CN103674086A - 基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置 - Google Patents

基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置 Download PDF

Info

Publication number
CN103674086A
CN103674086A CN201310706421.1A CN201310706421A CN103674086A CN 103674086 A CN103674086 A CN 103674086A CN 201310706421 A CN201310706421 A CN 201310706421A CN 103674086 A CN103674086 A CN 103674086A
Authority
CN
China
Prior art keywords
optical fiber
photoswitch
fiber grating
strain
brillouin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310706421.1A
Other languages
English (en)
Other versions
CN103674086B (zh
Inventor
唐健冠
于翔
邓艳芳
陈宏利
郭会勇
何伟
姜德生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Hua Yang Technology Co., Ltd.
Original Assignee
HUAZHIYANG PHOTOELECTRIC SYSTEM CO Ltd WUHAN
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUAZHIYANG PHOTOELECTRIC SYSTEM CO Ltd WUHAN, Wuhan University of Technology WUT filed Critical HUAZHIYANG PHOTOELECTRIC SYSTEM CO Ltd WUHAN
Priority to CN201310706421.1A priority Critical patent/CN103674086B/zh
Publication of CN103674086A publication Critical patent/CN103674086A/zh
Application granted granted Critical
Publication of CN103674086B publication Critical patent/CN103674086B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的装置与方法:本发明利用拉丝塔技术以单脉冲激光能量连动态续刻写超低反射率全同弱光纤光栅,得到大容量光纤光栅阵列传感光纤,m根光纤与2×m光开关连接作为传感探头;通过高速CCD波长解调模块和布里渊频移外差解调模块分别得到各光纤光栅的反射中心波长λi和布里渊频移νi;利用布里渊频移和光栅的温度与应变参数求解,得到各位置处温度与应变大小。本发明克服了布里渊传感技术精度低、速度慢等缺点,简化了大容量弱光栅阵列光纤成缆的复杂性和可操作性,克服了光纤光栅温度与应变的交叉敏感性,还可以提高分布式传感的检测精度。

Description

基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置
技术领域
本发明涉及一种准分布式的全同弱光纤光栅传感及其解调技术,具体地指一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置。
背景技术
温度与应变是大型系统结构健康检查的两个关键测试参量。结构局部关键位置的应力状态直接关系到结构的安全服役状态,温度则对诸如混凝土大坝、基坑等大体积结构影响较大,温度与应力作用往往导致结构内部出现微裂纹等损伤。由于温度与应变的交叉敏感,同时准确地测量大型结构的温度与应变在工程上一直是个难题。
准分布式的光纤光栅传感系统能够测量温度与应变,具有定位准确、测量精度高、解调速度快的优点,可应用范围很广。然而传统的光纤光栅传感系统使用高反射率光栅通过光纤熔接机进行串接,一般通过波分复用进行解调,传感单元容量小,焊点多,焊点与光纤光栅涂覆层位置处抗机械张力远少于光纤本身,造成传感系统可靠性差。布里渊光纤传感通过检测背向的自发或受激布里渊散射光来实现分布式温度与应变的测量,传感距离长,但是解调速度慢、测量精度低。上述两种传感系统也均对温度与应变两物理量交叉敏感,因此在实际应用中很难分离出来,给测量带来了很多的不便。目前解决温度与应变交叉敏感问题通常是使用参考光纤,即在同一环境中,通过使该参考光纤不受温度或应变影响,然后测量该参考光纤的温度或应变后,通过参考其温度或应变,测量出另外光纤的应变或温度,如公开号为CN102607621A的中国发明专利申请《同时检测温度和应变的分布式光纤布里渊传感装置和方法》,其通过两根光纤同时检测温度与应变,因此要求两根光纤具有相同的温度与应变,这限制了工程应用。在实际工程应用中,相关研究学者将高精度的光纤光栅传感与布里渊分布式技术简单组合在一起对结构进行应变检测,除布设分布式传感光纤外,还需要在结构重要位置安装高精度的局部光栅传感器,该检测系统布设相对困难,线路复杂且布设成本高。
发明内容
本发明所要解决的技术问题就是提供一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置,能够克服上述现有光纤光栅准分布式传感中传感单元容量小、光纤光栅与光纤熔接点位置引入的插入损耗大、其抗机械强度不能满足工程要求的不足,以及分布式布里渊光纤传感响应慢、测量精度低的不足,本发明具有容量大、无焊点、光纤光栅强度与光纤相同,并可同时检测传感区域的温度与应变,检测精度、检测速度和可靠性高等特点。
为解决上述技术问题,本发明提供的一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法,包括如下步骤:
1)在单模光纤拉丝过程中利用拉丝塔技术连动态续刻写N个反射率在0.01%~1%的全同弱光纤光栅,得到大容量光纤光栅阵列传感光纤,m根大容量光纤光栅阵列传感光纤与2×m光开关连接,作为传感探头;
2)宽带光源的激光接入第二SOA光开关,经脉冲发生器调制成周期性高消光比的脉冲信号,脉冲信号经第二三端口环形器、2×m光开关后,进入所选择的一根大容量光纤光栅阵列传感光纤,产生的反射信号经2×m光开关回到第二三端口环形器,再经放大、滤波处理后进入高速CCD波长解调模块,解调得到各光纤光栅的反射中心波长λi(i=1,2,……N);
与此同时,窄线宽光源的激光接入第一SOA光开关,经脉冲发生器调制成周期性高消光比的脉冲信号,脉冲信号的脉宽τ对应于大容量光纤光栅阵列传感光纤中全同弱光纤光栅之间的间隔;脉冲信号经第一三端口环形器、2×m光开关后,进入所选择的一根大容量光纤光栅阵列传感光纤,产生的背向布里渊散射信号经2×m光开关回到第一三端口环形器,再经放大、滤波处理后进入布里渊频移外差解调模块,得到各光纤光栅处的布里渊频移νi(i=1,2,……N);
3)某大容量光纤光栅阵列传感光纤上各光纤光栅的反射中心波长λi和布里渊频移νi满足如下公式:
λii0+CTΔTi+CεΔεi   (1)
vi=vi0+KTΔTi+KεΔεi   (2)
式中,λi0为初始的第i个光纤光栅的反射波长,CT和Cε分别为光纤光栅的温度和应变系数,vi0为初始的第i个光纤光栅位置处的布里渊频移,KT和Kε分别为光纤布里渊频移的温度和应变系数,CT、Cε、KT和Kε提前通过测量大容量光纤光栅阵列传感光纤标定获得,联立(1)、(2),得到第i个光纤光栅处光纤的温度变化量ΔTi和应变变化量Δεi
ΔT i = K ϵ K ϵ C T - C ϵ K T Δλ i - C ϵ K ϵ C T - C ϵ K T Δv i - - - ( 3 )
Δϵ i = K T K T C ϵ - C T K ϵ Δλ i - C T K T C ϵ - C T K ϵ Δv i - - - ( 4 )
其中,Δλiii0,Δvi=vi-vi0
上述技术方案的所述步骤1)中,采用准分子激光器在拉丝塔系统上光纤拉丝时,同时以单脉冲激光动态连续刻写光栅,然后进行二次涂敷和紫外光固化;所述光纤光栅的间隔通过拉丝速度和准分子激光器的脉冲频率进行控制。
上述技术方案的所述步骤2)中,设定窄线宽光源的工作波长与大容量光纤光栅阵列传感光纤中光纤光栅的中心波长相差5~10nm,用于避免散射信号与反射信号相互影响。
上述技术方案的所述步骤2)中,根据脉冲发生器向第二SOA光开关和第一SOA光开关发出的信号的时间差td计算出光纤光栅在大容量光纤光栅阵列传感光纤中的编号R:R=c·td/2n,其中c为光速,n为大容量光纤光栅阵列传感光纤的纤芯折射率。
本发明提供的一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的装置,包括窄线宽光源、宽带光源、三个SOA光开关、脉冲发生器、两个三端口环形器、2×m光开关、m根大容量光纤光栅阵列传感光纤、两个掺铒光纤放大器、两个带通滤波器、布里渊频移外差解调模块、高速CCD波长解调模块和中央处理单元;所述窄线宽光源、第一SOA光开关、第一三端口环形器依次连接后接入2×m光开关的一个输入端,所述宽带光源、第二SOA光开关、第二三端口环形器依次连接后接入2×m光开关的另一个输入端;所述脉冲发生器分别与第一SOA光开关和第二SOA光开关连接,用于脉冲信号的调制;所述大容量光纤光栅阵列传感光纤为利用拉丝塔技术在单模光纤上连动态续刻写有多个反射率在0.01%~1%的全同弱光纤光栅的光纤,m根大容量光纤光栅阵列传感光纤与2×m光开关的m个输出端连接,作为传感探头;所述第一三端口环形器的第三端口、一个掺铒光纤放大器、一个带通滤波器和布里渊频移外差解调模块依次连接,用于对背向布里渊散射信号进行放大、滤波和解调;所述第二三端口环形器的第三端口、另一个掺铒光纤放大器、另一个带通滤波器、第三SOA光开关和高速CCD波长解调模块依次连接,用于对反射信号进行放大、滤波和解调;脉冲发生器还分别与第三SOA光开关和布里渊频移外差解调模块连接;布里渊频移外差解调模块和高速CCD波长解调模块的信号输入端分别与中央处理单元连接,用于温度和应变测量信号的处理。
与现有技术相比,本发明的有益效果在于:1、采用了大容量光纤光栅阵列传感光纤,其在单模光纤拉丝过程中利用拉丝塔技术动态连续刻写多个反射率在0.01%~1%的全同弱光纤光栅,光栅本身的抗机械强度与光纤相同,无焊点,能够提供大应变、高精度传感,且由于使用了超低反射率的弱光栅,传感单元的数量可达数千个,从而克服了传统的强光栅串接技术导致的传感单元少、抗机械强度低,不能适应大应变传感变化的问题;现场操作方面,大容量光纤光栅阵列传感光纤的布设方便,无需光纤熔接,降低了系统的插入损耗;2、能够在无需参考光纤的情况下,同时测量温度和应变,降低了传感光纤的布设与安装成本,且计算方式简单、准确,解调速度块。
附图说明
图1为本发明基于布里渊散射同时测量全同弱光纤光栅温度与应变的装置的结构示意暨工作原理图;
图中:1—窄线宽光源,2—宽带光源,3—第一SOA光开关,4—第二SOA光开关,5—脉冲发生器,7—第一三端口环形器,8—第二三端口环形器,9—2×m光开关,10—大容量光纤光栅阵列传感光纤,11、12—掺铒光纤放大器,13、14—带通滤波器,15—第三SOA光开关,16—布里渊频移外差解调模块,17—高速CCD波长解调模块,18—中央处理单元。
具体实施方式
以下结合附图对本发明的具体实施例作进一步的详细描述:
如图1所示,本发明的一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的装置,包括窄线宽光源1、宽带光源2、三个SOA光开关3、4、15、脉冲发生器5、两个三端口环形器7、8、2×m光开关9、m根大容量光纤光栅阵列传感光纤10、两个掺铒光纤放大器11、12、两个带通滤波器13、14、布里渊频移外差解调模块16、高速CCD波长解调模块17和中央处理单元18。窄线宽光源1、第一SOA光开关3、第一三端口环形器7依次连接后接入2×m光开关9的一个输入端,宽带光源2、第二SOA光开关4、第二三端口环形器8依次连接后接入2×m光开关9的另一个输入端。脉冲发生器5分别与第一SOA光开关3和第二SOA光开关4连接,用于脉冲信号的调制。大容量光纤光栅阵列传感光纤10为利用拉丝塔技术在单模光纤上动态连续刻写有多个反射率在0.01%~1%的全同弱光纤光栅的光纤,m根大容量光纤光栅阵列传感光纤10与2×m光开关9的m个输出端连接,作为传感探头。第一三端口环形器7的第三端口、掺铒光纤放大器12、带通滤波器14和布里渊频移外差解调模块16依次连接,用于对背向布里渊散射信号进行放大、滤波和解调。第二三端口环形器8的第三端口、掺铒光纤放大器11、带通滤波器13、第三SOA光开关15和高速CCD波长解调模块17依次连接,用于对反射信号进行放大、滤波和解调。上述脉冲发生器5还分别与第三SOA光开关15和布里渊频移外差解调模块16连接。布里渊频移外差解调模块16和高速CCD波长解调模块17的信号输入端分别与中央处理单元18连接,用于温度和应变测量信号的处理。
结合上述装置,本发明基于布里渊散射同时测量全同弱光纤光栅温度与应变的具体操作为:
1)在单模光纤拉丝过程中采用248nm或者193nm的准分子激光器同时以单脉冲激光刻写N个反射率在0.01%~1%的全同弱光纤光栅,然后进行二次涂敷和紫外光固化,得到大容量光纤光栅阵列传感光纤10,m根大容量光纤光栅阵列传感光纤10与2×m光开关9连接,作为传感探头,光纤的插入损耗在0.2~0.4dB/km,取决于单模光纤的光敏性。该操作使得光栅的抗机械强度与光纤相同,不需要光纤熔接,插入损耗小,波长一致性好,传感单元数量大,测量精度高。光纤光栅的间隔通过拉丝速度和准分子激光器的频率进行控制;
2)宽带光源2的激光接入第二SOA光开关4,经脉冲发生器5调制成周期性高消光比(>30dB)的脉冲信号,脉冲信号经第二三端口环形器8、2×m光开关9后,进入所选择的一根大容量光纤光栅阵列传感光纤10,产生的反射信号经2×m光开关9回到第二三端口环形器8,再经放大、滤波处理后进入高速CCD波长解调模块17,解调得到各光纤光栅的反射中心波长λi(i=1,2,……N);
与此同时,窄线宽光源1的激光接入第一SOA光开关3,经脉冲发生器5调制成周期性高消光比(>30dB)的脉冲信号,脉冲信号的脉宽τ对应于大容量光纤光栅阵列传感光纤10中全同弱光纤光栅之间的间隔ΔR,ΔR=cτ/2n,其中c为光速,n为大容量光纤光栅阵列传感光纤10的纤芯折射率,即设置整个布里渊传感系统的空间分辨率与大容量光纤光栅阵列传感光纤10的光栅间隔相同。本实施例中,窄线宽光源1的中心波长宽带光源2的工作波长为1550nm,宽带光源2的工作波长在1555~1560nm,使窄线宽光源1经过大容量光纤光栅阵列传感光纤10的光纤光栅后直接透射。脉冲信号经第一三端口环形器7、2×m光开关9后,进入所选择的一根大容量光纤光栅阵列传感光纤10,由于大容量光纤光栅阵列传感光纤10中光纤光栅对窄线宽光源1的激光没有任何反射,因此在大容量光纤光栅阵列传感光纤10中产生自发布里渊散射,利用OTDR(光时域反射仪)技术,背向布里渊散射信号经2×m光开关9回到第一三端口环形器7,再经放大、滤波处理后进入布里渊频移外差解调模块16,通过脉冲发生器5的信号S3和S4的延迟差,得到各光纤光栅处的布里渊频移νi(i=1,2,……N)。根据脉冲发生器5向第二SOA光开关4和第一SOA光开关3发出的信号S1和S2的时间差td则可计算出光纤光栅在大容量光纤光栅阵列传感光纤10中的编号R:R=c·td/2n,其中c为光速,n为大容量光纤光栅阵列传感光纤10的纤芯折射率;
3)某大容量光纤光栅阵列传感光纤10上各光纤光栅的反射中心波长λi和布里渊频移νi满足如下公式:
λii0+CTΔTi+CεΔεi   (1)
vi=vi0+KTΔTi+KεΔεi   (2)
式中,λi0为初始的第i个光纤光栅的反射波长,CT和Cε分别为光纤光栅的温度和应变系数,vi0为初始的第i个光纤光栅位置处的布里渊频移,KT和Kε分别为光纤布里渊频移的温度和应变系数,CT、Cε、KT和Kε提前通过测量大容量光纤光栅阵列传感光纤10标定获得,联立(1)、(2),得到第i个光纤光栅处光纤的温度变化量ΔTi和应变变化量Δεi
ΔT i = K ϵ K ϵ C T - C ϵ K T Δλ i - C ϵ K ϵ C T - C ϵ K T Δv i - - - ( 3 )
Δϵ i = K T K T C ϵ - C T K ϵ Δλ i - C T K T C ϵ - C T K ϵ Δv i - - - ( 4 )
其中,Δλiii0,Δvi=vi-vi0。由(3)、(4)即可同时得到各测量位置点处的温度与应变大小。
本发明的核心一方面在于大容量光纤光栅阵列传感光纤10的设置,使得光栅本身的抗机械强度与光纤相同,无焊点,能够提供大应变、高精度传感,传感单元的数量可达数千个;另一方面在于布里渊频移外差解调模块16和高速CCD波长解调模块17的配置,能够通过对与温度和应变交叉敏感的反射中心波长和布里渊频移的测量,联立二元二次方程同时得到各测量位置点处的温度与应变大小。所以,其保护范围并不限于上述实施例。显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的范围和精神,例如:大容量光纤光栅阵列传感光纤10中光纤光栅的空间分辨率、数量等参数取决于用户需求,可通过拉丝速度和准分子激光器的频率进行控制,不限于实施例中的具体数值;窄线宽光源1和宽带光源2的工作波长也不限于上述具体数值,只要避免散射信号与反射信号重叠影响测量即可等。倘若这些改动和变形属于本发明权利要求及其等同技术的范围内,则本发明也意图包含这些改动和变形在内。

Claims (5)

1.一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法,其特征在于,包括如下步骤:
1)在单模光纤拉丝过程中利用拉丝塔技术动态连续刻写N个反射率在0.01%~1%的全同弱光纤光栅,得到大容量光纤光栅阵列传感光纤(10),m根大容量光纤光栅阵列传感光纤(10)与2×m光开关(9)连接,作为传感探头;
2)宽带光源(2)的激光接入第二SOA光开关(4),经脉冲发生器(5)调制成周期性高消光比的脉冲信号,脉冲信号经第二三端口环形器(8)、2×m光开关(9)后,进入所选择的一根大容量光纤光栅阵列传感光纤(10),产生的反射信号经2×m光开关(9)回到第二三端口环形器(8),再经放大、滤波处理后进入高速CCD波长解调模块(17),解调得到各光纤光栅的反射中心波长λi(i=1,2,……N);
与此同时,窄线宽光源(1)的激光接入第一SOA光开关(3),经脉冲发生器(5)调制成周期性高消光比的脉冲信号,脉冲信号的脉宽τ对应于大容量光纤光栅阵列传感光纤(10)中全同弱光纤光栅之间的间隔;脉冲信号经第一三端口环形器(7)、2×m光开关(9)后,进入所选择的一根大容量光纤光栅阵列传感光纤(10),产生的背向布里渊散射信号经2×m光开关(9)回到第一三端口环形器(7),再经放大、滤波处理后进入布里渊频移外差解调模块(16),得到各光纤光栅处的布里渊频移νi(i=1,2,……N);
3)某大容量光纤光栅阵列传感光纤(10)上各光纤光栅的反射中心波长λi和布里渊频移νi满足如下公式:
λii0+CTΔTi+CεΔεi   (1)
vi=vi0+KTΔTi+KεΔεi   (2)
式中,λi0为初始的第i个光纤光栅的反射波长,CT和Cε分别为光纤光栅的温度和应变系数,vi0为初始的第i个光纤光栅位置处的布里渊频移,KT和Kε分别为光纤布里渊频移的温度和应变系数,CT、Cε、KT和Kε提前通过测量大容量光纤光栅阵列传感光纤(10)标定获得,联立(1)、(2),得到第i个光纤光栅处光纤的温度变化量ΔTi和应变变化量Δεi
ΔT i = K ϵ K ϵ C T - C ϵ K T Δλ i - C ϵ K ϵ C T - C ϵ K T Δv i - - - ( 3 )
Δϵ i = K T K T C ϵ - C T K ϵ Δλ i - C T K T C ϵ - C T K ϵ Δv i - - - ( 4 )
其中,Δλiii0,Δvi=vi-vi0
2.根据权利要求1所述的基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法,其特征在于:所述步骤1)中,采用准分子激光器在拉丝塔系统上光纤拉丝时,同时以单脉冲激光动态连续刻写光栅,然后进行二次涂敷和紫外光固化;所述光纤光栅的间隔通过拉丝速度和准分子激光器的脉冲频率进行控制。
3.根据权利要求1所述的基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法,其特征在于:所述步骤2)中,设定窄线宽光源(1)的工作波长与大容量光纤光栅阵列传感光纤(10)中光纤光栅的中心波长相差5~10nm,用于避免散射信号与反射信号相互影响。
4.根据权利要求1至3中任一权利要求所述的基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法,其特征在于:所述步骤2)中,根据脉冲发生器(5)向第二SOA光开关(4)和第一SOA光开关(3)发出的信号的时间差td计算出光纤光栅在大容量光纤光栅阵列传感光纤(10)中的编号R:R=c·td/2n,其中c为光速,n为大容量光纤光栅阵列传感光纤(10)的纤芯折射率。
5.一种基于布里渊散射同时测量全同弱光纤光栅温度与应变的装置,其特征在于:包括窄线宽光源(1)、宽带光源(2)、三个SOA光开关(3、4、15)、脉冲发生器(5)、两个三端口环形器(7、8)、2×m光开关(9)、m根大容量光纤光栅阵列传感光纤(10)、两个掺铒光纤放大器(11、12)、两个带通滤波器(13、14)、布里渊频移外差解调模块(16)、高速CCD波长解调模块(17)和中央处理单元(18);所述窄线宽光源(1)、第一SOA光开关(3)、第一三端口环形器(7)依次连接后接入2×m光开关(9)的一个输入端,所述宽带光源(2)、第二SOA光开关(4)、第二三端口环形器(8)依次连接后接入2×m光开关(9)的另一个输入端;所述脉冲发生器(5)分别与第一SOA光开关(3)和第二SOA光开关(4)连接,用于脉冲信号的调制;所述大容量光纤光栅阵列传感光纤(10)为利用拉丝塔技术在单模光纤上动态连续刻写有多个反射率在0.01%~1%的全同弱光纤光栅的光纤,m根大容量光纤光栅阵列传感光纤(10)与2×m光开关(9)的m个输出端连接,作为传感探头;所述第一三端口环形器(7)的第三端口、一个掺铒光纤放大器(12)、一个带通滤波器(14)和布里渊频移外差解调模块(16)依次连接,用于对背向布里渊散射信号进行放大、滤波和解调;所述第二三端口环形器(8)的第三端口、另一个掺铒光纤放大器(11)、另一个带通滤波器(13)、第三SOA光开关(15)和高速CCD波长解调模块(17)依次连接,用于对反射信号进行放大、滤波和解调;脉冲发生器(5)还分别与第三SOA光开关(15)和布里渊频移外差解调模块(16)连接;布里渊频移外差解调模块(16)和高速CCD波长解调模块(17)的信号输入端分别与中央处理单元(18)连接,用于温度和应变测量信号的处理。
CN201310706421.1A 2013-12-20 2013-12-20 基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置 Expired - Fee Related CN103674086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310706421.1A CN103674086B (zh) 2013-12-20 2013-12-20 基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310706421.1A CN103674086B (zh) 2013-12-20 2013-12-20 基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置

Publications (2)

Publication Number Publication Date
CN103674086A true CN103674086A (zh) 2014-03-26
CN103674086B CN103674086B (zh) 2016-03-30

Family

ID=50312352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310706421.1A Expired - Fee Related CN103674086B (zh) 2013-12-20 2013-12-20 基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置

Country Status (1)

Country Link
CN (1) CN103674086B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313568A (zh) * 2011-08-30 2012-01-11 杭州布里特威光电技术有限公司 一种布里渊和拉曼同时检测的分布式光纤传感装置
CN103454014A (zh) * 2012-05-31 2013-12-18 基德科技公司 光纤传感系统
CN103900623A (zh) * 2014-04-16 2014-07-02 武汉理工光科股份有限公司 基于双声光调制器的光时域反射仪及其共模抑制方法
CN105333975A (zh) * 2015-12-12 2016-02-17 武汉理工大学 一种传感光缆温度感测方法
CN106979831A (zh) * 2017-03-03 2017-07-25 武汉理工大学 低成本高空间分辨率全同弱光栅感温告警系统及方法
CN107024301A (zh) * 2017-03-27 2017-08-08 中山大学 一种基于冷凝通道冷凝长度的测量装置及其方法
CN107990836A (zh) * 2017-11-21 2018-05-04 武汉理工大学 一种石化管道应变及温度在线监测系统及方法
CN109085675A (zh) * 2018-10-11 2018-12-25 宜昌睿传光电技术有限公司 一种双涂覆层弱光纤光栅阵列及其制备方法
CN109238355A (zh) * 2018-08-30 2019-01-18 武汉理工大学 光纤分布式动静态参量同时传感测量的装置及方法
CN109238532A (zh) * 2018-08-02 2019-01-18 广东聚源管业实业有限公司 基于光纤布里渊散射光的管道受力状态分析方法及系统
CN109632137A (zh) * 2019-02-19 2019-04-16 杭州线感光电技术有限公司 一种二维空间分布式光纤测温方法
CN109959403A (zh) * 2019-03-29 2019-07-02 武汉理工大学 一种多参量大容量传感系统
CN110243301A (zh) * 2018-03-08 2019-09-17 桂林电子科技大学 一种基于动态botda的逐芯扫描式多芯光纤形状传感器
CN111579114A (zh) * 2020-05-09 2020-08-25 武汉理工大学 一种应用于小尺寸火源监测的光纤光栅传感方法
CN112525373A (zh) * 2020-11-10 2021-03-19 广东工业大学 一种基于双波长保偏光纤干涉仪的应变温度同时测量装置
CN113358240A (zh) * 2021-06-04 2021-09-07 燕山大学 基于dus-fbg的大面积柔性智能皮肤的温度及压力传感器
CN114323251A (zh) * 2022-03-10 2022-04-12 武汉理工大学 分布式光纤相位敏感光时域反射计信号均衡装置及方法
CN114674454A (zh) * 2022-03-11 2022-06-28 武汉理工大学 基于光纤光栅阵列传感的混凝土温度监测系统及方法
CN116560006A (zh) * 2023-07-10 2023-08-08 广东电网有限责任公司佛山供电局 一种光纤远程自动切换装置、方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156315A (ja) * 2001-11-21 2003-05-30 Mitsubishi Heavy Ind Ltd 歪みと温度の分布測定方法及びその装置
CN102102999A (zh) * 2010-12-16 2011-06-22 华中科技大学 基于非等间隔弱布拉格反射光纤光栅阵列的传感复用系统
CN102102998A (zh) * 2010-12-16 2011-06-22 华中科技大学 基于弱布拉格反射结构光纤的分布式传感系统
CN102607621A (zh) * 2012-03-29 2012-07-25 中国科学院上海光学精密机械研究所 同时检测温度和应变的分布式光纤布里渊传感装置和方法
CN102914321A (zh) * 2012-10-15 2013-02-06 武汉理工大学 一种极弱光纤光栅传感系统及其查询方法
CN102980681A (zh) * 2012-11-16 2013-03-20 暨南大学 一种基于布里渊散射的分布式应变和温度光纤传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156315A (ja) * 2001-11-21 2003-05-30 Mitsubishi Heavy Ind Ltd 歪みと温度の分布測定方法及びその装置
CN102102999A (zh) * 2010-12-16 2011-06-22 华中科技大学 基于非等间隔弱布拉格反射光纤光栅阵列的传感复用系统
CN102102998A (zh) * 2010-12-16 2011-06-22 华中科技大学 基于弱布拉格反射结构光纤的分布式传感系统
CN102607621A (zh) * 2012-03-29 2012-07-25 中国科学院上海光学精密机械研究所 同时检测温度和应变的分布式光纤布里渊传感装置和方法
CN102914321A (zh) * 2012-10-15 2013-02-06 武汉理工大学 一种极弱光纤光栅传感系统及其查询方法
CN102980681A (zh) * 2012-11-16 2013-03-20 暨南大学 一种基于布里渊散射的分布式应变和温度光纤传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO HUIYONG等: "Reflectivity Measurement of Weak Fiber BraggGrating(FBG)", 《JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATER.SCI.ED》 *
张满亮等: "基于全同弱反射光栅光纤的分布式传感研究", 《激光与光电子学进展》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313568A (zh) * 2011-08-30 2012-01-11 杭州布里特威光电技术有限公司 一种布里渊和拉曼同时检测的分布式光纤传感装置
CN102313568B (zh) * 2011-08-30 2016-08-24 武汉康特圣思光电技术有限公司 一种布里渊和拉曼同时检测的分布式光纤传感装置
CN103454014A (zh) * 2012-05-31 2013-12-18 基德科技公司 光纤传感系统
CN103900623A (zh) * 2014-04-16 2014-07-02 武汉理工光科股份有限公司 基于双声光调制器的光时域反射仪及其共模抑制方法
CN105333975A (zh) * 2015-12-12 2016-02-17 武汉理工大学 一种传感光缆温度感测方法
CN106979831A (zh) * 2017-03-03 2017-07-25 武汉理工大学 低成本高空间分辨率全同弱光栅感温告警系统及方法
CN107024301A (zh) * 2017-03-27 2017-08-08 中山大学 一种基于冷凝通道冷凝长度的测量装置及其方法
CN107990836A (zh) * 2017-11-21 2018-05-04 武汉理工大学 一种石化管道应变及温度在线监测系统及方法
CN110243301A (zh) * 2018-03-08 2019-09-17 桂林电子科技大学 一种基于动态botda的逐芯扫描式多芯光纤形状传感器
CN109238532A (zh) * 2018-08-02 2019-01-18 广东聚源管业实业有限公司 基于光纤布里渊散射光的管道受力状态分析方法及系统
CN109238355A (zh) * 2018-08-30 2019-01-18 武汉理工大学 光纤分布式动静态参量同时传感测量的装置及方法
CN109238355B (zh) * 2018-08-30 2020-08-25 武汉理工大学 光纤分布式动静态参量同时传感测量的装置及方法
CN109085675A (zh) * 2018-10-11 2018-12-25 宜昌睿传光电技术有限公司 一种双涂覆层弱光纤光栅阵列及其制备方法
CN109085675B (zh) * 2018-10-11 2024-03-15 宜昌睿传光电技术有限公司 一种双涂覆层弱光纤光栅阵列及其制备方法
CN109632137A (zh) * 2019-02-19 2019-04-16 杭州线感光电技术有限公司 一种二维空间分布式光纤测温方法
CN109959403A (zh) * 2019-03-29 2019-07-02 武汉理工大学 一种多参量大容量传感系统
US11313737B2 (en) 2020-05-09 2022-04-26 Wuhan University Of Technology Optical fiber grating sensing method applied to small-size fire source monitoring
CN111579114A (zh) * 2020-05-09 2020-08-25 武汉理工大学 一种应用于小尺寸火源监测的光纤光栅传感方法
CN112525373A (zh) * 2020-11-10 2021-03-19 广东工业大学 一种基于双波长保偏光纤干涉仪的应变温度同时测量装置
CN113358240A (zh) * 2021-06-04 2021-09-07 燕山大学 基于dus-fbg的大面积柔性智能皮肤的温度及压力传感器
CN113358240B (zh) * 2021-06-04 2024-04-26 燕山大学 基于dus-fbg的大面积柔性智能皮肤的温度及压力传感器
CN114323251A (zh) * 2022-03-10 2022-04-12 武汉理工大学 分布式光纤相位敏感光时域反射计信号均衡装置及方法
CN114323251B (zh) * 2022-03-10 2022-06-17 武汉理工大学 分布式光纤相位敏感光时域反射计信号均衡装置及方法
CN114674454A (zh) * 2022-03-11 2022-06-28 武汉理工大学 基于光纤光栅阵列传感的混凝土温度监测系统及方法
CN116560006A (zh) * 2023-07-10 2023-08-08 广东电网有限责任公司佛山供电局 一种光纤远程自动切换装置、方法和设备

Also Published As

Publication number Publication date
CN103674086B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN103674086B (zh) 基于布里渊散射同时测量全同弱光纤光栅温度与应变的方法及装置
CN103674117B (zh) 基于拉曼散射同时测量全同弱光纤光栅温度与应变的方法及装置
Rogers Distributed optical-fibre sensors for the measurement of pressure, strain and temperature
US6778717B2 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
CN105371785B (zh) 一种曲率测量方法
CN103591971B (zh) 一种光纤光栅的定位方法
CN102607621A (zh) 同时检测温度和应变的分布式光纤布里渊传感装置和方法
CN101900611B (zh) 使用分布式光纤传感器同时测量温度和应力的装置及方法
US9651418B2 (en) Fiber sensing system based on a bragg grating and optical time domain reflectometry
CN102721484B (zh) 一种基于布里渊散射的分布式光纤传感装置
CN202648830U (zh) 一种基于布里渊散射的分布式光纤传感装置
CN102636121A (zh) 高精度光纤长度测量系统
Faustov et al. Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry
CN106323345B (zh) 一种超长距离分布式光纤传感模拟测试系统及方法
CN108007603B (zh) 一种基于非对称双芯光纤的多参量分布测量系统
Li Rayleigh scattering based distributed optical fiber sensing
CN111811554A (zh) 基于光腔衰荡大范围高精度光纤光栅传感方法及装置
CN102175170B (zh) 一种基于光纤长啁啾光栅频域反射技术的用于土木结构裂纹的检测方法及传感器
Zhou et al. Optical fiber displacement sensor based on Stokes Raman backscattering light bending loss
Luo et al. Online reflectivity measurement of an ultra-weak fiber Bragg grating array
CN201974183U (zh) 一种基于光纤长啁啾光栅频域反射技术的用于土木结构裂纹检测的传感器
CN104614093A (zh) 一种弯曲不敏感的分布式布里渊光纤温度和应变传感器
Liu et al. A temperature-insensitive multipoint displacement sensing system based on fiber macro-bending loss
Li et al. Novel optical fibers for distributed sensor applications
Varghese et al. A quasi distributed fiber optic weight-displacement sensor using macro bends

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122

Co-patentee after: Wuhan Hua Yang Technology Co., Ltd.

Patentee after: Wuhan University of Technology

Address before: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122

Co-patentee before: Huazhiyang Photoelectric System Co., Ltd., Wuhan

Patentee before: Wuhan University of Technology

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20201220

CF01 Termination of patent right due to non-payment of annual fee