CN103644965B - 一种声波掠入射条件下声衬声阻抗测量方法 - Google Patents

一种声波掠入射条件下声衬声阻抗测量方法 Download PDF

Info

Publication number
CN103644965B
CN103644965B CN201310585710.0A CN201310585710A CN103644965B CN 103644965 B CN103644965 B CN 103644965B CN 201310585710 A CN201310585710 A CN 201310585710A CN 103644965 B CN103644965 B CN 103644965B
Authority
CN
China
Prior art keywords
sound
formula
lining
pipe
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310585710.0A
Other languages
English (en)
Other versions
CN103644965A (zh
Inventor
景晓东
赵鑫
孙晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201310585710.0A priority Critical patent/CN103644965B/zh
Publication of CN103644965A publication Critical patent/CN103644965A/zh
Application granted granted Critical
Publication of CN103644965B publication Critical patent/CN103644965B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本发明公开一种声波掠入射条件下声衬声阻抗测量方法,将声衬安装在具有矩形截面传声管一侧壁上;并获取声衬所在侧壁对侧选取M个测量点处的壁面声压;根据管道声传播的模态特性使得声管壁面声压可以写成指数函数叠加的形式,因此通过Prony方法可识别出声管内声传播的轴向波数;随后分两种情况进行声阻抗提取,当声管内气体为均匀流时,利用简单的频散关系和特征值方程即可得到声阻抗;当声管内气体为剪切流时,对Pridmore‑Brown方程进行数值求解后利用阻抗边界条件得到声阻抗;本发明的优点为:相比传统的提取方法,大大简化了提取过程,减少了壁面声压测量点的个数,而且不受出口反射的影响,为工业界提供了新的测试方法。

Description

一种声波掠入射条件下声衬声阻抗测量方法
技术领域
本发明属于航空航天技术领域,具体来说,是一种声波掠入射条件下声衬声阻抗测量方法。
背景技术
声衬作为一种吸声结构广泛应用于建筑设计和工业设备中,其作用是吸声降噪。对于航空发动机这一特定的应用场合而言,对声衬的各种机械性能要求都很严,要求声衬具有最小的厚度和重量并能承受相当大的压力和温度,当然最重要的是要具有优良的消声性能。航空发动机中主要使用的是局域反应声衬,因此,能否准确测量出局域反应声衬的阻抗值,对发动机消声意义重大。
阻抗的定义为频域内声压和法向声质点速度之比。然而,通过直接测量声压和法向声质点速度来测量阻抗显然是不可行的。因此,当前的阻抗测量方法都是基于一定模型假设的。
(1)传统测量方法
实验室中最常用的阻抗测量方法是阻抗管法,也叫驻波管法,主要包括单传声器法和双传声器法。这种方法是简单、有效,因而广泛的应用于吸声材料的阻抗测量。但是,这种方法不能考虑切向流动的影响,并假设声波是垂直壁面入射的。同时,该方法假设管道内只有平面波传播,所以阻抗管法会受限于管道截止频率。
Dean发展了一种原位现场双传声器法。该方法通过在声衬的背腔和面板上分别放置传声器来测量声衬的声阻抗。这种方法能考虑切向流动影响,在实际中也得到了广泛的应用。但是,这种方法是一种接触式的测量方法,会对背腔内的声场造成干扰。因此,为了不影响声衬背腔内的声场,传声器的尺寸必须很小。而对于多层声衬,或者背腔内充满多孔材料时,很难有效的布置传声器。同时,这种方法测量的只是声衬某个点处的声阻抗,并不能反映整个声衬的阻抗特性。
(2)无限长波导管方法
Armstrong等人最早发展了考虑管道内平均流动的“无限长波导管”方法。当管道中只有一个主模态传播时,壁面声压级和相位沿轴向的分布近似为一条直线。由声压级的斜率可以计算出轴向波数的虚部(代表声波的衰减特性),根据相位的分布可以计算出轴向波数的实部(代表声波的传播特性)。然后根据频散关系和特征值方程,可以很直接的通过轴向波数计算出声阻抗。
当平均流动为平行剪切流时,管道声传播的特征值问题并不能简化为一个单一的特征值方程,而是一个由Pridmore-Brown方程以及壁面边界条件构成的边值问题。当由刚壁面测量数据拟合得到轴向波数后,需要通过对Pridmore-Brown方程进行数值积分,再计算阻抗。Watson发展了一种包含一般剪切流效应的方法,通过对控制方程进行有限元离散,将未知阻抗值包含到一个矩阵中,利用该矩阵的行列式为0的条件可以得到声阻抗。这种方法的优点在于不用对Pridmore-Brown方程进行数值积分,同时也能考虑更一般的平均流动。
然而,“无限长波导管”方法假设管道无限长,管道内只有一个单向的模态传播,因此这种方法也被称为“单模态法”。而在实际流管中,在声衬前缘会激发出高阶模态,而且管道出口一般会存在反射,所以声衬段的声波是多模态传播的,声衬段的声压级分布并不是直线,而是会有一定的振荡。尽管可以采用最小二乘拟合来进行拟合,但是这样得到的轴向波数显然有很大的误差。因此,这种方法也不具有通用性。
(3)反测法
为了克服多模态传播给阻抗测量带来的问题,Watson等人提出了一种基于反问题思想的阻抗提取方法,即通过测量的声场信息反推出声阻抗。其基本思想是:假设一个初始阻抗Z0,求解管道声传播的正问题得到管道声场信息,然后通过一定优化算法寻找一个最优的阻抗值,使得计算与实验的得到声场信息误差最小。也就是说,这种方法由一个求解正问题的管道声传播模型和一种优化算法组成,而正问题模型往往可以考虑包含流动效应在内的多种因素,因此,这种方法得到了极大的发展。
尽管反测法获得了广泛的应用,但是这种方法也有它固有的弱点。主要有以下几个方面:
首先,并没有严格的理论能保证反测法的解是否唯一。如果不能保证反问题解的唯一性,则针对一组声压测量信息,反测法可能得到多个阻抗值。
其次,反测法需要反复的调用正问题模型,所以计算量是极其巨大的。
第三,优化过程中,初值的选取对结果有一定的影响。
第四,实验表明,这种反测方法在系统共振和反共振频率下测得的阻抗会出现异常,与预期的变化趋势不一致。
发明内容
为了解决上述问题,本发明提出一种可以满足测量要求,且少时高效的提取测试方法,以解决声波掠入射条件下声衬声阻抗的提取问题,并做到不依赖进出口边界条件、应用尽量少的传声器测点个数和过程计算时间。
1、一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:通过下述步骤实现:
步骤1:安装声衬;
在具有矩形截面声管上安装声衬;令声管两相对侧壁分别为侧壁A与侧壁B,则声衬安装在侧壁A上。
步骤2:测量声管侧壁B壁面处声压;
测量声管侧壁B壁面处,沿声管轴向上M个等间距节点的声压,包括声压幅值与相位,M≥8。
步骤3:利用直接提取法得出声衬的声阻抗;
在侧壁A与侧壁B的声管轴向中心线构成的平面内建立坐标系,令侧壁B的声管轴向中心线为x轴,正方向指向声管出口;声衬靠近声管入口一端与侧壁B的垂线为y轴,正方向指向侧壁A;侧壁A与侧壁B间距为H。
a、确定声管内声传播的轴向波数;
声管侧壁A壁面声压p的指数叠加形式为:
p ( x ) = Σ n = 1 N A n e - i k x , n x - - - ( 1 )
其中,N为截断模态数;A为模态幅值;kx为声管内轴向波数;n=1、2、3、…、N;e为自然底数;
根据式(1)得到M个等距节点的声压为:
p j = Σ n = 0 N A n μ n j - - - ( 2 )
其中,j=0,1,…,M-1;pj=p(jΔx);Δx为测量点的间距;
令μ12,…,μN为式(3)的根;
Σ s = 0 N C s μ N - s = 0 - - - ( 3 )
其中,s=0,1,…,N;C为系数;C0=1;
则根据式(2)与式(3)可得到M-N个方程:
Σ s = 0 N p N + r + s C s = 0 - - - ( 4 )
其中,r=0,1,…,M-N-1;且M≥2N。
通过基于奇异值分解的广义逆矩阵方法对式(2)与式(4)进行求解,得到式(3)的根μn
根据μn,通过式(5)得到声管内声传播的轴向波数kx
k x , n = i Δx ln ( μ n ) . - - - ( 5 )
b、得到声衬声阻抗;
Ⅰ、对于声管内气体流动均匀的情况下,通过下述方法得到声衬的声阻抗:
令声管内气体流速为U0,且声压、声速与时间t成eiωt的简谐关系,则声管内的声传播满足对流Helmholtz方程:
( ik + M ∂ ∂ x ) 2 p - ▿ 2 p = 0 , - - - ( 6 )
其中,k=ω/c0,ω为频率;M=U0/c0,c0为声速。
在刚性壁面上,声管法向上声质点的速度为零,则有:
∂ p ∂ y = 0 - - - ( 7 )
对于阻抗壁面,满足Ingard-Myers阻抗壁面条件:
∂ p ∂ y = - ik ( 1 + M ik ∂ ∂ x ) 2 p Z - - - ( 8 )
其中,Z为声衬声阻抗。
根据式(7),通过分离变量法,可将式(6)的解写成模态解叠加的形式:
p ( x , y ) = Σ n = 1 ∞ A n + cos ( k y , n + y ) e - i k x , n + x + A n - cos ( k y , n - y ) e - i k x , n - x - - - ( 9 )
其中,ky为声管横向(y方向)波数,正号对应沿x轴正向传播,负号对应沿x轴负向传播;kx和ky满足如下的频散关系:
k x k = 1 1 - M 2 ( - M ± 1 - ( 1 - M 2 ) ( k y k ) 2 ) - - - ( 10 )
式(10)中,根式取虚部为负的根,即: Im ( 1 - ( 1 - M 2 ) ( k y / k ) 2 ) < 0 ;
求解式(10),得到声管内声传播的横向波数ky
将声管内声传播的横向波数ky带入式(8),得到特征值方程:
k y tan ( k y H ) = ik w 2 1 Z - - - ( 11 )
其中:
w = 1 - M k x k = 1 1 - M 2 ( 1 + &OverBar; M 1 - ( 1 - M 2 ) ( k y k ) 2 )
由此,求解式(11)即可得到声衬阻抗Z。
Ⅱ、对于声管内气体流动为平行剪切流的情况下,通过下述方法得到声衬的声阻抗:
令声管内气体平均流速剖面为U(y),且声压、声速与时间t成eiωt的简谐关系,声管内的声传播满足的无量纲化的线化Euler方程:
( ik + M &PartialD; &PartialD; x ) u + v dM dy + &PartialD; p &PartialD; x = 0 - - - ( 12 )
( ik + M &PartialD; &PartialD; x ) v + &PartialD; p &PartialD; y = 0 - - - ( 13 )
( ik + M &PartialD; &PartialD; x ) p + &PartialD; u &PartialD; x + &PartialD; v &PartialD; y = 0 - - - ( 14 )
其中,M=U/c0
在刚性壁面上,声管法向上声质点的速度为零,则有:
u &RightArrow; &CenterDot; n &RightArrow; = 0 - - - ( 15 )
其中,为声质点速度,u和v分别为声管轴向和横向声质点速度;为指向壁面的单位法向量。
对于阻抗壁面,满足Ingard-Myers阻抗壁面条件:
u &RightArrow; &CenterDot; n &RightArrow; = ( 1 + M ik &PartialD; &PartialD; x ) p Z , - - - ( 16 )
将式(12)~(14)写成关于声压的三阶偏微分方程:
( ik + M &PartialD; &PartialD; x ) 3 p = ( ik + M &PartialD; &PartialD; x ) &dtri; 2 p - 2 dM dy &PartialD; 2 p &PartialD; x &PartialD; y - - - ( 17 )
令式(17)的解为:
p = F ( y ) e - i k x x - - - ( 18 )
其中,F(y)为声管横向特征函数。
由此,将式(17)写为Pridmore-Brown方程:
d 2 F d y 2 + 2 k M &prime; k - M k x dF dy + [ ( k - M k x ) 2 - k x 2 ] F = 0 - - - ( 19 )
将式(18)带入式(15)、(16)分别得到新的边界条件:
dF dy ( 0 ) = 0 - - - ( 20 )
dF dy ( H ) = - i k 0 ( 1 - M k x k 0 ) 2 F ( H ) Z - - - ( 21 )
式(19)~(21)构成了一个边值问题,该边值问题需要通过数值方法求解,具体为:
将二阶常微分方程(17)写成一阶常微分方程组,则有:
dG dy = - 2 k M &prime; k - M k x G - [ ( k - M k x ) 2 - k x 2 ] F = 0 dF dy = G - - - ( 22 )
y=0处的初始条件为:
F(0)=1
G(0)=F′(0)=0
采用四阶Runge-Kutta法对(22)求解,得到阻抗壁面y=H处的F(H)和F′(H),并带入式(21),得到声衬声阻抗Z为:
Z = - i k 0 ( 1 - M k x k 0 ) 2 F ( H ) F &prime; ( H ) . - - - ( 23 )
本发明优点在于:
1、本发明声衬声阻抗测量方法,作为一种直接提取方法,没有反测法遇到的初值问题和收敛错误等问题;
2、本发明声衬声阻抗测量方法,在利用Prony算法得到轴向波数后,对于均匀流的情况,只需利用简单的频散关系和特征值方程两个代数方程即可得到声阻抗;对于剪切流的情况,只需要对Pridmore-Brown方程进行数值积分;这两种情况都不需要求解管道声传播的正问题,因此计算效率非常高;
3、本发明声衬声阻抗测量方法,与早期的正向提取方法“无限长声波导管”方法相比,突破单模态传播的限制,更符合管内声传播的实际情况;
4、本发明声衬声阻抗测量方法,对于同样长度的声衬,这种直接提取方法最少可采用8个测量点即可提取阻抗,比NASA反测法少了近3/4;
5、本发明声衬声阻抗测量方法,相对于反测法对于出口反射条件比较敏感,该方法不受反射条件的影响,大大降低了对实验测量的要求。
附图说明
图1为本发明声衬声阻抗测量方法流程图;
图2为本发明声衬声阻抗测量方法中声衬安装示意图;
图3为本发明声压测量装置结构示意图;
图4是长度为400mm腔深为59mm的金属网声衬在三种反射条件下测得的阻抗值比较图;
图5是腔深为39mm的无面板蜂窝声衬当长度为400mm,在流管中提取到的阻抗和在阻抗管中得出的标准结果以及理论解的对比;
图6是腔深为49mm的无面板蜂窝声衬当长度为400mm,在流管中提取到的阻抗和在阻抗管中得出的标准结果以及理论解的对比;
图7是腔深为59mm的无面板蜂窝声衬当长度为400mm,在流管中提取到的阻抗和在阻抗管中得出的标准结果以及理论解的对比。
图中:
1-声衬 2-声管 3-声源段
4-测量段 5-消声段
具体实施方式
下面将结合附图对本发明作进一步的详细说明。
本发明声衬声阻抗测量方法,如图1所示,通过下述步骤实现:
步骤1:安装声衬;
在具有矩形截面声管上安装声衬;令声管两相对侧壁分别为侧壁A与侧壁B,则声衬安装在侧壁A上,且使声衬的入射表面与声管内壁齐平,如图2所示。
步骤2:测量声管侧壁B的壁面处声压;
测量声管侧壁B的壁面处,沿声管轴向上M个等间距节点的声压,包括声压幅值与相位,M≥8,优选M=8;M个节点均位于声衬在侧壁B上的投影内,且M个节点均位于侧壁A的声管轴向中心线上,如图2所示。
步骤3:利用直接提取法得出声衬的声阻抗;
在侧壁A与侧壁B的声管轴向中心线构成的平面内建立坐标系,令侧壁B的声管轴向中心线为x轴,正方向指向声管出口;声衬靠近声管入口一端与侧壁B的垂线为y轴,正方向指向侧壁A;侧壁A与侧壁B间距为H;
a、确定声管内声传播的轴向波数;
声管侧壁A壁面声压p的指数叠加形式为:
p ( x ) = &Sigma; n = 1 N A n e - i k x , n x - - - ( 1 )
其中,N为截断模态数;A为模态幅值;kx为声管内轴向波数;n=1、2、3、……、N;e为自然底数;
根据式(1)得到M个等距节点的声压为:
p j = &Sigma; n = 0 N A n &mu; n j - - - ( 2 )
其中,j=0,1,…,M-1;pj=p(jΔx);Δx为测量点的间距;
令μ12,,μN为式(3)的根;
&Sigma; s = 0 N C s &mu; N - s = 0 - - - ( 3 )
其中,s=0,1,…,N;C为系数;C0=1;
则根据式(2)与式(3)可得到M-N个方程:
&Sigma; s = 0 N p N + r + s C s = 0 - - - ( 4 )
其中,r=0,1,…,M-N-1;
由此,可看出,为了使式(4)的线性方程组不是欠定方程组,M与N需满足M≥2N;且式(2)与式(4)为病态方程组,尤其式(2)是超定线性方程组;因此,为了得到准确的解,需要采用基于奇异值分解的广义逆矩阵方法对式(2)与式(4)进行求解,得到多项式方程(3)的根μn
根据得到的多项式方程(3)的根,通过式(5)可得到声管内声传播的轴向波数kx
k x , n = i &Delta;x ln ( &mu; n ) - - - ( 5 )
b、得到声衬声阻抗;
Ⅰ、对于声管内气体流动均匀的情况下,通过下述方法得到声衬的声阻抗:
令声管内气体流速为U0,且声压、声速与时间t成eiωt的简谐关系,则声管内的声传播满足对流Helmholtz方程:
( ik + M &PartialD; &PartialD; x ) 2 p - &dtri; 2 p = 0 , - - - ( 6 )
其中,k=ω/c0,ω为频率;M=U0/c0,c0为声速;
在刚性壁面上,声管法向上声质点的速度为零,则有:
&PartialD; p &PartialD; y = 0 - - - ( 7 )
对于阻抗壁面,满足Ingard-Myers阻抗壁面条件为:
&PartialD; p &PartialD; y = - ik ( 1 + M ik &PartialD; &PartialD; x ) 2 p Z - - - ( 8 )
其中,Z为声衬声阻抗。
根据式(7),通过简单的分离变量法,可将式(6)的解写成模态解叠加的形式:
p ( x , y ) = &Sigma; n = 1 &infin; A n + cos ( k y , n + y ) e - i k x , n + x + A n - cos ( k y , n - y ) e - i k x , n - x - - - ( 9 )
其中,ky为声管横向(y方向)波数,“+”对应沿x轴正向传播,“-”对应沿x轴负向传播;kx和ky满足如下的频散关系:
k x k = 1 1 - M 2 ( - M &PlusMinus; 1 - ( 1 - M 2 ) ( k y k ) 2 ) - - - ( 10 )
式(10)中,根式取虚部为负的根,即: Im ( 1 - ( 1 - M 2 ) ( k y / k ) 2 ) < 0 ;
求解式(10),得到声管内声传播的横向波数ky
将声管内声传播的横向波数ky带入式(8),得到特征值方程:
k y tan ( k y H ) = ik w 2 1 Z - - - ( 11 )
其中,
w = 1 - M k x k = 1 1 - M 2 ( 1 + &OverBar; M 1 - ( 1 - M 2 ) ( k y k ) 2 )
由此,求解式(11)即可得到声衬阻抗Z。
Ⅱ、对于声管内气体流动为平行剪切流的情况下,通过下述方法得到声衬的声阻抗:
令声管内气体平均流速剖面为U(y),且声压、声速与时间t成eiωt的简谐关系,声管内的声传播满足以c02作为尺度的无量纲化的线化Euler方程(ρ0和c0分别为气体平均流动的密度与声管内声传播速度):
( ik + M &PartialD; &PartialD; x ) u + v dM dy + &PartialD; p &PartialD; x = 0 - - - ( 12 )
( ik + M &PartialD; &PartialD; x ) v + &PartialD; p &PartialD; y = 0 - - - ( 13 )
( ik + M &PartialD; &PartialD; x ) p + &PartialD; u &PartialD; x + &PartialD; v &PartialD; y = 0 - - - ( 14 )
其中,M=U/c0
在刚性壁面上,声管法向上声质点的速度为零,则有:
u &RightArrow; &CenterDot; n &RightArrow; = 0 - - - ( 15 )
其中,为声质点速度,u和v分别为声管轴向和横向声质点速度;为指向壁面的单位法向量;
对于阻抗壁面,满足Ingard-Myers阻抗壁面条件,为:
u &RightArrow; &CenterDot; n &RightArrow; = ( 1 + M ik &PartialD; &PartialD; x ) p Z , - - - ( 16 )
将式(12)~(14)写成关于声压的三阶偏微分方程:
( ik + M &PartialD; &PartialD; x ) 3 p = ( ik + M &PartialD; &PartialD; x ) &dtri; 2 p - 2 dM dy &PartialD; 2 p &PartialD; x &PartialD; y - - - ( 17 )
令式(17)的解为:
p = F ( y ) e - i k x x - - - ( 18 )
其中,F(y)为声管横向特征函数;
由此,将式(17)写为Pridmore-Brown方程:
d 2 F d y 2 + 2 k M &prime; k - M k x dF dy + [ ( k - M k x ) 2 - k x 2 ] F = 0 - - - ( 19 )
将式(18)带入式(15)、(16)分别得到新的边界条件:
dF dy ( 0 ) = 0 - - - ( 20 )
dF dy ( H ) = - i k 0 ( 1 - M k x k 0 ) 2 F ( H ) Z - - - ( 21 )
将二阶常微分方程(17)写成一阶常微分方程组,则有:
dG dy = - 2 k M &prime; k - M k x G - [ ( k - M k x ) 2 - k x 2 ] F = 0 dF dy = G - - - ( 22 )
y=0处的初始条件为:
F(0)=1
G(0)=F′(0)=0
采用四阶Runge-Kutta法对(22)求解,得到阻抗壁面y=H处的F(H)和F′(H),并带入式(21),得到声衬声阻抗Z为:
Z = - i k 0 ( 1 - M k x k 0 ) 2 F ( H ) F &prime; ( H ) . - - - ( 23 )
本发明声衬声阻抗测量方法的步骤2中声压的测量通过下述结构测量装置完成:
如图3所示,测量装置为具有矩形截面的声管,由前至后分别具有声源段、测量段和消声段四部分;令声衬安装端中两个相对侧壁分别为侧壁A与侧壁B,侧壁A上开有声衬安装口,声衬嵌入安装在声衬安装口中,且保证声衬的入射表面与声管内壁齐平。侧壁B上沿声管轴向中心线上等间距安装有8个传声器,用来采集声场信息。
令声源段上的声源除了发出所需声波外,还不可避免地发出一些杂波,而这些杂波一般在沿声管轴线三倍管径的距离内衰减完,因此,需使声源到最近传声器之间的距离l1>3d;d为声管的管径。而ASTM标准推荐两传声器间距大于测量范围内最低频率信号ft波长的百分之一;同时还要小于测量范围内最高频率信号fu的半波长,即:
c 0 100 f t < S < c 0 2 f u
且本发明中,相邻两传声器的间距还需大于传声器的直径,以防止测量结果出现奇点。
本发明声衬声阻抗测量方法中,采用直接提取法正向提取壁面阻抗,一大特征就是并不依赖出口的反射条件,可以在任意反射条件下进行阻抗的提取。为了验证此特性,在安装三种不同反射条件下进行测量,对比其结果。这里我们选长度为400mm腔深为59mm的金属网声衬为例,对比结果如图4所示;
由对比结果可知,三种情况下测得的阻抗值非常接近。因此,反射系数对阻抗提取的影响可以忽略不计,可选择任意一种端口情况下测得的数据进行分析。
如图5~图7所示,为无面板蜂窝声衬的试验阻抗值和标准结果的比较,实验结果表明无面板蜂窝声衬,在流管内提取到的阻抗和在阻抗管中测得的标准结果随着频率改变的变化趋势基本相同。
对于高于管截止频率条件下,试验阻抗值和标准结果的比较
400mm长39mm腔深无面板蜂窝声衬:
表13500HZ阻抗提取表(39mm)
理论阻抗值 提取阻抗值 相对误差
0+1.4035i 0.054+1.562i 11%
表24000HZ阻抗提取表(39mm)
理论阻抗值 提取阻抗值 相对误差
0+3.77i 0.535+3.407i 9%
表34700HZ阻抗提取表(39mm)
理论阻抗值 提取阻抗值 相对误差
0-3.9864i 0.304-4.1174i 3%
表45000HZ阻抗提取表(39mm)
理论阻抗值 提取阻抗值 相对误差
0-2.0083i 0.156-2.4036i 20%
400mm长49mm腔深无面板蜂窝声衬:
表53700HZ阻抗提取表(49mm)
理论阻抗值 提取阻抗值 相对误差
0-4.718i 1.517-3.902i 20%
表64000HZ阻抗提取表(49mm)
理论阻抗值 提取阻抗值 相对误差
0-2.171i 0.316-1.9186i 13%
表74300HZ阻抗提取表(49mm)
理论阻抗值 提取阻抗值 相对误差
0-1.0688i 0.225-1.2625i 17%
表86000HZ阻抗提取表(49mm)
理论阻抗值 提取阻抗值 相对误差
0+0.8783i 0.225-1.2625i 2%
400mm长59mm腔深无面板蜂窝声衬:
表93500HZ阻抗提取表(59mm)
理论阻抗值 提取阻抗值 相对误差
0-1.2506i 0.176-1.055i 15%
表104000HZ阻抗提取表(59mm)
理论阻抗值 提取阻抗值 相对误差
0-0.3663i 0.060-0.3030i 20%
表115000HZ阻抗提取表(59mm)
理论阻抗值 提取阻抗值 相对误差
0+0.9116i 0.200+1.104i 20%
表126000HZ阻抗提取表(59mm)
理论阻抗值 提取阻抗值 相对误差
0-3.7786i 0.290-4.0411i 6%
可以看出提取的抗值与理论值的最大误差为20%,最小误差为2%,满足工业需求。

Claims (7)

1.一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:通过下述步骤实现:
步骤1:安装声衬;
在具有矩形截面声管上安装声衬;令声管两相对侧壁分别为侧壁A与侧壁B,则声衬安装在侧壁A上;
步骤2:测量声管侧壁B壁面处声压;
测量声管侧壁B壁面处,沿声管轴向上M个等间距节点的声压,包括声压幅值与相位,M≥8;
步骤3:利用直接提取法得出声衬的声阻抗;
在侧壁A与侧壁B的声管轴向中心线构成的平面内建立坐标系,令侧壁B的声管轴向中心线为x轴,正方向指向声管出口;声衬靠近声管入口一端与侧壁B的垂线为y轴,正方向指向侧壁A;侧壁A与侧壁B间距为H;
a、确定声管内声传播的轴向波数;
声管侧壁A壁面声压p的指数叠加形式为:
p ( x ) = &Sigma; n = 1 N A n e - ik x , n x - - - ( 1 )
其中,N为截断模态数;A为模态幅值;kx为声管内轴向波数;n=1、2、3、…、N;e为自然底数;
根据式(1)得到M个等距节点的声压为:
p j = &Sigma; n = 0 N A n &mu; n j - - - ( 2 )
其中,j=0,1,…,M-1;pj=p(jΔx);Δx为测量点的间距;
令μ12,…,μN为式(3)的根;
&Sigma; s = 0 N C s &mu; N - s = 0 - - - ( 3 )
其中,s=0,1,…,N;C为系数;C0=1;
则根据式(2)与式(3)可得到M-N个方程:
&Sigma; s = 0 N p N + r + s C s = 0 - - - ( 4 )
其中,r=0,1,…,M-N-1;且M≥2N;
通过基于奇异值分解的广义逆矩阵方法对式(2)与式(4)进行求解,得到式(3)的根μn
根据μn,通过式(5)得到声管内声传播的轴向波数kx
k x , n = i &Delta; x l n ( &mu; n ) - - - ( 5 )
b、得到声衬声阻抗;
Ⅰ、对于声管内气体流动均匀的情况下,通过下述方法得到声衬的声阻抗:
令声管内气体流速为U0,且声压、声速与时间t成eiωt的简谐关系,则声管内的声传播满足对流Helmholtz方程:
( i k + M &part; &part; x ) 2 p - &dtri; 2 p = 0 , - - - ( 6 )
其中,k=ω/c0,ω为频率;M=U0/c0,c0为声速;
在刚性壁面上,声管法向上声质点的速度为零,则有:
&part; p &part; y = 0 - - - ( 7 )
对于阻抗壁面,满足Ingard-Myers阻抗壁面条件:
&part; p &part; y = - i k ( 1 + M i k &part; &part; x ) 2 p Z - - - ( 8 )
其中,Z为声衬声阻抗;
根据式(7),通过分离变量法,可将式(6)的解写成模态解叠加的形式:
p ( x , y ) = &Sigma; n = 1 &infin; A n + c o s ( k y , n + y ) e - ik x , n + x + A n - c o s ( k y , n - y ) e - ik x , n - x - - - ( 9 )
其中,ky为声管横向波数,横向即为y方向,正号对应沿x轴正向传播,负号对应沿x轴负向传播;kx和ky满足如下的频散关系:
k x k = 1 1 - M 2 ( - M &PlusMinus; 1 - ( 1 - M 2 ) ( k y k ) 2 ) - - - ( 10 )
式(10)中,根式取虚部为负的根,即: Im ( 1 - ( 1 - M 2 ) ( k y / k ) 2 ) < 0 ;
求解式(10),得到声管内声传播的横向波数ky
将声管内声传播的横向波数ky带入式(8),得到特征值方程:
k y t a n ( k y H ) = ikw 2 1 Z - - - ( 11 )
其中:
由此,求解式(11)即可得到声衬声阻抗Z;
Ⅱ、对于声管内气体流动为平行剪切流的情况下,通过下述方法得到声衬的声阻抗:
令声管内气体平均流速剖面为U(y),且声压、声速与时间t成eiωt的简谐关系,声管内的声传播满足的无量纲化的线化Euler方程:
( i k + M &part; &part; x ) u + v d M d y + &part; p &part; x = 0 - - - ( 12 )
( i k + M &part; &part; x ) v + &part; p &part; y = 0 - - - ( 13 )
( i k + M &part; &part; x ) p + &part; u &part; x + &part; v &part; y = 0 - - - ( 14 )
其中,M=U/c0
在刚性壁面上,声管法向上声质点的速度为零,则有:
u &RightArrow; &CenterDot; n &RightArrow; = 0 - - - ( 15 )
其中,为声质点速度,u和v分别为声管轴向和横向声质点速度;为指向壁面的单位法向量;
对于阻抗壁面,满足Ingard-Myers阻抗壁面条件:
u &RightArrow; &CenterDot; n &RightArrow; = ( 1 + M i k &part; &part; x ) p Z , - - - ( 16 )
将式(12)~(14)写成关于声压的三阶偏微分方程:
( i k + M &part; &part; x ) 3 p = ( i k + M &part; &part; x ) &dtri; 2 p - 2 d M d y &part; 2 p &part; x &part; y - - - ( 17 )
令式(17)的解为:
p = F ( y ) e - ik x x - - - ( 18 )
其中,F(y)为声管横向特征函数;
由此,将式(17)写为Pridmore-Brown方程:
d 2 F dy 2 + 2 kM &prime; k - Mk x d F d y + &lsqb; ( k - Mk x ) 2 - k x 2 &rsqb; F = 0 - - - ( 19 )
将式(18)带入式(15)、(16)分别得到新的边界条件:
d F d y ( 0 ) = 0 - - - ( 20 )
d F d y ( H ) = - i k ( 1 - M k x k ) 2 F ( H ) Z - - - ( 21 )
式(19)~(21)构成了一个边值问题,该边值问题需要通过数值方法求解,具体为:
将二阶常微分方程(17)写成一阶常微分方程组,则有:
d G d y = - 2 kM &prime; k - Mk x G - &lsqb; ( k - Mk x ) 2 - k x 2 &rsqb; F = 0 d F d y = G - - - ( 22 )
y=0处的初始条件为:
F(0)=1
G(0)=F′(0)=0
采用四阶Runge-Kutta法对(22)求解,得到阻抗壁面y=H处的F(H)和F′(H),并带入式(21),得到声衬声阻抗Z为:
Z = - i k ( 1 - M k x k ) 2 F ( H ) F &prime; ( H ) . - - - ( 23 )
2.如权利要求1所述一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:所述步骤1中声衬的入射表面与声管内壁齐平。
3.如权利要求1所述一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:所述步骤2中M取至少8个。
4.如权利要求1所述一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:所述步骤2中M个节点均位于声衬在侧壁B上的投影内,且M个节点均位于侧壁A的声管轴向中心线上。
5.如权利要求1所述一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:所述步骤2中M个节点声压通过传声器测量。
6.如权利要求5所述一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:所述步骤2中M个节点中,相邻两节点间距大于传声器直径。
7.如权利要求1所述一种声波掠入射条件下声衬声阻抗测量方法,其特征在于:所述步骤2中M个节点中,距声管入口最近的节点与声管入口间距离l1>3d;d为声管的管径。
CN201310585710.0A 2013-11-19 2013-11-19 一种声波掠入射条件下声衬声阻抗测量方法 Expired - Fee Related CN103644965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310585710.0A CN103644965B (zh) 2013-11-19 2013-11-19 一种声波掠入射条件下声衬声阻抗测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310585710.0A CN103644965B (zh) 2013-11-19 2013-11-19 一种声波掠入射条件下声衬声阻抗测量方法

Publications (2)

Publication Number Publication Date
CN103644965A CN103644965A (zh) 2014-03-19
CN103644965B true CN103644965B (zh) 2016-08-17

Family

ID=50250217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310585710.0A Expired - Fee Related CN103644965B (zh) 2013-11-19 2013-11-19 一种声波掠入射条件下声衬声阻抗测量方法

Country Status (1)

Country Link
CN (1) CN103644965B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945302B (zh) * 2014-05-07 2018-01-02 东南大学 有源单向声传播装置及实现单向声传播的方法
CN106294908B (zh) * 2015-06-02 2019-04-30 中国航发商用航空发动机有限责任公司 声衬设计方法
CN107677359B (zh) * 2017-10-20 2023-09-12 深圳精拓创新科技有限公司 声阻抗测试仪和声阻抗测试方法
CN109027502B (zh) * 2018-09-17 2019-08-02 北京航空航天大学 考虑截面声能量分布的管道降噪方法
CN112595409A (zh) * 2020-12-18 2021-04-02 中国航天空气动力技术研究院 一种应用于传声器阵列法声阻抗测试系统的声衬安装装置
CN113435028B (zh) * 2021-06-23 2023-03-17 北京航空航天大学 声衬声学参数测量方法和装置
CN114896788B (zh) * 2022-05-10 2023-10-03 北京航空航天大学 一种周向非均匀声衬的热声不稳性预测方法及系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Characterization of a compliantbackplate Helmholtz resonator for an electromechanical acoustic liner;S.B. Horowitz et al.;《Aeroacoustics》;20021231;第1卷(第2期);第183-205页 *
Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners;M. G. Jones et al.;《9th AIAA/CEAS Aeroacoustics Conference and Exhibit》;20030514;第1-11页 *
Effects of Flow Profile on Educed Acoustic Liner Impedance;M. G. Jones et al.;《16th AIAA/CEAS Aeroacoustics Conference》;20101231;第1-23页 *
声衬流动声性能测量的流管实验装置设计及调试;李晓锋 等;《航空动力学报》;20051231;第20卷(第6期);第1037-1040页 *
提取流管实验装置中声衬声阻抗的模态方法;管莹 等;《航空动力学报》;20070131;第22卷(第1期);第79-84页 *
现场测量管道声衬声阻抗的双传声器法实验研究;王光发 等;《航空动力学报》;20080131;第23卷(第1期);第70-74页 *

Also Published As

Publication number Publication date
CN103644965A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
CN103644965B (zh) 一种声波掠入射条件下声衬声阻抗测量方法
Schaal et al. Lamb wave propagation in a plate with step discontinuities
CN104964790B (zh) 采用引压管测量燃烧室中动态压力的修正方法
CN113008992B (zh) 一种适用于检测材料早期疲劳损伤的新成像检测方法
CN109344784A (zh) 一种融合水听器和小波去噪的渗漏定位方法
Liu et al. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise
Lefebvre et al. External tonehole interactions in woodwind instruments
CN110231408A (zh) 一种测量材料声学常数的方法及装置
CN106289121A (zh) 一种变径管等效管长的计算方法
Li et al. The influence of pipeline thickness and radius on guided wave attenuation in water-filled steel pipelines: Theoretical analysis and experimental measurement
Jones et al. On the use of experimental methods to improve confidence in educed impedance
CN107329167A (zh) 检测管道沉积物分布的方法、系统以及计算机储存介质
CN102680585B (zh) 基于超声检测仪水浸探头喷水耦合装置的设计方法
Aanes et al. Time-of-flight dependency on transducer separation distance in a reflective-path guided-wave ultrasonic flow meter at zero flow conditions
Tang et al. Data integration for multi‐path ultrasonic flowmeter based on Levenberg–Marquardt algorithm
WO2024021879A1 (zh) 一种带渐变条状格栅的反射型扁平流道及流量计系统
WO2024021881A1 (zh) 一种带条状格栅的扁平流道及流量计系统
Zheng et al. Effect mechanism of non‐ideal flow field on acoustic field in gas ultrasonic flowmeter
Treenuson et al. Accurate flowrate measurement on the double bent pipe using ultrasonic velocity profile method
Dequand et al. Acoustics of 90 degree sharp bends. Part I: Low-frequency acoustical response
CN108980631A (zh) 一种基于在线仿真的负压波法管道泄漏检测系统
Luca et al. A discontinuous Galerkin approach for the numerical simulation of transit-time ultrasonic flowmeters
Chen et al. A three-dimensional straightforward method for liner impedance eduction in uniform grazing flow
Ramadas et al. Finite element modelling study to explore the possibilities of ultrasonic gas flow measurement in wet-gas applications
Wang et al. Study of transducer installation effects on ultrasonic flow metering using computational fluid dynamics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20171119

CF01 Termination of patent right due to non-payment of annual fee