CN103667913B - 一种高屈服强度、高塑性twip钢的生产方法 - Google Patents

一种高屈服强度、高塑性twip钢的生产方法 Download PDF

Info

Publication number
CN103667913B
CN103667913B CN201310746069.4A CN201310746069A CN103667913B CN 103667913 B CN103667913 B CN 103667913B CN 201310746069 A CN201310746069 A CN 201310746069A CN 103667913 B CN103667913 B CN 103667913B
Authority
CN
China
Prior art keywords
twip steel
yield strength
production method
ductility
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310746069.4A
Other languages
English (en)
Other versions
CN103667913A (zh
Inventor
吴苏州
李娇
任嵬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN JINGLAI NEW MATERIAL TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN JINGLAI NEW MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN JINGLAI NEW MATERIAL TECHNOLOGY Co Ltd filed Critical SHENZHEN JINGLAI NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201310746069.4A priority Critical patent/CN103667913B/zh
Publication of CN103667913A publication Critical patent/CN103667913A/zh
Application granted granted Critical
Publication of CN103667913B publication Critical patent/CN103667913B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

本发明属于钢铁冶金和金属材料领域,提供一种屈服强度超过1000MPa,同时均匀延伸率超过10%的TWIP钢生产方法。其特征在于炼钢过程危害元素、全氧含量控制,连铸过程选用合适成分保护渣,并采用保护浇铸及低过热度低拉速浇铸工艺,采用过渡金属及金属间化合物析出强化以及冷轧预变形、接近完全再结晶温度连续退火处理等工艺来提高TWIP的力学性能,使其屈服强度超过1000MPa,均匀延伸率超过10%。

Description

一种高屈服强度、高塑性TWIP钢的生产方法
技术领域
本发明属于钢铁冶金和金属材料领域,提供一种屈服强度超过1000MPa,均匀延伸率超过10%的TWIP钢生产方法。
背景技术
近年来开发的高锰形变孪晶诱导塑性钢(Twinning Induced Plasticity, TWIP钢),在形变过程中产生形变孪晶具有TWIP效应,因而具备良好的机械性能,如同时具有高拉伸强度和高塑性。汽车领域减重和减少气体排放部件,需要高屈服强度的同时需具有良好的成形性,TWIP钢在汽车减重方面有广泛的应用前景,TWIP钢虽然拥有高强度和高塑性,但是与其他先进高强度钢铁相比,TWIP钢的屈服强度较低,约为200~400MPa,这一因素限制了其在汽车制造业的商业化应用。本发明提供了一种将传统TWIP钢屈服强度提高到1000MPa同时均匀延伸率超过10%的生产方法。
发明内容
本发明提供了一种高锰TWIP钢的生产方法,炼钢过程降低全氧含量,进而降低钢种夹杂物的数量,同时使得钢种的S、P质量分数控制在0.0025%以下,全氧含量在0.0015%以下。连铸过程尽量采用低过热度、低拉速浇铸,过热度控制在5℃-10℃之间,拉速控制在0.5/min-1.2m/min,同时浇铸过程采用结晶器电磁搅拌手段,使得铸坯组织均匀,铸坯中心缺陷控制在0-2级,等轴晶比率在70%以上。凝固末端电磁搅拌等方式铸造使得材料组织更加均匀,C元素中心偏析度控制在1.0-1.1之间,P、S两种元素中心偏析度控制在1.0-1.15之间,Mn元素中心偏析度控制在1.0-1.2之间。
连铸过程选用CaO/SiO2类型的保护渣,保持一定厚度的液渣层厚度,及时添加保护渣,使得铸坯与结晶器壁保持良好的润滑性能,防止出现漏钢及表面裂纹、夹渣等现象发生,保护渣的具体成分控制在:w(CaO)=30%-40%,w(SiO2)=30%-40%,w(Al2O3)=5%-10%,w(MgO)=5%-10%,其余为Na2O和F。
炼钢合金化过程添加钛(Ti)、铌(Nb)、钒(V)一种或者一种以上过渡金属元素,这三种过渡元素是析出物形成元素,与碳元素、氮元素形成碳氮化合物析出物,细化晶粒,提高材料的屈服强度,本发明中至少使用其中一种元素形成过渡金属析出物,其添加合金总质量分数控制在0.01-2%,钢中过渡金属析出物的体积分数为1%-2%,尺寸分为为15nm-150nm,当其质量分数小于0.01%时,析出物量过少,析出物强化效果不明显,当质量分数超过2%形成大量的析出物恶化材料的塑性。
碳、氮元素与铝元素形成金属间化合物Al(C, N)可以细化晶粒,提高材料的强度和塑性,铝元素质量分数应该控制在0.01-1%,控制钢中金属间化合物析出物的体积分数为0.2%-0.5%,尺寸分为为15nm-100nm,铝元素含量超过1%时会产生大量尺寸较大的夹杂物恶化材料的成形性和延伸率等物理性能。
由于TWIP钢的超高塑性,增加预应变牺牲一定量的塑性来提高TWIP钢屈服强度是一种有效的强化手段,通过10%-60%的冷轧预应变会明显提高材料的屈服强度,超过60%预应变时,会引发两个问题,一是材料的加工硬化率急剧减少,材料的塑性如延伸率降低,二是材料的各项异性增加,因而材料的成型性能减弱。
为了减少预应变给材料性能带来的负面效果,通过增加回复及部分再结晶连续退火工序来改善材料性能,回复及部分再结晶退火处理温度在550℃-700℃之间,接近钢的完全再结晶温度下限,处理时间为100s-1000s。处理结束后,晶粒部分再结晶,晶体内位错密度急剧下降,由于机械孪晶具有较好的热稳定性,在此温度区间几乎不发生变化,将会获得最佳的屈服强度和延伸率。温度超过700℃时,容易发生完全再结晶,加工硬化率减少,材料的屈服强度急剧减少,当温度小于550℃以下时,晶体内位错密度过高,材料的塑性和成形性依然较差。
附图说明
图1为本发明生产方法的一个实施例的示意图。
具体实施内容
以化学成分为Fe-22 wt%Mn-0.6 wt%C-1%Al-0.5wt%V的TWIP钢为实施对象,炼钢过程使得S、P元素质量分数分别控制在0.0025%,连铸过程采用低过热度为10℃、拉速为0.8m/min进行保护浇铸,连铸坯放在1200℃的加热炉中加热1小时,然后进行终轧温度为900℃的热轧,轧到3.5mm的薄板,卷曲温度为650℃,然后进行预应变量60%的冷轧过程,薄板厚度变为1.4mm,在750℃的连续退火炉中进行连续退火处理1000s,在冷轧坯上取样进行传统的一维准静态拉伸实验及微观组织的表征。
试验测得试样的拉伸强度超过1150MPa,屈服强度超过1000 MPa,延伸率超过15%,通过TEM观察到尺寸为20-100纳米弥散分布在钢基体组织中V(C, N)及Al(C, N)析出物,其体积分数分别为1.2%和0.3%。然后性进行5%,8%,12%,15%四种不同应变水平的拉伸试验,表征应变变形后的微观组织,发现不同应变水平下的变形过程都有一定密度的形变孪晶产生,拉伸变形后微观组织中未发现马氏体,表明试样拉伸变形过程只产生了形变孪晶,没有发生马氏体相变,该钢力学性能和微观组织符合汽车用高碰撞能量吸收的要求。
与传统的TWIP钢生产方法相比,本发明生产大幅度提高材料的屈服强度到1000MPa以上,同时材料的均匀延伸率控制在10%以上,是一种较为理想的汽车工业用材料。

Claims (8)

1.一种高屈服强度、高塑性TWIP钢的生产方法,其特征在于炼钢过程危害元素、全氧含量控制,连铸过程选用合适成分保护渣,并采用保护浇铸及低过热度低拉速浇铸工艺,采用金属间化合物析出强化以及冷轧预变形、接近完全再结晶温度连续退火处理工艺来提高TWIP钢的力学性能,使其屈服强度超过1000MPa,均匀延伸率超过10%。
2. 如权利要求1 所述的一种高屈服强度、高塑性TWIP钢的生产方法,其特征为:TWIP 钢在连铸过程中采用5℃ -10℃低过热度浇铸,采取保护浇铸措施,采用结晶器电磁搅拌控制减少柱状晶比率增加等轴晶比率,铸坯等轴晶比率在70%以上,凝固末端采用电磁搅拌,使得铸坯组织均匀,同时减少碳、磷、硫偏析,铸坯中心缺陷宏观评级在0-2 级,C 元素中心偏析度控制在1.0-1.1 之间,P、S 两种元素偏析度控制在1.0-1.15 之间,Mn 元素中心偏析度控制在1.0-1.2 之间。
3.如权利要求1 所述的一种高屈服强度、高塑性TWIP钢的生产方法,其特征为:TWIP 钢在连铸过程中保护渣的具体成分控制在:w(CaO)=30%-40%,w(SiO2)=30%-40%,w(Al2O3)=5%-10%,w(MgO)=5%-10%,其余为Na2O 和F。
4.如权利要求1 所述的一种高屈服强度、高塑性TWIP钢的生产方法,其特征为:TWIP 钢进行变形量10%-60% 冷轧预变形过程,该过程明显提高TWIP钢的屈服强度。
5.如权利要求1 所述的一种高屈服强度、高塑性TWIP钢的生产方法,其特征为:TWIP 钢具有体积分数为0.2%-0.5%,尺度分布为10-150 纳米在基体组织中均匀分布的金属间化合物析出物相Al(C, N)。
6.如权利要求1 所述的一种高屈服强度、高塑性TWIP钢的生产方法,其特征为:TWIP 钢有体积分数为1%-2%,尺度分布为10-100 纳米在基体组织中均匀分布的金属间化合物析出物相(Ti, Nb, V)(C, N)。
7.如权利要求1 所述的一种高屈服强度、高塑性TWIP钢的生产方法,其特征为:接近完全再结晶温度连续退火处理温度在550℃ -700℃之间,接近钢的完全再结晶温度下限,处理时间为100s-1000s。
8.如权利要求1 所述的一种高屈服强度、高塑性TWIP钢的生产方法,其特征在适用于TWIP 钢的化学成分以质量分数表示为:碳(C):0.2-1.0%,锰(Mn):10-25%,铝(Al):0.02-1.0%,磷(P)<0.0025%,硫(S)<0.0025%,氮(N)<0.003%,含以下至少一种合金元素:钛(Ti):0.01-1.2%,铌(Nb):0.01-1.2,钒(V):0.01-1.2%,其余为铁元素。
CN201310746069.4A 2013-12-31 2013-12-31 一种高屈服强度、高塑性twip钢的生产方法 Expired - Fee Related CN103667913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310746069.4A CN103667913B (zh) 2013-12-31 2013-12-31 一种高屈服强度、高塑性twip钢的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310746069.4A CN103667913B (zh) 2013-12-31 2013-12-31 一种高屈服强度、高塑性twip钢的生产方法

Publications (2)

Publication Number Publication Date
CN103667913A CN103667913A (zh) 2014-03-26
CN103667913B true CN103667913B (zh) 2015-09-16

Family

ID=50306681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310746069.4A Expired - Fee Related CN103667913B (zh) 2013-12-31 2013-12-31 一种高屈服强度、高塑性twip钢的生产方法

Country Status (1)

Country Link
CN (1) CN103667913B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662932A (zh) * 2019-10-15 2021-04-16 中国石油化工股份有限公司 一种twip钢及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328360B (zh) * 2014-11-20 2017-02-22 北京科技大学 双相孪生诱导塑性超高强度汽车钢板及其制备工艺
CN106929756B (zh) * 2015-12-29 2020-03-17 香港大学深圳研究院 轴承钢及其制备方法
CN105568166B (zh) * 2016-03-23 2017-10-27 攀钢集团攀枝花钢铁研究院有限公司 350㎜直径的34CrMo圆管钢坯及其炼铸方法
CN108624741B (zh) * 2017-03-23 2019-10-22 中国科学院金属研究所 兼具高热稳定性、高强度、高塑性的多相twip钢的制备方法
CN107574377B (zh) * 2017-09-07 2019-05-03 北京科技大学 一种基于纳米结构的高吸能型高锰twip钢及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045950B (zh) * 2012-12-28 2015-04-22 中北大学 一种低合金高强韧性复相钢及其热处理方法
CN103114185A (zh) * 2013-03-11 2013-05-22 上海理工大学 一种具有多尺度孪晶结构钢及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662932A (zh) * 2019-10-15 2021-04-16 中国石油化工股份有限公司 一种twip钢及其制备方法

Also Published As

Publication number Publication date
CN103667913A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
JP6854271B2 (ja) ホットスタンピングに使用される鋼板
CN103526111B (zh) 屈服强度900MPa级热轧板带钢及其制备方法
CN103302255B (zh) 一种薄带连铸700MPa级高强耐大气腐蚀钢制造方法
CN105506494B (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN103667913B (zh) 一种高屈服强度、高塑性twip钢的生产方法
CN103014494B (zh) 一种汽车大梁用热轧钢板及其制造方法
CN102965574B (zh) 一种钛微合金化低屈强比高强度热轧厚钢板及其生产工艺
CN104593675A (zh) 一种同时具有twip与trip效应金属材料制备方法
CN106868281B (zh) 一种超细晶铁素体/低温贝氏体双相钢及其制备方法
CN104379277B (zh) 一种孪晶诱导塑性钢及其生产方法
CN103305746B (zh) 一种时效硬化薄带连铸低碳微合金高强钢带制造方法
CN101580916B (zh) 一种高强度高塑性孪生诱发塑性钢及其制造方法
CN104379791A (zh) 一种含锰钢及其生产方法
CN102400053B (zh) 屈服强度460MPa级建筑结构用钢板及其制造方法
CN102400036B (zh) 一种高延伸率和高扩孔率的孪晶诱发塑性钢及其制造方法
CN108998741A (zh) 超高强韧性中锰相变诱发塑性钢及其制备方法
CN103305755B (zh) 一种薄带连铸低碳微合金高强钢带制造方法
CN102828116A (zh) 基于tmcp工艺的表层超细晶高强度钢板及其制造方法
CN100334235C (zh) 用于制造由含铜量高的碳钢制成的钢铁冶金制品的方法及根据所述方法获得的钢铁冶金制品
CN107385319A (zh) 屈服强度400MPa级精密焊管用钢板及其制造方法
CN104498821A (zh) 汽车用中锰高强钢及其生产方法
CN104328350A (zh) 一种屈服强度960MPa级调质钢及其制造方法
CN102409233A (zh) 一种低温工程机械用钢及其生产方法
JP2009173959A (ja) 高強度鋼板およびその製造方法
JP6038231B2 (ja) サブミクロンオーステナイト強靱化の高強靱性薄鋼板およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150916

Termination date: 20161231

CF01 Termination of patent right due to non-payment of annual fee