CN103646963B - bipolar PNP transistor and manufacturing method thereof - Google Patents
bipolar PNP transistor and manufacturing method thereof Download PDFInfo
- Publication number
- CN103646963B CN103646963B CN201310674022.1A CN201310674022A CN103646963B CN 103646963 B CN103646963 B CN 103646963B CN 201310674022 A CN201310674022 A CN 201310674022A CN 103646963 B CN103646963 B CN 103646963B
- Authority
- CN
- China
- Prior art keywords
- region
- layer
- dielectric layer
- pnp transistor
- bipolar pnp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000010410 layer Substances 0.000 claims abstract description 334
- 239000011229 interlayer Substances 0.000 claims abstract description 64
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 42
- 239000011574 phosphorus Substances 0.000 claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 238000000605 extraction Methods 0.000 claims abstract description 16
- 238000002955 isolation Methods 0.000 claims description 56
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 46
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 33
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 29
- 235000012239 silicon dioxide Nutrition 0.000 claims description 23
- 239000000377 silicon dioxide Substances 0.000 claims description 23
- 238000002161 passivation Methods 0.000 claims description 9
- 239000002019 doping agent Substances 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/177—Base regions of bipolar transistors, e.g. BJTs or IGBTs
Landscapes
- Bipolar Transistors (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
本发明提供了一种双极PNP晶体管及其制造方法,包括:衬底;形成于所述衬底上的外延层;形成于所述外延层中的深磷区、基区、集电区和发射区;形成于所述外延层上的第一层间介质层和电压调变介质层;形成于所述第一层间介质层和电压调变介质层上的第一互连线;形成于所述第一层间介质层和第一互连线上的第二层间介质层;形成于所述第二层间介质层上的第二互连线;其中,所述电压调变介质层覆盖于所述基区上,并通过所述第一互连线实现电性引出。本发明通过在基区上方形成电压调变介质层,所述电压调变介质层通过第一互连线实现电性引出,如此,通过改变电压调变介质层的感应电荷数量可使得基区表面的电荷浓度发生改变,从而实现小电流放大倍数可调。
The invention provides a bipolar PNP transistor and a manufacturing method thereof, comprising: a substrate; an epitaxial layer formed on the substrate; a deep phosphorus region, a base region, a collector region and a deep phosphorus region formed in the epitaxial layer Emitting region; the first interlayer dielectric layer and the voltage modulation dielectric layer formed on the epitaxial layer; the first interconnection line formed on the first interlayer dielectric layer and the voltage modulation dielectric layer; formed on The first interlayer dielectric layer and the second interlayer dielectric layer on the first interconnection; the second interconnection formed on the second interlayer dielectric layer; wherein, the voltage modulation dielectric layer covering on the base region, and realizing electrical extraction through the first interconnection line. In the present invention, a voltage-modulating dielectric layer is formed above the base region, and the voltage-modulating dielectric layer is electrically extracted through the first interconnection line. In this way, by changing the amount of induced charges in the voltage-modulating dielectric layer, the surface of the base region can be made The charge concentration changes, so that the small current magnification can be adjusted.
Description
技术领域technical field
本发明涉及集成电路制造领域,特别涉及一种双极PNP晶体管及其制造方法。The invention relates to the field of integrated circuit manufacturing, in particular to a bipolar PNP transistor and a manufacturing method thereof.
背景技术Background technique
光电传感器是一种通过光敏器件将光信号转换成电信号的传感器。目前光敏器件一般采用半导体工艺制造,包括光敏二极管、光敏三极管和光敏电阻等。由于光敏器件所接收的光比较微弱,所以产生的光生电流也较微弱,通常需要一个前置放大电路与光敏器件配合以放大信号。光敏器件和前置放大电路集成在一块芯片上,形成光电传感器。A photoelectric sensor is a sensor that converts light signals into electrical signals through photosensitive devices. At present, photosensitive devices are generally manufactured by semiconductor technology, including photodiodes, phototransistors and photoresistors. Since the light received by the photosensitive device is relatively weak, the photogenerated current generated is also relatively weak. Usually, a preamplifier circuit is required to cooperate with the photosensitive device to amplify the signal. The photosensitive device and the preamplifier circuit are integrated on one chip to form a photoelectric sensor.
随着光电传感器应用场合的不同,各类环境干扰对光敏器件的影响很大,如开关电源、环境光等。环境干扰产生的电流会影响光敏器件的灵敏度。前置放大电路要调整到合适的放大系数,以减弱环境干扰对光敏器件的影响,从而使光电传感器满足应用要求。前置放大电路由晶体管组成,晶体管的小电流特性,包括双极NPN晶体管和双极PNP晶体管的小电流特性对于工艺调整都至关重要。With the different applications of photoelectric sensors, various environmental disturbances have a great impact on photosensitive devices, such as switching power supply and ambient light. The current generated by environmental disturbance will affect the sensitivity of the photosensitive device. The pre-amplification circuit should be adjusted to an appropriate amplification factor to reduce the influence of environmental interference on the photosensitive device, so that the photoelectric sensor can meet the application requirements. The preamplifier circuit is composed of transistors, and the small current characteristics of transistors, including bipolar NPN transistors and bipolar PNP transistors, are very important for process adjustment.
采用双极工艺进行光电传感器芯片设计及工艺制造,由于双极工艺的版图布局会带来寄生效应,为了输出尽可能大的信噪比的光电信号,需要在制造过程中进行多次版图布局调整和工艺调试,以寻求光敏器件与前置放大电路的最佳匹配,从而适应不同环境下的应用要求。The bipolar process is used for the design and process manufacturing of the photoelectric sensor chip. Because the layout of the bipolar process will bring parasitic effects, in order to output the photoelectric signal with the largest possible signal-to-noise ratio, it is necessary to perform multiple layout adjustments during the manufacturing process. And process debugging to find the best match between the photosensitive device and the preamplifier circuit, so as to adapt to the application requirements in different environments.
采用现有的双极工艺所制造的双极PNP晶体管,其输出的小电流放大倍数波动比较大,即使经过工艺优化使得小电流波动减少,但是小电流放大倍数的中心值是不可变的,因此无法满足不同环境下的应用要求。其中,小电流放大的集电极电流的范围一般在10nA~100nA。The bipolar PNP transistor manufactured by the existing bipolar process has relatively large fluctuations in the output small current magnification. Even if the small current fluctuation is reduced through process optimization, the central value of the small current magnification is not variable, so It cannot meet the application requirements in different environments. Among them, the range of the collector current amplified by the small current is generally in the range of 10nA to 100nA.
基于此,如何改善现有技术中双极PNP晶体管的小电流放大倍数不可调的问题已经成为本领域技术人员亟需解决的技术问题。Based on this, how to improve the non-adjustable small current amplification factor of the bipolar PNP transistor in the prior art has become an urgent technical problem to be solved by those skilled in the art.
发明内容Contents of the invention
本发明的目的在于提供一种双极PNP晶体管及其制造方法,以解决现有的双极PNP晶体管的小电流放大倍数不可调的问题。The object of the present invention is to provide a bipolar PNP transistor and a manufacturing method thereof, so as to solve the problem that the small current amplification factor of the existing bipolar PNP transistor cannot be adjusted.
为解决上述技术问题,本发明提供一种双极PNP晶体管,所述双极PNP晶体管包括:衬底;形成于所述衬底上的外延层;形成于所述外延层中的深磷区、基区、集电区和发射区;形成于所述外延层上的第一层间介质层和电压调变介质层;形成于所述第一层间介质层和电压调变介质层上的第一互连线;形成于所述第一层间介质层和第一互连线上的第二层间介质层;形成于所述第二层间介质层上的第二互连线;其中,所述电压调变介质层覆盖于所述基区上,并通过所述第一互连线实现电性引出。In order to solve the above technical problems, the present invention provides a bipolar PNP transistor, which includes: a substrate; an epitaxial layer formed on the substrate; a deep phosphorus region formed in the epitaxial layer, Base region, collector region and emitter region; the first interlayer dielectric layer and the voltage modulation dielectric layer formed on the epitaxial layer; the first interlayer dielectric layer and the voltage modulation dielectric layer formed on the first interlayer dielectric layer An interconnection line; a second interlayer dielectric layer formed on the first interlayer dielectric layer and the first interconnection line; a second interconnection line formed on the second interlayer dielectric layer; wherein, The voltage-modulating medium layer covers the base region, and is electrically drawn out through the first interconnection line.
优选的,在所述的双极PNP晶体管中,所述集电区环绕于所述基区,所述基区环绕于所述发射区;所述第一互连线与所述深磷区、发射区和集电区连接,用于实现所述深磷区和集电区的电性引出;所述第二互连线与所述发射区上面的第一互连线连接,用于实现所述发射区的电性引出。Preferably, in the bipolar PNP transistor, the collector region surrounds the base region, and the base region surrounds the emitter region; the first interconnection line and the deep phosphorus region, The emitter region is connected to the collector region for realizing the electrical extraction of the deep phosphorus region and the collector region; the second interconnection is connected to the first interconnection above the emitter region for realizing the The electrical extraction of the emission area.
优选的,在所述的双极PNP晶体管中,所述电压调变介质层包括二氧化硅层和氮化硅层;所述二氧化硅层位于所述氮化硅层的下面,所述第一互连线覆盖于所述氮化硅层的上面。Preferably, in the bipolar PNP transistor, the voltage modulation medium layer includes a silicon dioxide layer and a silicon nitride layer; the silicon dioxide layer is located below the silicon nitride layer, and the second An interconnection line covers the silicon nitride layer.
优选的,在所述的双极PNP晶体管中,所述二氧化硅层的厚度为150~800埃,所述氮化硅层的厚度为300埃~1800埃。Preferably, in the bipolar PNP transistor, the thickness of the silicon dioxide layer is 150-800 angstroms, and the thickness of the silicon nitride layer is 300-1800 angstroms.
优选的,在所述的双极PNP晶体管中,所述外延层的厚度为2.5μm~4μm,所述外延层的电阻率为1.0Ω·cm~2.2Ω·cm。Preferably, in the bipolar PNP transistor, the thickness of the epitaxial layer is 2.5 μm˜4 μm, and the resistivity of the epitaxial layer is 1.0Ω·cm˜2.2Ω·cm.
优选的,在所述的双极PNP晶体管中,还包括:形成于所述衬底和外延层之间的埋层和下隔离区;所述下隔离区环绕所述埋层,所述深磷区与所述埋层连接。Preferably, in the bipolar PNP transistor, it also includes: a buried layer and a lower isolation region formed between the substrate and the epitaxial layer; the lower isolation region surrounds the buried layer, and the deep phosphorus region is connected to the buried layer.
优选的,在所述的双极PNP晶体管中,还包括:形成于外延层中的上隔离区;所述上隔离区与所述下隔离区连接。Preferably, the bipolar PNP transistor further includes: an upper isolation region formed in the epitaxial layer; the upper isolation region is connected to the lower isolation region.
优选的,在所述的双极PNP晶体管中,还包括:形成于所述外延层表面的轻掺杂层,所述轻掺杂层的浓度比外延层的浓度高一个数量级。Preferably, the bipolar PNP transistor further includes: a lightly doped layer formed on the surface of the epitaxial layer, the concentration of the lightly doped layer being an order of magnitude higher than that of the epitaxial layer.
优选的,在所述的双极PNP晶体管中,所述衬底、下隔离区、上隔离区、发射区和集电区的掺杂类型均为P型,所述外延层、埋层、轻掺杂层、深磷区和基区的掺杂类型均为N型。Preferably, in the bipolar PNP transistor, the doping types of the substrate, the lower isolation region, the upper isolation region, the emitter region and the collector region are all P-type, and the epitaxial layer, buried layer, light The doping types of the doped layer, the deep phosphorus region and the base region are all N type.
优选的,在所述的双极PNP晶体管中,还包括:形成于所述第二层间介质层和第二互连线上的钝化层。Preferably, the bipolar PNP transistor further includes: a passivation layer formed on the second interlayer dielectric layer and the second interconnection line.
本发明还提供了一种双极PNP晶体管的制造方法,所述双极PNP晶体管的制造方法包括以下步骤:The present invention also provides a method for manufacturing a bipolar PNP transistor, the method for manufacturing a bipolar PNP transistor includes the following steps:
提供一衬底;providing a substrate;
在所述衬底上形成外延层;forming an epitaxial layer on the substrate;
在所述外延层中依次形成深磷区、基区、集电区和发射区;sequentially forming a deep phosphorus region, a base region, a collector region and an emitter region in the epitaxial layer;
在所述外延层上依次形成第一层间介质层和电压调变介质层;sequentially forming a first interlayer dielectric layer and a voltage modulation dielectric layer on the epitaxial layer;
在所述第一层间介质层和电压调变介质层上形成第一互连线;forming a first interconnect line on the first interlayer dielectric layer and the voltage modulation dielectric layer;
在所述第一层间介质层和第一互连线上形成第二层间介质层;forming a second interlayer dielectric layer on the first interlayer dielectric layer and the first interconnect;
在所述第二层间介质层上形成第二互连线;forming a second interconnection line on the second interlayer dielectric layer;
其中,所述电压调变介质层覆盖于所述基区上,并通过所述第一互连线实现电性引出。Wherein, the voltage-modulating dielectric layer covers the base region, and is electrically drawn out through the first interconnection line.
优选的,在所述的双极PNP晶体管的制造方法中,所述集电区环绕于所述基区,所述基区环绕于所述发射区;所述第一互连线与所述深磷区、发射区和集电区连接,用于实现所述深磷区和集电区的电性引出;所述第二互连线与位于发射区上面的第一互连线连接,用于实现所述发射区的电性引出。Preferably, in the manufacturing method of the bipolar PNP transistor, the collector region surrounds the base region, and the base region surrounds the emitter region; the first interconnection line and the deep The phosphorus region, the emitter region and the collector region are connected to realize the electrical extraction of the deep phosphorus region and the collector region; the second interconnection is connected to the first interconnection above the emitter region for The electrical extraction of the emitting area is realized.
优选的,在所述的双极PNP晶体管的制造方法中,所述电压调变介质层包括二氧化硅层和氮化硅层;所述二氧化硅层位于所述氮化硅层的下面,所述第一互连线覆盖于所述氮化硅层的上面。Preferably, in the manufacturing method of the bipolar PNP transistor, the voltage modulation medium layer includes a silicon dioxide layer and a silicon nitride layer; the silicon dioxide layer is located under the silicon nitride layer, The first interconnection covers the silicon nitride layer.
优选的,在所述的双极PNP晶体管的制造方法中,所述二氧化硅层厚度为150~800埃,所述氮化硅层厚度为300~1800埃。Preferably, in the manufacturing method of the bipolar PNP transistor, the thickness of the silicon dioxide layer is 150-800 angstroms, and the thickness of the silicon nitride layer is 300-1800 angstroms.
优选的,在所述的双极PNP晶体管的制造方法中,所述外延层的厚度为2.5μm~4μm,所述外延层的电阻率为1.0Ω·cm~2.2Ω·cm。Preferably, in the manufacturing method of the bipolar PNP transistor, the thickness of the epitaxial layer is 2.5 μm˜4 μm, and the resistivity of the epitaxial layer is 1.0Ω·cm˜2.2Ω·cm.
优选的,在所述的双极PNP晶体管的制造方法中,在形成外延层之前,还包括:在所述衬底中依次形成埋层和下隔离区;所述下隔离区环绕所述埋层,所述深磷区与所述埋层连接。Preferably, in the manufacturing method of the bipolar PNP transistor, before forming the epitaxial layer, it also includes: sequentially forming a buried layer and a lower isolation region in the substrate; the lower isolation region surrounds the buried layer , the deep phosphorus region is connected to the buried layer.
优选的,在所述的双极PNP晶体管的制造方法中,在形成外延层之后,还包括:在所述外延层的表面形成轻掺杂层,所述轻掺杂层的浓度比外延层的浓度高一个数量级。Preferably, in the manufacturing method of the bipolar PNP transistor, after forming the epitaxial layer, it also includes: forming a lightly doped layer on the surface of the epitaxial layer, the concentration of the lightly doped layer is higher than that of the epitaxial layer concentration is an order of magnitude higher.
优选的,在所述的双极PNP晶体管的制造方法中,在形成基区之前,在形成轻掺杂层之后,还包括:在所述外延层中形成上隔离区;所述上隔离区与所述下隔离区连接。Preferably, in the manufacturing method of the bipolar PNP transistor, before forming the base region and after forming the lightly doped layer, it further includes: forming an upper isolation region in the epitaxial layer; the upper isolation region and The lower isolation zone is connected.
优选的,在所述的双极PNP晶体管的制造方法中,所述衬底、下隔离区、上隔离区、发射区和集电区的掺杂类型均为P型,所述外延层、埋层、轻掺杂层、深磷区和基区的掺杂类型均为N型。Preferably, in the manufacturing method of the bipolar PNP transistor, the doping types of the substrate, the lower isolation region, the upper isolation region, the emitter region and the collector region are all P-type, and the epitaxial layer, buried The doping types of layer, lightly doped layer, deep phosphorus region and base region are all N type.
优选的,在所述的双极PNP晶体管的制造方法中,在形成第二互连线之后,还包括:在所述第二层间介质层和第二互连线上形成钝化层。Preferably, in the manufacturing method of the bipolar PNP transistor, after forming the second interconnection, it further includes: forming a passivation layer on the second interlayer dielectric layer and the second interconnection.
在本发明提供的双极PNP晶体管及其制造方法中,在基区上方形成电压调变介质层,所述电压调变介质层通过第一互连线实现电性引出,如此,通过改变电压调变介质层的感应电荷数量可使得基区表面的电荷浓度发生改变,从而实现小电流放大倍数可调。In the bipolar PNP transistor and its manufacturing method provided by the present invention, a voltage-modulating dielectric layer is formed above the base region, and the voltage-modulating dielectric layer is electrically drawn out through the first interconnection line. In this way, by changing the voltage regulation The amount of induced charges in the variable dielectric layer can change the charge concentration on the surface of the base region, thereby realizing the adjustable magnification of small currents.
附图说明Description of drawings
图1是本发明一实施例的双极PNP晶体管的制造方法的流程示意图;Fig. 1 is the schematic flow sheet of the manufacturing method of the bipolar PNP transistor of an embodiment of the present invention;
图2至图13是本发明一实施例的双极PNP晶体管的制造方法各步骤的器件的结构示意图。2 to 13 are structural schematic diagrams of devices in each step of the manufacturing method of the bipolar PNP transistor according to an embodiment of the present invention.
具体实施方式detailed description
以下结合附图和具体实施例对本发明提出的双极PNP晶体管及其制造方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The bipolar PNP transistor and its manufacturing method proposed by the present invention will be further described in detail below with reference to the drawings and specific embodiments. Advantages and features of the present invention will be apparent from the following description and claims. It should be noted that all the drawings are in a very simplified form and use imprecise scales, and are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.
请参考图13,其为本发明实施例的双极PNP晶体管的结构示意图。如图13所示,所述双极PNP晶体管100包括:衬底10;形成于所述衬底10上的外延层13;形成于所述外延层13中的深磷区14、基区16、集电区17和发射区18;形成于所述外延层13上的第一层间介质层19和电压调变介质层20;形成于所述第一层间介质层19和电压调变介质层20上的第一互连线21;形成于所述第一层间介质层19和第一互连线21上的第二层间介质层22;形成于所述第二层间介质层22上的第二互连线23;其中,所述电压调变介质层20形成于所述基区16上,并通过所述第一互连线21实现电性引出。Please refer to FIG. 13 , which is a schematic structural diagram of a bipolar PNP transistor according to an embodiment of the present invention. As shown in FIG. 13 , the bipolar PNP transistor 100 includes: a substrate 10; an epitaxial layer 13 formed on the substrate 10; a deep phosphorus region 14 formed in the epitaxial layer 13, a base region 16, The collector region 17 and the emitter region 18; the first interlayer dielectric layer 19 and the voltage modulation dielectric layer 20 formed on the epitaxial layer 13; the first interlayer dielectric layer 19 and the voltage modulation dielectric layer formed on the The first interconnection line 21 on the 20; the second interlayer dielectric layer 22 formed on the first interlayer dielectric layer 19 and the first interconnection line 21; the second interlayer dielectric layer 22 formed on the second interlayer dielectric layer 22 The second interconnection line 23; wherein, the voltage modulation medium layer 20 is formed on the base region 16, and is electrically extracted through the first interconnection line 21.
具体的,请继续参考图13,本实施例中,所述衬底10采用掺杂类型为P型且晶向为<111>的硅衬底,其电阻率的范围为10Ω·cm~20Ω·cm。所述衬底10上形成有外延层13,所述外延层13的掺杂类型为N型,其电阻率的范围为1.0Ω·cm~2.2Ω·cm。所述外延层13的厚度优选在2.5μm到4μm之间,该厚度范围可以与现有的小规则双极工艺的平台相匹配。Specifically, please continue to refer to FIG. 13. In this embodiment, the substrate 10 is a silicon substrate whose doping type is P-type and whose crystal orientation is <111>, and its resistivity ranges from 10Ω·cm to 20Ω·cm. cm. An epitaxial layer 13 is formed on the substrate 10 , the doping type of the epitaxial layer 13 is N type, and its resistivity ranges from 1.0Ω·cm to 2.2Ω·cm. The thickness of the epitaxial layer 13 is preferably between 2.5 μm and 4 μm, and this thickness range can match the platform of the existing small regular bipolar process.
所述外延层13中形成有深磷区14、上隔离区15、基区16、集电区17和发射区18,其中,深磷区14和所述基区16的掺杂类型为N型,所述集电区17、发射区18和上隔离区15的掺杂类型为P型。所述集电区17环绕于所述基区16,所述基区16环绕于所述发射区18。A deep phosphorus region 14, an upper isolation region 15, a base region 16, a collector region 17 and an emitter region 18 are formed in the epitaxial layer 13, wherein the doping type of the deep phosphorus region 14 and the base region 16 is N type , the doping type of the collector region 17, the emitter region 18 and the upper isolation region 15 is P type. The collector region 17 surrounds the base region 16 , and the base region 16 surrounds the emitter region 18 .
所述衬底10和所述外延层13之间形成有埋层11和下隔离区12,所述下隔离区12环绕于所述埋层11。其中,所述埋层11的掺杂类型为N型,所述下隔离区12的掺杂类型为P型。所述深磷区14与所述埋层11连接,所述上隔离区15与所述下隔离区12连接。可见,所述上隔离区15和所述下隔离区12组合形成的隔离结构区环绕于所述埋层11及埋层11上面的深磷区14、基区16、集电区17和发射区18。A buried layer 11 and a lower isolation region 12 are formed between the substrate 10 and the epitaxial layer 13 , and the lower isolation region 12 surrounds the buried layer 11 . Wherein, the doping type of the buried layer 11 is N type, and the doping type of the lower isolation region 12 is P type. The deep phosphorus region 14 is connected to the buried layer 11 , and the upper isolation region 15 is connected to the lower isolation region 12 . It can be seen that the isolation structure region formed by the combination of the upper isolation region 15 and the lower isolation region 12 surrounds the buried layer 11 and the deep phosphorus region 14 above the buried layer 11, the base region 16, the collector region 17 and the emitter region 18.
如图13所示,所述外延层13上形成有第一层间介质层19和电压调变介质层20,所述第一层间介质层19和电压调变介质层20上形成有第一互连线21。其中,电压调变介质层20位于所述基区16的上并覆盖整个基区16,所述第一层间介质层19对应所述深磷区14、集电区17和发射区18的区域形成有第一接触孔,第一互连线21通过第一接触孔与所述深磷区14、集电区17和发射区18连接,实现所述深磷区14和集电区17的电性引出。基区16则通过外延层13和深磷区14进而与第一互连线21电性连接,从而实现所述基区16的电性引出。同时,所述第一层间介质层19对应所述基区14的区域形成有电压调变介质层窗口,所述电压调变介质层20形成于所述电压调变介质层窗口中,所述第一互连线21覆盖于所述电压调变介质层20上并实现电压变介质层20的电性引出。本实施例中,所述电压调变介质层20包括二氧化硅层和氮化硅层,所述氮化硅层覆盖于所述二氧化硅层上,所述第一互连线21覆盖于所述氮化硅层上。所述二氧化硅层厚度为150埃~800埃,所述氮化硅层厚度为300埃~1800埃。As shown in FIG. 13, a first interlayer dielectric layer 19 and a voltage modulation dielectric layer 20 are formed on the epitaxial layer 13, and a first interlayer dielectric layer 19 and a voltage modulation dielectric layer 20 are formed on the first interlayer dielectric layer 19. Interconnect 21. Wherein, the voltage modulating dielectric layer 20 is located on the base region 16 and covers the entire base region 16, and the first interlayer dielectric layer 19 corresponds to the regions of the deep phosphorus region 14, the collector region 17 and the emitter region 18 A first contact hole is formed, and the first interconnection line 21 is connected to the deep phosphorus region 14, the collector region 17 and the emitter region 18 through the first contact hole, so as to realize the electrical connection between the deep phosphorus region 14 and the collector region 17. sex elicited. The base region 16 is then electrically connected to the first interconnection line 21 through the epitaxial layer 13 and the deep phosphorus region 14 , so as to realize the electrical extraction of the base region 16 . At the same time, the region of the first interlayer dielectric layer 19 corresponding to the base region 14 is formed with a voltage-modulating dielectric layer window, and the voltage-modulating dielectric layer 20 is formed in the voltage-modulating dielectric layer window. The first interconnection line 21 covers the voltage-modulating medium layer 20 and realizes electrical extraction of the voltage-modulating medium layer 20 . In this embodiment, the voltage modulating medium layer 20 includes a silicon dioxide layer and a silicon nitride layer, the silicon nitride layer covers the silicon dioxide layer, and the first interconnection line 21 covers on the silicon nitride layer. The silicon dioxide layer has a thickness of 150 angstroms to 800 angstroms, and the silicon nitride layer has a thickness of 300 angstroms to 1800 angstroms.
如图13所示,所述第一层间介质层19和第一互连线21上形成有第二层间介质层22。所述第二层间介质层22上形成有第二互连线23,并且,所述第二层间介质层22对应于所述发射区18的区域形成有第二接触孔,所述第二互连线23通过第二接触孔与位于发射区18上的第一互连线21连接,实现所述发射区18的电性引出。As shown in FIG. 13 , a second interlayer dielectric layer 22 is formed on the first interlayer dielectric layer 19 and the first interconnection lines 21 . A second interconnection line 23 is formed on the second interlayer dielectric layer 22, and a second contact hole is formed in a region of the second interlayer dielectric layer 22 corresponding to the emission region 18, the second The interconnection line 23 is connected to the first interconnection line 21 on the emission area 18 through the second contact hole, so as to realize the electrical extraction of the emission area 18 .
如图13所示,所述双极PNP晶体管100还包括:形成于所述第二层间介质层和第二互连线上的钝化层24。所述钝化层24优选为氮化硅层或含氮化硅层的复合结构,所述氮化硅层能够有效阻止外界可动离子、水汽等进入电压调变介质层20,可保证电压调变介质层20不受外界的影响,实现感应电荷数量的长期保存。As shown in FIG. 13 , the bipolar PNP transistor 100 further includes: a passivation layer 24 formed on the second interlayer dielectric layer and the second interconnection line. The passivation layer 24 is preferably a silicon nitride layer or a composite structure containing a silicon nitride layer. The silicon nitride layer can effectively prevent external movable ions, water vapor, etc. The variable medium layer 20 is not affected by the outside world, and realizes long-term storage of the induced charge quantity.
所述双极PNP晶体管100可以进一步包括形成于所述外延层13上的轻掺杂层25,所述轻掺杂层25的掺杂类型为N型。所述轻掺杂层25位于所述外延层13的表面,其掺杂浓度一般比外延层13的掺杂浓度高一个数量级。所述轻掺杂层25的掺杂浓度一般为1E16cm-2~4E16cm-2,其作用是抑制集电区17、发射区18和上隔离区15的横向扩散,增加集电区17、发射区18和上隔离区15之间的有效距离,实现小面积晶体管的制造。同时,所述轻掺杂层25有利于提高双层布线中第一互连线下的寄生场开启电压,以避免寄生效应影响晶体管的正常工作。The bipolar PNP transistor 100 may further include a lightly doped layer 25 formed on the epitaxial layer 13 , and the doping type of the lightly doped layer 25 is N type. The lightly doped layer 25 is located on the surface of the epitaxial layer 13 , and its doping concentration is generally an order of magnitude higher than that of the epitaxial layer 13 . The doping concentration of the lightly doped layer 25 is generally 1E16cm -2 ~ 4E16cm -2 , its function is to suppress the lateral diffusion of the collector region 17, the emitter region 18 and the upper isolation region 15, increase the concentration of the collector region 17, the emitter region The effective distance between 18 and the upper isolation region 15 realizes the manufacture of small-area transistors. At the same time, the lightly doped layer 25 is beneficial to increase the turn-on voltage of the parasitic field under the first interconnection line in the double-layer wiring, so as to prevent the parasitic effect from affecting the normal operation of the transistor.
在本发明实施例提供的双极PNP晶体管100中,基区16上面的覆盖有电压调变介质层20,所述电压调变介质层20通过第一互连线21实现电性引出。所述电压调变介质层20包括二氧化硅层以及形成于所述二氧化硅层上的氮化硅层。其中,电压调变介质层20的氮化硅层具有电荷存储特性,加大负压可以减少氮化硅层的负电荷比例,加大正压又可恢复氮化硅层的负电荷比例,因此通过第一互连线21加大正反向电压脉冲,可以改变电压调变介质层20中的感应电荷数量。同时,由于PNP管的正常工作电压远比电压调变介质层20上加的正反向脉冲电压低,由此感应电荷数量可长期保持稳定。由于双极工艺制造双极PNP晶体管的小电流放大倍数受到基区表面的电荷浓度影响,因此改变感应电荷数量能够使得基区16表面的电荷浓度发生改变,进而改变了双极PNP晶体管的基区16和集电区17之间的漏电沟道。可见,通过改变电压调变介质层20中的感应电荷数量,能够控制所述双极PNP晶体管100的基区16和集电区17之间的漏电沟道,改变双极PNP晶体管100在小电流下的放大倍数。In the bipolar PNP transistor 100 provided by the embodiment of the present invention, the base region 16 is covered with a voltage-modulating dielectric layer 20 , and the voltage-modulating dielectric layer 20 is electrically extracted through the first interconnection line 21 . The voltage modulating medium layer 20 includes a silicon dioxide layer and a silicon nitride layer formed on the silicon dioxide layer. Wherein, the silicon nitride layer of the voltage modulating medium layer 20 has charge storage characteristics, increasing the negative pressure can reduce the negative charge ratio of the silicon nitride layer, and increasing the positive voltage can restore the negative charge ratio of the silicon nitride layer, therefore By increasing the forward and reverse voltage pulses through the first interconnection line 21 , the amount of induced charges in the voltage modulation medium layer 20 can be changed. At the same time, since the normal operating voltage of the PNP transistor is much lower than the forward and reverse pulse voltage applied to the voltage-modulating dielectric layer 20, the amount of induced charges can be kept stable for a long time. Because the small current magnification of the bipolar PNP transistor manufactured by the bipolar process is affected by the charge concentration on the surface of the base region, changing the amount of induced charges can change the charge concentration on the surface of the base region 16, thereby changing the base region of the bipolar PNP transistor. 16 and the leakage channel between the collector region 17. It can be seen that by changing the amount of induced charge in the voltage modulating dielectric layer 20, the leakage channel between the base region 16 and the collector region 17 of the bipolar PNP transistor 100 can be controlled, and the low current flow rate of the bipolar PNP transistor 100 can be changed. The lower magnification.
相应的,本实施例还提供了一种双极PNP晶体管的制造方法。请参考图1,并结合图2至图13,所述双极PNP晶体管的制造方法包括以下步骤:Correspondingly, this embodiment also provides a method for manufacturing a bipolar PNP transistor. Please refer to Fig. 1, and in conjunction with Fig. 2 to Fig. 13, the manufacturing method of described bipolar PNP transistor comprises the following steps:
S10:提供一衬底10;S10: providing a substrate 10;
S11:在所述衬底10上形成外延层13;S11: forming an epitaxial layer 13 on the substrate 10;
S12:在所述外延层13中依次形成深磷区14、基区16、集电区17和发射区18;S12: sequentially forming a deep phosphorus region 14, a base region 16, a collector region 17 and an emitter region 18 in the epitaxial layer 13;
S13:在所述外延层13上依次形成第一层间介质层19和电压调变介质层20;S13: sequentially forming a first interlayer dielectric layer 19 and a voltage modulation dielectric layer 20 on the epitaxial layer 13;
S14:在所述第一层间介质层19和电压调变介质层20上形成第一互连线21;S14: forming a first interconnection line 21 on the first interlayer dielectric layer 19 and the voltage modulation dielectric layer 20;
S15:在所述第一层间介质层19和第一互连线21上形成第二层间介质层22;S15: forming a second interlayer dielectric layer 22 on the first interlayer dielectric layer 19 and the first interconnection line 21;
S16:在所述第二层间介质层22上形成第二互连线23;S16: forming a second interconnection line 23 on the second interlayer dielectric layer 22;
其中,所述电压调变介质层20覆盖于所述基区16上,并通过所述第一互连线21实现电性引出。Wherein, the voltage-modulating dielectric layer 20 covers the base region 16 and is electrically extracted through the first interconnection line 21 .
具体的,如图2所示,首先,提供一衬底10,所述衬底10采用掺杂类型为P型且晶向为<111>的硅衬底,其电阻率的范围为10Ω·cm~20Ω·cm。Specifically, as shown in FIG. 2, firstly, a substrate 10 is provided, and the substrate 10 adopts a silicon substrate whose doping type is P-type and whose crystal orientation is <111>, and its resistivity ranges from 10Ω·cm ~20Ω·cm.
接着,如图3所示,在所述衬底10中形成埋层11和下隔离区12,所述下隔离区12环绕与所述埋层11。其中,所述埋层11的掺杂类型为N型,所述下隔离区12的掺杂类型为P型。Next, as shown in FIG. 3 , a buried layer 11 and a lower isolation region 12 are formed in the substrate 10 , and the lower isolation region 12 surrounds the buried layer 11 . Wherein, the doping type of the buried layer 11 is N type, and the doping type of the lower isolation region 12 is P type.
然后,如图4所示,在所述衬底10上通过外延生长工艺形成外延层13,所述外延层13的掺杂类型为N型。为方便与现有的小规则双极工艺的平台相匹配,所述外延层13的厚度优选控制在2.5μm到4μm之间,其电阻率的范围为1.0Ω·cm~2.2Ω·cm,埋层11和下隔离区12位于所述衬底10和外延层13之间。Then, as shown in FIG. 4 , an epitaxial layer 13 is formed on the substrate 10 through an epitaxial growth process, and the doping type of the epitaxial layer 13 is N type. In order to facilitate matching with the existing small-rule bipolar process platform, the thickness of the epitaxial layer 13 is preferably controlled between 2.5 μm and 4 μm, and its resistivity ranges from 1.0Ω·cm to 2.2Ω·cm. Layer 11 and lower isolation region 12 are located between said substrate 10 and epitaxial layer 13 .
接着,如图5所示,可以采用高能量小剂量场注入工艺在所述外延层13上形成轻掺杂层25,所述轻掺杂层25的掺杂类型为N型。形成轻掺杂层25的工艺步骤可以在形成外延层13之后形成深磷区14之前,也可以在形成在上隔离区之后形成发射区和集电区之前,改变该工艺的先后次序并不影响器件的结构和性能。所述轻掺杂层25位于所述外延层13的表面,其掺杂浓度一般比外延层13的掺杂浓度高一个数量级。本实施例中,所述轻掺杂层25的掺杂浓度为1E16cm-2~4E16cm-2。所述轻掺杂层25的作用是抑制后续工艺中的集电区17、发射区18和上隔离区15的横向扩散,增加集电区17、发射区18和上隔离区15之间的有效距离,实现小面积晶体管的制造。同时,所述轻掺杂层25有利于提高双层布线中第一互连线下的寄生场开启电压,以避免寄生效应影响晶体管的正常工作。Next, as shown in FIG. 5 , a lightly doped layer 25 may be formed on the epitaxial layer 13 by using a high-energy low-dose field implantation process, and the doping type of the lightly doped layer 25 is N type. The process steps of forming the lightly doped layer 25 can be formed after forming the epitaxial layer 13 before forming the deep phosphorus region 14, and can also be formed after forming the upper isolation region and before forming the emitter region and the collector region. Changing the sequence of the process does not affect Device structure and performance. The lightly doped layer 25 is located on the surface of the epitaxial layer 13 , and its doping concentration is generally an order of magnitude higher than that of the epitaxial layer 13 . In this embodiment, the doping concentration of the lightly doped layer 25 is 1E16cm −2 to 4E16cm −2 . The function of the lightly doped layer 25 is to suppress the lateral diffusion of the collector region 17, the emitter region 18 and the upper isolation region 15 in the subsequent process, and increase the effective distance between the collector region 17, the emitter region 18 and the upper isolation region 15. The distance enables the fabrication of small-area transistors. At the same time, the lightly doped layer 25 is beneficial to increase the turn-on voltage of the parasitic field under the first interconnection line in the double-layer wiring, so as to prevent the parasitic effect from affecting the normal operation of the transistor.
如图6所示,形成轻掺杂层25之后,在所述外延层13中形成深磷区14、上隔离区15、基区16、集电区17和发射区18。本实施例中,可依次形成深磷区14、上隔离区15、基区16,然后同时形成集电区17和发射区18,或者根据具体工艺要求调整上述结构的形成顺序。其中,所述深磷区14和所述基区16的掺杂类型为N型,所述集电区17、发射区18和上隔离区15的掺杂类型为P型,所述集电区17环绕所述基区16,所述基区16环绕所述发射区18,所述深磷区14与所述埋层11连接,所述上隔离区15所述下隔离区12连接。可见,所述上隔离区15和所述下隔离区12组合形成的隔离结构区环绕于所述埋层11及埋层11上面的深磷区14、基区16、集电区17和发射区18。As shown in FIG. 6 , after the lightly doped layer 25 is formed, a deep phosphorus region 14 , an upper isolation region 15 , a base region 16 , a collector region 17 and an emitter region 18 are formed in the epitaxial layer 13 . In this embodiment, the deep phosphorus region 14, the upper isolation region 15, and the base region 16 can be formed sequentially, and then the collector region 17 and the emitter region 18 can be formed simultaneously, or the formation sequence of the above structures can be adjusted according to specific process requirements. Wherein, the doping type of the deep phosphorus region 14 and the base region 16 is N type, the doping type of the collector region 17, the emitter region 18 and the upper isolation region 15 is P type, and the collector region 17 surrounds the base region 16, the base region 16 surrounds the emitter region 18, the deep phosphorus region 14 is connected to the buried layer 11, and the upper isolation region 15 is connected to the lower isolation region 12. It can be seen that the isolation structure region formed by the combination of the upper isolation region 15 and the lower isolation region 12 surrounds the buried layer 11 and the deep phosphorus region 14 above the buried layer 11, the base region 16, the collector region 17 and the emitter region 18.
然后,如图7和图8所示,在所述轻掺杂层25上依次形成第一层间介质层19和电压调变介质层20。所述电压调变介质层20包括二氧化硅层(SiO2)和形成于所述二氧化硅层上的氮化硅层(SiN),所述二氧化硅层厚度优选为150埃~800埃,所述氮化硅层厚度优选为300埃~1800埃。Then, as shown in FIG. 7 and FIG. 8 , the first interlayer dielectric layer 19 and the voltage modulation dielectric layer 20 are sequentially formed on the lightly doped layer 25 . The voltage-modulating dielectric layer 20 includes a silicon dioxide layer (SiO 2 ) and a silicon nitride layer (SiN) formed on the silicon dioxide layer, and the thickness of the silicon dioxide layer is preferably 150 angstroms to 800 angstroms , the thickness of the silicon nitride layer is preferably 300 angstroms to 1800 angstroms.
如图9所示,形成电压调变介质层20之后,在第一层间介质层19上形成多个第一接触孔。所述多个第一接触孔分别位于所述深磷区14,集电区17和发射区18上。As shown in FIG. 9 , after forming the voltage modulating dielectric layer 20 , a plurality of first contact holes are formed on the first interlayer dielectric layer 19 . The plurality of first contact holes are respectively located on the deep phosphorus region 14 , the collector region 17 and the emitter region 18 .
如图10所示,形成第一接触孔之后,在所述第一层间介质层19和电压调变介质层20上形成第一互连线21。所述第一互连线21覆盖于所述电压调变介质层20上,并通过第一接触孔与所述深磷区14、集电区17和发射区18电性连接,实现所述深磷区14和集电区17的电性引出,基区16则通过外延层13和深磷区14进而与第一互连线21电性连接。同时,所述第一互连线21覆盖于所述电压调变介质层20上并实现电压变介质层20的电性引出。As shown in FIG. 10 , after forming the first contact hole, a first interconnection line 21 is formed on the first interlayer dielectric layer 19 and the voltage modulation dielectric layer 20 . The first interconnection 21 covers the voltage modulation dielectric layer 20, and is electrically connected to the deep phosphorus region 14, the collector region 17 and the emitter region 18 through a first contact hole, realizing the deep The phosphorus region 14 and the collector region 17 are electrically drawn out, and the base region 16 is electrically connected to the first interconnection line 21 through the epitaxial layer 13 and the deep phosphorus region 14 . At the same time, the first interconnection line 21 covers the voltage-modulating medium layer 20 and realizes electrical extraction of the voltage-modulating medium layer 20 .
本实施例中,电压调变介质层20中的二氧化硅层是直接覆盖于所述轻掺杂层25上,氮化硅层与所述第一互连线21连接并被第一互连线21完全覆盖。在本发明的其他实施例中,也可以不形成轻掺杂层25,在形成外延层13之后直接在所述外延层13中形成深磷区14、上隔离区15、基区16、集电区17和发射区18,接着在所述外延层13上依次形成第一层间介质层19和电压调变介质层20。其中,所述电压调变介质层20位于所述基区16的上面并直接覆盖整个基区16,所述电压调变介质层20中的二氧化硅层与所述基区16连接。In this embodiment, the silicon dioxide layer in the voltage modulating dielectric layer 20 is directly covered on the lightly doped layer 25, and the silicon nitride layer is connected to the first interconnection line 21 and is connected by the first interconnection line 21. Line 21 is completely covered. In other embodiments of the present invention, the lightly doped layer 25 may not be formed, and the deep phosphorus region 14, the upper isolation region 15, the base region 16, the collector Region 17 and emitter region 18 , and then a first interlayer dielectric layer 19 and a voltage-modulating dielectric layer 20 are sequentially formed on the epitaxial layer 13 . Wherein, the voltage-modulating dielectric layer 20 is located above the base region 16 and directly covers the entire base region 16 , and the silicon dioxide layer in the voltage-modulating dielectric layer 20 is connected to the base region 16 .
如图11所示,接着,在所述第一层间介质层19和第一互连线21上形成第二层间介质层22,形成第二层间介质层22之后在第二层间介质层22对应发射区18的区域形成第二接触孔。第二层间介质层22覆盖第一层间介质层19和第一互连线21,所述第二接触孔位于所述发射区18的上面。As shown in FIG. 11, then, a second interlayer dielectric layer 22 is formed on the first interlayer dielectric layer 19 and the first interconnection 21, and after the second interlayer dielectric layer 22 is formed, the second interlayer dielectric layer 22 is formed. The region of layer 22 corresponding to emitter region 18 forms a second contact hole. The second interlayer dielectric layer 22 covers the first interlayer dielectric layer 19 and the first interconnection line 21 , and the second contact hole is located above the emission region 18 .
如图12所示,形成第二接触孔之后在所述第二层间介质层22上形成第二互连线23。所述第二互连线23通过第二接触孔与所述发射区18上的第一互连线21连接,实现所述发射区18的电性引出。As shown in FIG. 12 , after forming the second contact hole, a second interconnection line 23 is formed on the second interlayer dielectric layer 22 . The second interconnection line 23 is connected to the first interconnection line 21 on the emitting region 18 through a second contact hole, so as to realize electrical extraction of the emitting region 18 .
如图13所示,最后,在所述第二层间介质层22和第二互连线23上形成钝化层24。所述钝化层24覆盖于第二层间介质层22和第二互连线23上,所述钝化层24为氮化硅层或含氮化硅层的复合结构,所述氮化硅层能够有效地阻止外界可动离子、水汽等进入电压调变介质层20,保证电压调变介质层20不受外界的影响,实现感应电荷数量的长期保存。As shown in FIG. 13 , finally, a passivation layer 24 is formed on the second interlayer dielectric layer 22 and the second interconnection line 23 . The passivation layer 24 covers the second interlayer dielectric layer 22 and the second interconnection 23, the passivation layer 24 is a silicon nitride layer or a composite structure containing a silicon nitride layer, and the silicon nitride The layer can effectively prevent external movable ions, water vapor, etc. from entering the voltage modulation medium layer 20, ensure that the voltage modulation medium layer 20 is not affected by the outside world, and realize long-term storage of the induced charge quantity.
按照本发明实施例提供的双极PNP晶体管的制造方法,形成的双极PNP晶体管100在基区16上形成有电压调变介质层20,所述电压调变介质层20通过第一互连线21引出。将基区接地,在第一互连线21引出上加大正反向电压脉冲,可以改变电压调变介质层20中的感应电荷数量,感应电荷数量的改变会使得电压调变介质层20下面的基区16表面的电荷浓度发生变化,而基区16表面的电荷浓度决定基区16和集电区17之间的漏电沟道,因此,通过改变电压调变介质层20中的感应电荷数量,能够控制所述双极PNP晶体管100的小电流放大倍数。另外,由于PNP管的正常工作电压远比电压调变介质层20上加的正反向脉冲电压低,感应电荷数量可长时间保持不变,使得所述双极PNP晶体管的小电流放大倍数波动比较小。According to the manufacturing method of the bipolar PNP transistor provided in the embodiment of the present invention, the formed bipolar PNP transistor 100 has a voltage-modulating dielectric layer 20 formed on the base region 16, and the voltage-modulating dielectric layer 20 passes through the first interconnection line 21 elicited. The base area is grounded, and the forward and reverse voltage pulses are increased on the leads of the first interconnection line 21, which can change the amount of induced charges in the voltage modulation dielectric layer 20, and the change of the amount of induced charges will make the voltage modulation dielectric layer 20 below The charge concentration on the surface of the base region 16 changes, and the charge concentration on the surface of the base region 16 determines the leakage channel between the base region 16 and the collector region 17. Therefore, the amount of induced charges in the dielectric layer 20 can be adjusted by changing the voltage , the small current amplification factor of the bipolar PNP transistor 100 can be controlled. In addition, since the normal operating voltage of the PNP transistor is far lower than the forward and reverse pulse voltage applied on the voltage-modulating dielectric layer 20, the amount of induced charge can remain unchanged for a long time, so that the small current amplification factor of the bipolar PNP transistor fluctuates smaller.
综上,在本发明实施例提供的双极PNP晶体管及其制造方法中,在传统的双极工艺基础上通过在所述双极PNP晶体管的基区上形成二氧化硅层加氮化硅层的结构,利用所述氮化硅层的电荷存储特性,通过改变感应电荷数量以影响基区表面的电荷浓度,进而实现小电流放大倍数可调。To sum up, in the bipolar PNP transistor and its manufacturing method provided by the embodiment of the present invention, on the basis of the traditional bipolar process, a silicon dioxide layer plus a silicon nitride layer is formed on the base region of the bipolar PNP transistor The structure utilizes the charge storage characteristics of the silicon nitride layer to affect the charge concentration on the surface of the base region by changing the amount of induced charges, thereby realizing adjustable small current magnification.
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention based on the above disclosures shall fall within the protection scope of the claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310674022.1A CN103646963B (en) | 2013-12-10 | 2013-12-10 | bipolar PNP transistor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310674022.1A CN103646963B (en) | 2013-12-10 | 2013-12-10 | bipolar PNP transistor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103646963A CN103646963A (en) | 2014-03-19 |
CN103646963B true CN103646963B (en) | 2017-02-08 |
Family
ID=50252156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310674022.1A Active CN103646963B (en) | 2013-12-10 | 2013-12-10 | bipolar PNP transistor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103646963B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105529361B (en) * | 2014-09-30 | 2018-12-04 | 无锡华润矽科微电子有限公司 | Suspension collector PNP integrated circuit transistor and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87102851A (en) * | 1987-04-17 | 1988-05-25 | 无锡微电子联合公司 | Gate-controlled semiconductor tetrode |
CN1838413A (en) * | 2005-03-25 | 2006-09-27 | 冲电气工业株式会社 | semiconductor integrated circuit |
CN1996571A (en) * | 2006-12-04 | 2007-07-11 | 中国电子科技集团公司第二十四研究所 | A making method for the integration circuit of the CMOS low-voltage difference adjustor |
CN102637725A (en) * | 2012-04-26 | 2012-08-15 | 杭州士兰集成电路有限公司 | Device accomplished by adopting Bipolar low-pressure process and manufacturing method thereof |
CN203631560U (en) * | 2013-12-10 | 2014-06-04 | 杭州士兰集成电路有限公司 | Bipolar NPN transistor |
-
2013
- 2013-12-10 CN CN201310674022.1A patent/CN103646963B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87102851A (en) * | 1987-04-17 | 1988-05-25 | 无锡微电子联合公司 | Gate-controlled semiconductor tetrode |
CN1838413A (en) * | 2005-03-25 | 2006-09-27 | 冲电气工业株式会社 | semiconductor integrated circuit |
CN1996571A (en) * | 2006-12-04 | 2007-07-11 | 中国电子科技集团公司第二十四研究所 | A making method for the integration circuit of the CMOS low-voltage difference adjustor |
CN102637725A (en) * | 2012-04-26 | 2012-08-15 | 杭州士兰集成电路有限公司 | Device accomplished by adopting Bipolar low-pressure process and manufacturing method thereof |
CN203631560U (en) * | 2013-12-10 | 2014-06-04 | 杭州士兰集成电路有限公司 | Bipolar NPN transistor |
Also Published As
Publication number | Publication date |
---|---|
CN103646963A (en) | 2014-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11101304B2 (en) | Diode and fabrication method thereof, array substrate and display panel | |
CN106558543B (en) | Semiconductor structure and manufacturing method of electrostatic discharge protection device | |
JP5211095B2 (en) | Photodetector | |
JP6468631B2 (en) | Laminated protective device and manufacturing method thereof | |
CN112201723B (en) | A waveguide type photoelectric detector and its preparation method | |
CN103633128B (en) | bipolar NPN transistor and manufacture method thereof | |
CN109390385A (en) | A kind of unidirectional TVS device and preparation method thereof with negative resistance charactertistic | |
US11581449B2 (en) | Single-photon avalanche photodiode | |
CN103646963B (en) | bipolar PNP transistor and manufacturing method thereof | |
CN204348725U (en) | The low capacitor transient stage voltage suppressor device of a kind of single channel | |
CN106169508A (en) | A kind of two-way ultra-low capacitance Transient Voltage Suppressor and preparation method thereof | |
CN101563789A (en) | Light sensor with infrared suppression and use of sensor for backlight control | |
CN106229349B (en) | A kind of ultra-low capacitance low voltage semiconductor discharge tube chip and its manufacturing method | |
CN204348721U (en) | The low capacitor transient stage voltage suppressor device of a kind of multichannel | |
CN203631560U (en) | Bipolar NPN transistor | |
CN203631559U (en) | Bipolar NPN transistor | |
CN106129125A (en) | Three ends carry horizontal constant current device and the manufacture method thereof of safeguard function | |
CN206742245U (en) | A kind of TVS diode of bi-directional symmetrical | |
US3838439A (en) | Phototransistor having a buried base | |
CN205542847U (en) | Plane two -sided electrode simulation photoelectric detector chip | |
CN105914254B (en) | A kind of structural optimization method based on InGaAs InP heterojunction phototransistors | |
US11990505B2 (en) | Transient-voltage-suppression protection device, manufacturing process and electronic product | |
CN108565259B (en) | Semiconductor device and method of manufacturing the same | |
CN106206751A (en) | Three ends carry vertical-type constant current device and the manufacture method thereof of safeguard function | |
CN106252420A (en) | Three ends carry vertical-type constant current device and the manufacture method thereof of safeguard function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180312 Address after: 610404 in the Central Development Zone of ABA industry in Chengdu, Sichuan Patentee after: Chengdu Silan Semiconductor Manufacturing Co., Ltd. Address before: Hangzhou City, Zhejiang province 310018 (Hangzhou Xiasha) No. 10 East Road, economic and Technological Development Zone No. 308 Patentee before: Hangzhou Silan Integrated Circuit Co., Ltd. |