical detection field, and discloses a Raman spectrum test probe. The Raman spectrum test probe comprises a substrate and a plurality of array nano metal columns, wherein the substrate test surface is a polished surface, and the array nano metal columns are arranged on the polished surface; the top of each of the array nano metal columns is of a tapered needle tip structure. The invention also discloses a method for manufacturing the Raman spectrum test probe. The method comprises the technological procedures of polishing, coating, masking, etching, corroding and mask removing, and the manufacturing cost is low. The TERS (Tip-enhanced Raman spectrum) technology-based Raman spectrum test probe provided by the invention is simple in structure, and in comparison with a probe with a single tip, the Raman spectrum test probe has bigger detection area and can be coupled with laser more conveniently; photolithographic mask and metal corrosion technologies are used for manufacturing the Raman spectrum test probe, so that the manufacturing cost is low, the shape of the array nano metal columns with tip structures is easy to control, and the distribution of the array nano metal columns is regular.

Description

一种拉曼光谱测试探针及其制作方法 A spectroscopic Raman test probe and manufacturing method thereof

技术领域 FIELD

[0001]本发明涉及光学检测领域,尤其涉及一种拉曼光谱测试探针及其制作方法。 [0001] The present invention relates to the field of optical detection, particularly to a spectroscopy Raman probe and manufacturing method.

背景技术 Background technique

[0002] 拉曼光谱是一种分子振动光谱,可以反映分子的特征结构。 [0002] Raman spectroscopy is a molecular vibrational spectroscopy, it can reflect the characteristics of the molecular structure. 然而拉曼光谱信号通常很弱,其强度只有入射光强的10_1(|。因此拉曼光谱的检测在具体的应用中,通常需要依靠某种增强效应来提高拉曼光谱强度。 However, the Raman spectrum signal is usually very weak, only the intensity of incident light intensity 10_1 (|. Thus detection of the Raman spectrum in the specific application, typically rely on a certain reinforcing effect to increase the strength of the Raman spectrum.

[0003] SERS(Surface-Enhanced Raman Scattering 表面增强拉曼散射)效应就是一种与粗糙表面相关的表面增强效应。 [0003] SERS (Surface-Enhanced Raman Scattering Surface Enhanced Raman Scattering) is a kind of effect associated with the roughened surface of the surface enhancement effect. 将金、银、铜等金属进行表面粗糙化处理后,其表面分子的拉曼光谱信号可增强6个数量级。 After gold, silver, copper and other metal subjected to a surface roughening treatment, surface Raman spectrum signal molecule which can enhance the six orders of magnitude. 可见SERS效应可以大大增强表面分子的拉曼信号。 Visible Raman SERS effect can greatly enhance the signal surface molecules. 但这种效应却只适用于粗糙表面,对于平滑单晶表面,其拉曼信号无法用SERS效应进行增强。 However, this effect but only applies to the roughened surface, for smooth crystal surface, which can not be enhanced Raman signal by SERS effect.

[0004] TERS (Tip-enhanced Raman spectroscopy针尖增强拉曼光谱)效应也是一种拉曼光谱的表面增强技术。 [0004] TERS (Tip-enhanced Raman spectroscopy tip-enhanced Raman spectroscopy) is also an effect of surface enhanced Raman spectroscopy techniques. 它由扫描探针显微技术和拉曼光谱技术组合而成。 It is a combination of scanning probe microscopy and Raman spectroscopy made. TERS技术可以实现表面光滑的和不具备SERS活性的物质的研究,而且还可以获得很高的空间分辨率。 Study smooth surface and does not have the SERS active substance TERS technology can achieve, but also high spatial resolution can be obtained. 然而由于TERS技术是扫描探针纤维技术和拉曼光谱技术的结合,它给TERS技术的研究带来了以下难点:(I)如何建立稳定的TERS系统;(2)如何得到尖端小,锥度小,表面光亮且无碳物种污染的高TERS活性针尖;(3) TERS检测过程中如何避免针尖不被污染;(4)入射实现激光光斑和TERS针尖的快速准确耦合等。 However, since the technique is a combination of scanning probe TERS fiber and Raman spectroscopy techniques, which techniques to study TERS brings the following difficulties: (I) building a stable TERS system; (2) how to get the tip of a small, small taper , shiny surface carbon species and free of contamination from the tip TERS activity; (. 3) TERS how to avoid the detection process is not contaminated needle tip; (4) and the incident laser spot to achieve fast and accurate coupling TERS tip like. 这些难点给TERS技术的研究以及应用的推广带来很大的困难。 These difficulties to study and promote the use of TERS technology has brought great difficulties.

发明内容 SUMMARY

[0005] 针对上述问题,本发明提出一种基于TERS (针尖增强拉曼光谱)技术的拉曼光谱测试探针及其制作方法,结构简单,制作成本低,具有较大的探测总面积,与激光耦合更方便快捷。 [0005] In view of the above problems, the present invention provides a Raman spectrum based on the test probe and manufacturing method TERS (tip-enhanced Raman spectroscopy) techniques, simple structure, low manufacturing cost, has a large total area of ​​the probe, and laser coupling is more convenient.

[0006] 为达到上述目的,本发明提出的技术方案为:一种拉曼光谱测试探针,包括基片和阵列纳米金属立柱,所述基片测试表面为抛光面,阵列纳米金属立柱设于该抛光面上;所述阵列纳米金属立柱各立柱顶端为具有锥度的针尖结构。 [0006] To achieve the above object, the technical solution proposed by the invention is: one kind of Raman spectroscopy probe, comprising a substrate and an array of nano-metal posts, said substrate surface is polished test surface, the metal nano-pillar array is provided the polished surface; the top of each column of the array of nano metal tip structure having a column for the taper.

[0007] 进一步的,所述抛光面在最终使用的有效孔径范围内的面形达到λ /100以上。 [0007] Further, the surface shape of the polishing surface within the effective diameter range used in the final reaches λ / 100 or more.

[0008] 进一步的,所述基片为多模光纤或光学玻璃。 [0008] Further, the substrate is a multimode optical fiber or optical glass.

[0009] 进一步的,所述阵列纳米金属立柱材料为金、银或者铜。 [0009] Further, the metal nano-pillar array material such as gold, silver or copper.

[0010] 上述拉曼光谱测试探针的制作方法,包括如下步骤:1)基片抛光,对基片测试表面进行抛光处理,在有效区域内面形达到λ/100以上;2)镀金属膜,在基片的抛光面上镀金属膜,金属膜厚度在100nm-500nm ;3)刻制掩膜层,在金属膜上涂上一层掩膜层,并对掩膜层进行光刻处理形成掩膜阵列立柱结构;4)腐蚀金属膜,对金属膜层进行腐蚀加工,形成与掩膜层对应的阵列纳米金属立柱,通过控制工艺参数,如光刻胶掩膜层厚度或腐蚀液浓度等,使阵列纳米金属立柱各立柱顶端形成具有锥度的针尖结构;5)去除掩膜层,将剩余的掩膜层洗除。 [0010] Raman spectrum of the above-described method of manufacturing the test probe, comprising the steps of: 1) polishing the substrate, the substrate of a test surface polishing treatment, the surface shape to achieve λ / 100 or more in the effective region; 2) metallized films, in the polished surface of the substrate metal plating, a metal film in a thickness of 100nm-500nm; 3) lithography mask layer, the mask layer is coated on the metal film, and the photolithography process of forming a mask layer mask array column structure film; 4) etching the metal film, the metal layer etching process, the mask layer is formed corresponding to the array of nano metal post, by controlling the process parameters, such as a photoresist mask layer thickness or concentration of the etching solution, so that an array of nano metal pillar is formed to the top of each pillar structure having a tapered tip; 5) removing the mask layer, the remaining mask layer washed out.

[0011] 进一步的,步骤3)中所述掩膜阵列立柱占空比在0.3、.7。 [0011] Further, in step 3) in the column of the mask array duty cycle 0.3, .7.

[0012] 进一步的,步骤2)中金属膜厚度在100nnT200nm。 [0012] Further, in step 2) the film thickness of the metal 100nnT200nm.

[0013] 进一步的,所述金属膜的材料为金、银或铜。 [0013] Further, the material is a metal film of gold, silver or copper.

[0014] 进一步的,所述基片为多模光纤或光学玻璃。 [0014] Further, the substrate is a multimode optical fiber or optical glass.

[0015] 本发明的有益效果为:本发明基于TERS技术的拉曼光谱测试探针结构简单,相对于单个针尖的探针,其探测面积更大,与激光耦合更方面快捷;采用光刻掩膜及金属腐蚀工艺制作上述拉曼光谱测试探针,制作成本低,具针尖结构的阵列纳米金属立柱的形状易于控制,且分布规律。 [0015] Advantageous effects of the present invention are: the present invention is based on Raman spectroscopy probe structure TERS simple technology, with respect to a single probe tip, which detects a larger area, more laser aspect quick coupling; photolithography mask etching the above-described metal film production process Raman spectroscopy probe, low production cost, having the shape of an array of nano metal pillar tip structure is easy to control, and distribution.

附图说明 BRIEF DESCRIPTION

[0016] 图1为本发明的拉曼光谱测试探针实施例一结构示意图; Schematic diagram of a configuration example of Raman spectrum of the test probe [0016] FIG. 1 embodiment of the present invention;

图2为本发明的拉曼光谱测试探针实施例二结构示意图; Two schematic structural diagram of a test probe Raman spectrum of FIG. 2 embodiment of the present invention;

图3为本发明的拉曼光谱测试探针实施例一制作过程示意图; FIG. 3 Raman spectrum of a test probe of the present embodiment of the invention a schematic diagram of the production process;

图4为本发明的拉曼光谱测试探针实施例二制作过程示意图。 Raman spectra of the production process according to the second test probe embodiment of FIG. 4 is a schematic view of the present disclosure.

[0017] 附图标记:1、阵列纳米金属立柱;101、金属膜;2、多模光纤基片;3、石英基片;4、掩膜阵列立柱;401、掩膜层。 [0017] The reference numerals: 1, an array of nano-metal posts; 101, the metal film; 2, multimode fiber substrate; 3, a quartz substrate; 4, column mask array; 401, mask layer.

具体实施方式 Detailed ways

[0018] 下面结合附图和具体实施方式,对本发明做进一步说明。 [0018] accompanying drawings and the following detailed description, the present invention will be further described.

[0019] 本发明的基于TERS (针尖增强拉曼光谱)技术的拉曼光谱测试探针,包括基片和阵列纳米金属立柱,其中基片测试表面为抛光面,阵列纳米金属立柱设于该抛光面上;阵列纳米金属立柱各立柱顶端为具有锥度的针尖结构。 [0019] Raman spectroscopy probe based TERS (tip-enhanced Raman spectroscopy) technique of the present invention, comprising a substrate and an array of nano-metal posts, wherein the substrate surface is a polished surface of the test array of nano metal posts disposed in the polishing surface; nano metal pillar array is the top of each column having a tapered tip structure.

[0020] 具体的,如图1所示的实施例一,采用多模光纤作为基片,对该多模光纤基片2端面进行抛光,抛光面形控制在λ/100以上,抛光面上分布有阵列纳米金属立柱1,各立柱顶端为具有锥度的针尖结构,该实施例中的阵列纳米金属立柱I是由200nm厚的金属膜通过掩膜腐蚀制成的,其阵列占空比为0.3。 [0020] Specifically, the embodiment shown in Figure 1 a, multimode fiber as the substrate, the multimode fiber end face polishing a substrate, the polishing surface shape control in λ / 100 or more, the distribution of the polishing surface there are an array of nano metal uprights 1, each of the column to the top of the tip having a tapered configuration, the array of nano-metallic posts embodiments I is a metal film thickness of 200nm through a mask made of corrosion, which is an array of duty cycle is 0.3. 其中,阵列纳米金属立柱I材料可以采用金、银或铜等过渡金属。 Wherein the array of nano metal material may be other column I gold, silver or copper, a transition metal employed. 将该多模光纤基片2的另一端与拉曼光谱激光输出光纤熔接,则此拉曼光谱测试探针可以实现信号光的探测以及入射信号光和探测信号光的传输,该拉曼光谱测试探针可以用于液体、气体和光学表面的拉曼光谱探测。 The transmission light detection signal and detecting an incident optical signal the other end of the multimode optical fiber of the substrate 2 and the welding output fiber laser Raman spectroscopy, the Raman spectrum of this test probe signal light can be realized, the Raman spectroscopy probes may be used for liquid, gas and Raman spectroscopy to detect the optical surface.

[0021] 如图2为拉曼光谱测试探针的实施例二,采用石英作为基片,石英基片3的尺寸可以根据实际使用中的激光光斑大小进行选择,该实施例中,石英基片3尺寸为1_X 1_X Imm,对石英基片3的探测表面进行抛光,抛光面形控制在λ/100以上。 [0021] Example 2 is a Raman spectrum of the two test probes, as a quartz substrate, a quartz substrate 3 dimensions may be selected according to the actual use of the laser spot size in this embodiment, the quartz substrate 3 dimensions 1_X 1_X Imm, the detection surface of the quartz substrate 3 is polished, the polishing surface shape control in λ / 100 or more. 抛光面上分布有阵列纳米金属立柱1,各立柱顶端为具有锥度的针尖结构,该实施例中的阵列纳米金属立柱I是由IOOnm厚的金属膜通过掩膜腐蚀制成的,其阵列占空比为0.4。 Distribution of the metal nano-polished surface with a pillar array 1, the top of each column for the tip having a tapered configuration, an array of nano metal uprights embodiment is the embodiment I IOOnm thick metal film formed by etching mask, an array of duty which ratio of 0.4. 其中,阵列纳米金属立柱I材料可以采用金、银或铜等过渡金属。 Wherein the array of nano metal material may be other column I gold, silver or copper, a transition metal employed.

[0022] 上述拉曼光谱测试探针的制作方法包括抛光、镀膜、掩膜、刻蚀、腐蚀和去除掩膜等工艺工序,制作成本低。 [0022] The method of manufacturing the above-described Raman spectroscopy probes include polishing, coating, masking, etching, and other etching mask is removed, and process steps, low production cost.

[0023] 具体的,如图3所示是实施例一中拉曼光谱测试探针的制作过程,包括如下步骤:I)基片抛光,对多模光纤基片2测试表面进行抛光处理,在有效区域内面形达到λ /100以上,可以先将多模光纤插入石英玻璃毛细管中,再成盘抛光;2)镀金属膜,在多模光纤基片2的抛光面上镀金属膜101,金属膜101厚度在200nm左右;3)刻制掩膜层401,在金属膜101上涂上一层光刻胶掩膜层401,其厚度控制在I微米以下,并对光刻胶掩膜层401进行光刻处理,在金属膜101上面形成掩膜阵列立柱4结构,实现阵列立柱的掩膜图形,其占空比为0.3 ;4)腐蚀金属膜101,通过化学或电化学反应对金属膜101进行腐蚀加工,将掩膜阵列立柱4的图形复制到金属膜101中,形成与掩膜阵列立柱4对应的阵列纳米金属立柱1,并通过控制工艺参数,如光刻胶掩膜层厚度,腐蚀液浓度等,使阵列纳米金属立 [0023] Specifically, the production process shown in FIG. 3 is a diagram of a Raman spectroscopy probes embodiment, comprising the steps of: I) a substrate polishing process for polishing the surface of the test multimode fiber 2 substrate, in shaped inner surface of the effective area reaches λ / 100 or more, can be inserted into a quartz glass capillary first multimode optical fiber, and then polished into a disk; 2) metallized film, in the polishing surface of the multimode fiber substrate metallized film 101 2, the metal film 101 at a thickness of about 200nm; 3) lithography mask layer 401, the metal film 101 coated on the mask layer of photoresist layer 401 having a thickness in microns control I, and the photoresist mask layer 401 photolithography process, the metal film 101 formed in the upper structure 4 column array mask, the mask pattern array column to achieve a duty cycle of 0.3; 4) etching the metal film 101, by a chemical or electrochemical reaction of the metal film 101 etching processing, copy column array mask pattern 4 to the metal film 101, forming the mask array corresponding to an array of column 4 nano metal pillar 1, and by controlling the process parameters, such as the thickness of the photoresist mask layer, etching concentration, so that an array of nano metal Li 柱I各立柱顶端形成具有锥度的针尖结构;5)去除掩膜层401,将剩余的光刻胶掩膜层洗除,实现在多模光纤基片2端面上制作出的阵列纳米金属立柱I。 Column I Column top of each tip structure is formed having a taper; 5) removing the mask layer 401, the remaining photoresist mask layer washed out, implemented in a multimode optical fiber end face 2 of the substrate to produce an array of nano metal pillar I . 该实施例中,金属膜材料采用的是金,也可以采用银或铜等其他过渡金属材料。 In this embodiment, the metal film is gold material used, other transition metals may be employed such as silver or copper materials. 其中,阵列占空比应结合金属膜101厚度和腐蚀液性能进行综合考虑。 Wherein the duty cycle of the array 101 should be combined with the metal film thickness and an etching solution properties considered. 其中,λ/100的面形指的是成品的有效口径范围内的面形。 Wherein the surface shape λ / 100 refers to the range of the effective aperture of the surface shape of the finished product. 对于基片为多模光纤方案,其有效区域范围,即为多模光纤端面,如直径0.25mm的圆,即在直径0.25的圆内面形需要达到λ/100。 For multimode fiber substrates embodiment, the effective area range, that is, the multimode fiber end, such as a circle diameter 0.25mm, the need to achieve λ / 100 at the inner diameter of the circular surface shape of 0.25.

[0024] 如图4所示的是实施例二中的拉曼光谱测试探针的制作过程,包括如下步骤:1)基片抛光,割取一块IOmmX IOmmX Imm的石英平片作为基片,对该石英基片3测试表面进行抛光处理,在有效区域内面形达到λ/30以上;2)镀金属膜101,在石英基片3的抛光面上镀金属膜101,金属膜101厚度在IOOnm左右;3)刻制掩膜层401,在金属膜101上涂上一层光刻胶掩膜层401,其厚度控制在I微米以下,并对光刻胶掩膜层401进行光刻处理,在金属膜101上面形成掩膜阵列立柱4结构,实现阵列立柱的掩膜图形,其占空比为0.4 ;4)腐蚀金属膜101,通过化学或电化学反应对金属膜101进行腐蚀加工,将掩膜阵列立柱4的图形复制到金属膜101中,形成与掩膜阵列立柱4对应的阵列纳米金属立柱1,并通过控制工艺参数,如光刻胶掩膜层厚度,腐蚀液浓度等,使阵列纳米金属立柱I各立柱顶端形成具有锥 Is [0024] 4 Raman spectrum of the test probe according to the second embodiment of the fabrication process, comprising the steps of: 1) polishing the substrate, the excised IOmmX IOmmX Imm Silica Plano a substrate as the substrate, for the quartz substrate polished surface of test 3, the effective area of ​​the surface shape reaches λ / 30 or more; 2) metallized film 101, the polished surface of a quartz substrate 3 metallised film 101, the metal film 101 at a thickness of about IOOnm ; 3) lithography mask layer 401, coated with a photoresist mask layer 401 on the metal film 101 having a thickness in microns control I, photoresist mask layer 401 and the photolithography process, in metal mask film 101 is formed above the column array structure 4, to realize a mask pattern column array, a duty cycle of 0.4; 4) etching the metal film 101, the metal film 101 is processed by chemical etching or electrochemical reaction, the mask 4 column array pattern transfer film to the metal film 101, the metal post is formed with an array of nano-pillar array 4 corresponding to the mask 1, and by controlling the process parameters, such as a photoresist mask layer thickness, the concentration of the etching solution, so that the array I nano metal pillar is formed in each post has a tapered tip 度的针尖结构;5)去除掩膜层401,将剩余的光刻胶掩膜层洗除,实现在石英基片3端面上制作出的阵列纳米金属立柱I ;6)根据实际使用需求,对的产品进行切割,如切成等,得到面形在λ/100以上的测试表面。 The structure of the tip; 5) removing the mask layer 401, the remaining photoresist mask layer washed out, implemented in the end face 3 of the quartz substrate to produce an array of nano-metal uprights I; 6) according to the actual needs, for the cleavage products, such as cut, etc., resulting in surface figure λ / 100 or more of the test surface. 该实施例中,金属膜材料采用的是银,也可以采用金或铜等其他过渡金属材料。 In this embodiment, the metal material used is a silver film, may be employed other transition metals like gold or copper materials. 其中,阵列占空比应结合金属膜101厚度和腐蚀液性能进行综合考虑。 Wherein the duty cycle of the array 101 should be combined with the metal film thickness and an etching solution properties considered.

[0025] 尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上对本发明做出的各种变化,均为本发明的保护范围。 [0025] While the preferred embodiment in conjunction with the specific embodiment shown and described the present invention, those skilled in the art will appreciate that within the spirit and scope of the invention without departing from the appended claims as defined by the form and details , the scope of the present invention, various modifications are made in the present invention.

Claims (9)

1.一种拉曼光谱测试探针,包括基片和阵列纳米金属立柱,其特征在于:所述基片测试表面为抛光面,阵列纳米金属立柱设于该抛光面上;所述阵列纳米金属立柱各立柱顶端为具有锥度的针尖结构。 A Raman spectroscopy probe, comprising a substrate and an array of nano metal column, wherein: said testing surface is a polished substrate surface, an array of nano metal posts disposed in the polishing surface; said array of metal nano to the top of each column is a column structure having a tapered tip.
2.如权利要求1所述一种拉曼光谱测试探针,其特征在于:所述抛光面在有效使用范围内的面形达到λ/100以上。 2. A Raman spectrum of the test probe as claimed in claim, wherein: said plane-shaped polishing surface within the effective range of use reaches λ / 100 or more.
3.如权利要求1所述一种拉曼光谱测试探针,其特征在于:所述基片为多模光纤或光学玻璃。 3. A Raman spectrum of the test probe as claimed in claim, wherein: said substrate is a multimode optical fiber or optical glass.
4.如权利要求1所述一种拉曼光谱测试探针,其特征在于:所述阵列纳米金属立柱材料为金、银或者铜。 4. The test probe 1. A Raman spectrum claim, wherein: said array of nano metal pillar material such as gold, silver or copper.
5.一种拉曼光谱测试探针的制作方法,其特征在于:包括如下步骤:1)基片抛光,对基片测试表面进行抛光处理,在有效区域内面形达到λ/100以上;2)镀金属膜,在基片的抛光面上镀金属膜,金属膜厚度在100nnT500nm ;3)刻制掩膜层,在金属膜上涂上一层掩膜层,并对掩膜层进行光刻处理形成掩膜阵列立柱结构;4)腐蚀金属膜,对金属膜层进行腐蚀加工,形成与掩膜层对应的阵列纳米金属立柱,通过控制工艺参数,使阵列纳米金属立柱各立柱顶端形成具有锥度的针尖结构;5)去除掩膜层,将剩余的掩膜层洗除。 A method of manufacturing a test probe Raman spectrum, characterized by: comprising the steps of: 1) polishing the substrate, the substrate of a test surface polishing treatment, the surface shape of the effective region reaches λ / 100 or more; 2) metallized film, the polished surface of the substrate metal plating, metal film thickness 100nnT500nm; 3) lithography mask layer, the mask layer is coated on the metal film, a photolithography process and a mask layer column structure forming the mask array; 4) etching the metal film, the metal layer etching process, the mask layer is formed corresponding to the array of nano metal post, by controlling the process parameters, so that the metal nano-pillar array formed in the top of each post having a tapered tip structure; 5) removing the mask layer, the remaining mask layer washed out.
6.如权利要求5所述一种拉曼光谱测试探针的制作方法,其特征在于:步骤3)中所述掩膜阵列立柱占空比在0.3^0.7。 6. The method for manufacturing a Raman spectrum of the test probe of claim 5, wherein: step 3) in the duty ratio of the mask array column 0.3 ^ 0.7.
7.如权利要求5所述一种拉曼光谱测试探针的制作方法,其特征在于:步骤2)中金属膜厚度在100nnT200nm。 7. A method for manufacturing a Raman spectrum of the test probe of claim 5, wherein: in step 2) the film thickness of the metal in 100nnT200nm.
8.如权利要求5所述一种拉曼光谱测试探针的制作方法,其特征在于:所述金属膜的材料为金、银或铜。 8. A method for manufacturing a Raman spectrum of the test probe of claim 5, wherein: the material of the metal film is gold, silver or copper.
9.如权利要求5所述一种拉曼光谱测试探针的制作方法,其特征在于:所述基片为多模光纤或光学玻璃。 9. The method for manufacturing a Raman spectrum of the test probe as claimed in claim 5, wherein: said substrate is a multimode optical fiber or optical glass. ` `
CN 201210338058 2012-09-13 2012-09-13 Raman spectrum test probe and manufacturing method thereof CN103674924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210338058 CN103674924A (en) 2012-09-13 2012-09-13 Raman spectrum test probe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210338058 CN103674924A (en) 2012-09-13 2012-09-13 Raman spectrum test probe and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN103674924A true true CN103674924A (en) 2014-03-26

Family

ID=50313133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210338058 CN103674924A (en) 2012-09-13 2012-09-13 Raman spectrum test probe and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN103674924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267020A (en) * 2014-10-28 2015-01-07 首都师范大学 Radar Raman fiber and its design method
CN106596509A (en) * 2016-12-29 2017-04-26 天津大学 Portable raman-microscratch rapid detector integrated with wireless data transmission function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349463A (en) * 2005-06-15 2006-12-28 Canon Inc Surface reinforcing raman spectroscopic analyzing jig and its manufacturing method
CN101571536A (en) * 2009-06-09 2009-11-04 宋玉军 Preparation process of single nanoparticle and array-based biological molecule detector thereof
US20110128536A1 (en) * 2009-12-02 2011-06-02 Bond Tiziana C Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
EP2343533A2 (en) * 2010-01-12 2011-07-13 Universidad De Alicante Manufacturing method of metal structures for surface enhanced raman spectroscopy
WO2011090262A2 (en) * 2010-01-22 2011-07-28 한국생명공학연구원 Lithography method using tilted evaporation
CN102472665A (en) * 2009-07-30 2012-05-23 惠普开发有限公司 Nanowire-based systems for performing raman spectroscopy
CN102621128A (en) * 2012-04-11 2012-08-01 中国科学院半导体研究所 Preparation method of large-area sequential controllable surface-enhanced Raman active substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349463A (en) * 2005-06-15 2006-12-28 Canon Inc Surface reinforcing raman spectroscopic analyzing jig and its manufacturing method
CN101571536A (en) * 2009-06-09 2009-11-04 宋玉军 Preparation process of single nanoparticle and array-based biological molecule detector thereof
CN102472665A (en) * 2009-07-30 2012-05-23 惠普开发有限公司 Nanowire-based systems for performing raman spectroscopy
US20110128536A1 (en) * 2009-12-02 2011-06-02 Bond Tiziana C Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
EP2343533A2 (en) * 2010-01-12 2011-07-13 Universidad De Alicante Manufacturing method of metal structures for surface enhanced raman spectroscopy
WO2011090262A2 (en) * 2010-01-22 2011-07-28 한국생명공학연구원 Lithography method using tilted evaporation
CN102621128A (en) * 2012-04-11 2012-08-01 中国科学院半导体研究所 Preparation method of large-area sequential controllable surface-enhanced Raman active substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YONG YANG等: "Aligned gold nanoneedle arrays for surface-enhanced Raman scattering", 《NANOTECHNOLOGY》, vol. 21, 19 July 2010 (2010-07-19), XP020195993, DOI: doi:10.1088/0957-4484/21/32/325701 *
白万青等: "基于LIGA技术制作金属微针阵列", 《微纳电子技术》, vol. 49, no. 2, 29 February 2012 (2012-02-29) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267020A (en) * 2014-10-28 2015-01-07 首都师范大学 Radar Raman fiber and its design method
CN106596509A (en) * 2016-12-29 2017-04-26 天津大学 Portable raman-microscratch rapid detector integrated with wireless data transmission function

Similar Documents

Publication Publication Date Title
Jensen et al. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles
Lassiter et al. Designing and deconstructing the Fano lineshape in plasmonic nanoclusters
Yanik et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances
Otte et al. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing
Talley et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates
Yu et al. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays
Yan et al. Hollow core photonic crystal fiber surface-enhanced Raman probe
Duan et al. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps
Jensen et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles
Liu et al. Focusing surface plasmons with a plasmonic lens
Brown et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)
Viets et al. Comparison of fibre-optic SERS sensors with differently prepared tips
Xia et al. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures
Wang et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing
Consales et al. Lab-on-fiber technology: toward multifunctional optical nanoprobes
Knight et al. Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle
Driskell et al. The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates
Wang et al. Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells
Lassiter et al. Close encounters between two nanoshells
Caldwell et al. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors
Wu et al. Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates
Lu et al. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect
Zheng et al. Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays
Gopinath et al. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)
Diebold et al. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)