CN103630894A - Broadband multichannel coherent radar imaging system and control method thereof - Google Patents
Broadband multichannel coherent radar imaging system and control method thereof Download PDFInfo
- Publication number
- CN103630894A CN103630894A CN201310218993.5A CN201310218993A CN103630894A CN 103630894 A CN103630894 A CN 103630894A CN 201310218993 A CN201310218993 A CN 201310218993A CN 103630894 A CN103630894 A CN 103630894A
- Authority
- CN
- China
- Prior art keywords
- module
- signal
- sub
- frequency
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000003384 imaging method Methods 0.000 title claims abstract description 19
- 230000001427 coherent effect Effects 0.000 title claims abstract description 12
- 108091006146 Channels Proteins 0.000 claims description 156
- 238000005070 sampling Methods 0.000 claims description 86
- 238000006243 chemical reaction Methods 0.000 claims description 75
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 40
- 230000005540 biological transmission Effects 0.000 claims description 27
- 238000012937 correction Methods 0.000 claims description 12
- 230000003321 amplification Effects 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- 238000012795 verification Methods 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 238000004088 simulation Methods 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 238000013480 data collection Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/0209—Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明提供了一种宽频多通道相参雷达成像BMCIRS系统及其控制方法。该控制方法对BMCIRS系统中各硬件模块的控制由手动变成自动,系统各硬件模块有机地集成在一起,具有自动化数据采集、协调性工作的优点,从而极大地提高了控制效率。
The invention provides a broadband multi-channel coherent radar imaging BMCIRS system and a control method thereof. The control method changes the control of each hardware module in the BMCIRS system from manual to automatic, and the hardware modules of the system are organically integrated, which has the advantages of automatic data collection and coordinated work, thus greatly improving the control efficiency.
Description
技术领域technical field
本发明涉及雷达技术领域,尤其涉及一种宽频多通道相参雷达成像系统BMCIRS的控制方法。The invention relates to the field of radar technology, in particular to a control method of a broadband multi-channel coherent radar imaging system BMCIRS.
背景技术Background technique
在当今微波成像技术发展过程中,宽频和多通道是雷达成像系统重要的发展方向之一。为了构建稳定、功能性强并且满足应用需求的成像系统产品,需要预先构建相应的实验验证平台。宽频多通道相参雷达成像系统(BMCIRS:Broadband Multi-channel Coherent Imaging Radar System)是由通用仪器设备和定制设备构成的实验验证平台。In the development process of microwave imaging technology today, broadband and multi-channel are one of the important development directions of radar imaging system. In order to build a stable, functional imaging system product that meets application requirements, it is necessary to build a corresponding experimental verification platform in advance. Broadband Multi-channel Coherent Imaging Radar System (BMCIRS: Broadband Multi-channel Coherent Imaging Radar System) is an experimental verification platform composed of general instruments and customized equipment.
然而,现有的BMCIRS系统由通用仪器设备和定制设备构成,对系统的操作和控制只能通过手动方式在仪器设备的面板处进行,但是这样的操作方式不具备自动化、自适应性、协调性和集成性的特点,一方面控制效率低,耗时长,另一方面缺乏反馈校验,容易产生控制错误。However, the existing BMCIRS system is composed of general-purpose equipment and customized equipment, and the operation and control of the system can only be performed manually at the panel of the equipment, but such an operation method does not have automation, adaptability, and coordination And integration characteristics, on the one hand, the control efficiency is low and time-consuming, on the other hand, the lack of feedback verification is prone to control errors.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
鉴于上述技术问题,本发明提供了一种BMCIRS系统及其控制方法。In view of the above technical problems, the present invention provides a BMCIRS system and its control method.
(二)技术方案(2) Technical solution
根据本发明的一个方面,提供了一种宽频多通道相参雷达成像BMCIRS系统。该系统包括:基带信号产生模块,包括至少一台任意波形发生器,每台任意波形发生器占用一个发射通道;正交调制上变频模块,包括至少一台矢量微波信号源,每台矢量微波信号源占用一个发射通道,与该通道处构成基带信号产生模块的一台任意波形发生器配套使用;发射端通道切换模块,包括一台多通道微波开关设备,该多通道微波开关设备的输入公共端连接正交调制上变频模块输出的已调射频脉冲信号,多个输出端分别连接并将射频信号输出至不同的发射机功放模块;接收端通道切换模块,包括一台多通道微波开关设备,该多通道微波开关设备的多个输入端子连接不同的接收天线,输出公共端连接接收机下变频模块;接收机下变频模块,包括至少一台多通道下变频器,其第一输入端连接至频率源模块的输出端,其第二输入端连接至接收端通道切换模块的输出公共端,其输出端连接至AD采样与存储模块;AD采样与存储模块,用于在外部定时器的触发下,以频率源模块输出的外采样时钟信号作为采样时钟,对接收机下变频模块输出的中频信号进行高速数据采集和记录,形成所需的原始回波数据;频率源模块,包括至少两台模拟信号发生器,其中,一台模拟信号发生器为接收机下变频模块提供本振信号输入,另一台模拟信号发生器为基带信号产生模块和AD采样与存储模块提供外采样时钟信号;定时器模块,用于为基带信号产生模块和AD采样与存储模块提供触发输入脉冲,并为发射端通道切换模块和接收端通道切换模块提供开关选通信号;以及控制设备,与上述基带信号产生模块、正交调制上变频模块、发射端通道切换模块、接收端通道切换模块、接收机下变频硬件模块、AD采样与存储硬件模块、频率源模块、定时器模块相连接,用于对上述硬件设备进行配置后,通过协调运行进行宽频多通道相参雷达成像仿真。According to one aspect of the present invention, a broadband multi-channel coherent radar imaging BMCIRS system is provided. The system includes: baseband signal generation module, including at least one arbitrary waveform generator, each arbitrary waveform generator occupies a transmission channel; quadrature modulation up-conversion module, including at least one vector microwave signal source, each vector microwave signal The source occupies a transmission channel, and is used in conjunction with an arbitrary waveform generator that constitutes a baseband signal generation module at this channel; the channel switching module at the transmission end includes a multi-channel microwave switch device, and the input common terminal of the multi-channel microwave switch device Connect the modulated RF pulse signal output by the quadrature modulation up-conversion module, multiple output terminals are respectively connected and output the RF signal to different transmitter power amplifier modules; the channel switching module at the receiving end includes a multi-channel microwave switch device, the The multiple input terminals of the multi-channel microwave switchgear are connected to different receiving antennas, and the output common end is connected to the receiver down-conversion module; the receiver down-conversion module includes at least one multi-channel down-converter, and its first input terminal is connected to the frequency converter. The output terminal of the source module, its second input terminal is connected to the output common terminal of the channel switching module of the receiving end, and its output terminal is connected to the AD sampling and storage module; the AD sampling and storage module is used for triggering by an external timer, The external sampling clock signal output by the frequency source module is used as the sampling clock to perform high-speed data acquisition and recording of the intermediate frequency signal output by the down-conversion module of the receiver to form the required original echo data; the frequency source module includes at least two analog signal Generators, wherein one analog signal generator provides local oscillator signal input for the receiver down-conversion module, and the other analog signal generator provides external sampling clock signals for the baseband signal generation module and AD sampling and storage module; the timer module , used to provide trigger input pulses for the baseband signal generation module and the AD sampling and storage module, and provide switch gating signals for the transmitter channel switch module and the receiver channel switch module; AC modulation up-conversion module, transmitter channel switch module, receiver channel switch module, receiver down-conversion hardware module, AD sampling and storage hardware module, frequency source module, and timer module are connected to configure the above hardware devices Finally, the broadband multi-channel coherent radar imaging simulation is carried out through coordinated operation.
根据本发明的另一个方面,还提供了一种BMCIRS系统的控制方法,用于控制上述的BMCIRS系统,由控制设备执行,包括:步骤A:接收用户输入的系统工作模式信息,即系统工作发射通道个数N和接收通道个数M;步骤B:根据该系统工作模式信息对相应的硬件设备进行配置和初始化设置;步骤C:接收用户输入的系统工作参数集,通过约束方程组对系统工作参数集中的参数进行参数可行性分析,反馈给用户进行修改,直到系统工作参数集符合要求;步骤D:接收用户输入的“发射信号参数”集,进行发射信号预失真校正,导出发射信号预失真数字波形文件,并将发射信号预失真数字波形文件作为参数文件发送给基带信号产生模块;步骤E:将系统工作参数集的各控制参数发送至相应的硬件模块中去;将发射信号预失真数字波形文件发送到基带信号产生模块;步骤F,指示各设备按照输入控制参数进行参数配置,并接收硬件设备反馈运行参数,进行系统校验,以消除参数设置中的错误和冲突;以及步骤G,控制设备向各硬件设备发送启动指令,开始宽频多通道相参雷达成像仿真。According to another aspect of the present invention, there is also provided a control method for the BMCIRS system, which is used to control the above-mentioned BMCIRS system, and is executed by the control device, including: Step A: receiving the system operation mode information input by the user, that is, the system operation transmission The number of channels N and the number of receiving channels M; Step B: Configure and initialize the corresponding hardware devices according to the system working mode information; Step C: Receive the system working parameter set input by the user, and work on the system through the constraint equations The parameters in the parameter set are analyzed for parameter feasibility, fed back to the user for modification, until the system working parameter set meets the requirements; Step D: Receive the "transmission signal parameter" set input by the user, perform pre-distortion correction of the transmitted signal, and derive the pre-distortion of the transmitted signal digital waveform file, and send the transmitted signal predistortion digital waveform file as a parameter file to the baseband signal generation module; step E: send each control parameter of the system working parameter set to the corresponding hardware module; transmit the transmitted signal predistortion digital The waveform file is sent to the baseband signal generation module; step F, instructing each device to perform parameter configuration according to the input control parameters, and receiving hardware device feedback operating parameters, and performing system verification to eliminate errors and conflicts in parameter setting; and step G, The control device sends a startup command to each hardware device to start the broadband multi-channel coherent radar imaging simulation.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明BMCIRS系统及其控制方法具有以下有益效果:As can be seen from the foregoing technical solutions, the BMCIRS system of the present invention and its control method have the following beneficial effects:
(1)对BMCIRS系统中各硬件模块的控制由手动变成自动,系统各硬件模块有机地集成在一起,具有自动化数据采集、协调性工作的优点,从而极大地提高了控制效率;(1) The control of each hardware module in the BMCIRS system is changed from manual to automatic, and the hardware modules of the system are organically integrated together, which has the advantages of automatic data collection and coordinated work, thus greatly improving the control efficiency;
(2)可实现多种工作模式下的BMCIRS系统控制,不同工作模式下自适应加载不同的软、硬件配置方案,极大地提高了系统控制的灵活性;(2) BMCIRS system control under various working modes can be realized, and different software and hardware configuration schemes can be adaptively loaded under different working modes, which greatly improves the flexibility of system control;
(3)对BMCIRS系统的参数设计和参数设置具有反馈校验的功能,便于检测和纠正参数设计和参数设置过程中的冲突和异常,极大地提高了系统控制的鲁棒性。(3) It has the function of feedback verification for the parameter design and parameter setting of the BMCIRS system, which is convenient for detecting and correcting conflicts and abnormalities in the process of parameter design and parameter setting, and greatly improves the robustness of the system control.
附图说明Description of drawings
图1为本发明实施例BMCIRS系统的原理示意图;Fig. 1 is the principle schematic diagram of the BMCIRS system of the embodiment of the present invention;
图2为本发明实施例BMCIRS系统的结构示意图;Fig. 2 is the structural representation of the BMCIRS system of the embodiment of the present invention;
图3为本发明BMCIRS系统控制方法控制流程图;Fig. 3 is the control flowchart of BMCIRS system control method of the present invention;
图4-1为本发明实施例BMCIRS系统控制方法中BMCIRS系统“单发单收”模式下结构示意图;FIG. 4-1 is a schematic diagram of the structure of the BMCIRS system in the "single send, single receive" mode in the BMCIRS system control method of the embodiment of the present invention;
图4-2为本发明实施例BMCIRS系统控制方法中BMCIRS系统“单发多收”模式下结构示意图;FIG. 4-2 is a schematic diagram of the structure of the BMCIRS system in the "single-send-multiple-receive" mode in the BMCIRS system control method of the embodiment of the present invention;
图4-3为本发明实施例BMCIRS系统控制方法中BMCIRS系统“多发单收”模式下结构示意图;Fig. 4-3 is the schematic diagram of the structure of the BMCIRS system in the "multiple transmission and single reception" mode in the BMCIRS system control method of the embodiment of the present invention;
图4-4为本发明实施例BMCIRS系统控制方法中BMCIRS系统“多发多收”模式下结构示意图。4-4 are schematic structural diagrams of the BMCIRS system in the "multi-send and multi-receive" mode in the BMCIRS system control method of the embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。附图中未绘示或描述的实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。It should be noted that, in the drawings or descriptions of the specification, similar or identical parts all use the same figure numbers. Implementations not shown or described in the accompanying drawings are forms known to those of ordinary skill in the art. Additionally, while illustrations of parameters including particular values may be provided herein, it should be understood that the parameters need not be exactly equal to the corresponding values, but rather may approximate the corresponding values within acceptable error margins or design constraints.
本发明提供了一种BMCIRS系统及其控制方法。该系统及方法利用对系统硬件模块设备的编程控制,实现各设备之间的通信和同步,控制信号的产生、发射、接收、采样和存储,以实现微波成像的新理论和新技术的试验验证。The invention provides a BMCIRS system and a control method thereof. The system and method use the programming control of the system hardware module equipment to realize communication and synchronization among various equipment, and control the generation, emission, reception, sampling and storage of signals, so as to realize the experimental verification of new theory and new technology of microwave imaging .
图1为本发明实施例BMCIRS系统的原理示意图。请参照图1,该BMCIRS系统以地面交通工具等为安装平台,通过平台的运动实现天线孔径合成和方位向分辨,通过使用阵列天线实现阵列向的实孔径分辨。FIG. 1 is a schematic diagram of the principle of the BMCIRS system according to an embodiment of the present invention. Please refer to Figure 1. The BMCIRS system uses ground vehicles as the installation platform, realizes antenna aperture synthesis and azimuth resolution through the movement of the platform, and realizes real aperture resolution in the array direction by using array antennas.
图2为本发明实施例BMCIRS系统的结构示意图。请参照图2,本发明实施例BMCIRS系统包括以下硬件模块:FIG. 2 is a schematic structural diagram of a BMCIRS system according to an embodiment of the present invention. Please refer to Fig. 2, the BMCIRS system of the embodiment of the present invention includes the following hardware modules:
1、基带信号产生模块,包括至少一台任意波形发生器,每台任意波形发生器占用一个发射通道,与该通道处构成正交调制上变频模块的一台矢量微波信号源配套使用。该任意波形发生器用于根据用户输入的数字波形序列,在外部定时器的触发下,以频率源模块输出的外采样时钟信号作为采样时钟,通过DA合成转换成模拟基带发射信号波形和相应的脉冲包络信号,作为与其配套使用的、构成正交调制上变频模块的矢量微波信号源输入;1. The baseband signal generation module includes at least one arbitrary waveform generator, each arbitrary waveform generator occupies a transmission channel, and is used in conjunction with a vector microwave signal source that constitutes a quadrature modulation up-conversion module at this channel. The arbitrary waveform generator is used to use the external sampling clock signal output by the frequency source module as the sampling clock according to the digital waveform sequence input by the user under the trigger of the external timer, and convert it into an analog baseband transmitting signal waveform and corresponding pulse through DA synthesis The envelope signal is input as a vector microwave signal source used in conjunction with it to form a quadrature modulation up-conversion module;
2、正交调制上变频模块,包括至少一台矢量微波信号源,每台矢量微波信号源占用一个发射通道,与该通道处构成基带信号产生模块的一台任意波形发生器配套使用。该矢量微波信号源用于对与其配套的任意波形发生器输出的模拟基带发射信号波形和相应的脉冲包络信号做正交调制和脉冲调制,产生已调射频脉冲信号及其脉冲包络,作为发射端通道切换模块的输入信号;2. The quadrature modulation up-conversion module includes at least one vector microwave signal source, each vector microwave signal source occupies one transmission channel, and is used in conjunction with an arbitrary waveform generator forming a baseband signal generation module at this channel. The vector microwave signal source is used to perform quadrature modulation and pulse modulation on the analog baseband transmit signal waveform and the corresponding pulse envelope signal output by its matching arbitrary waveform generator to generate modulated radio frequency pulse signals and their pulse envelopes as The input signal of the channel switching module at the transmitter;
3、发射端通道切换模块,包括一台多通道微波开关设备。该多通道微波开关设备的输入公共端连接正交调制上变频模块输出的已调射频脉冲信号,多个输出端分别连接并将射频信号输出至不同的发射机功放模块。工作时,根据接收控制设备发送的控制指令,以定时器模块输出的开关选通信号作为触发信号,进行射频信号在微波开关设备中不同通路的切换,射频信号被导通至不同的发射机功放进行功率放大,并通过发射天线辐射出去,从而实现BMCIRS系统发射通道在时间上的扩展。3. The channel switching module at the transmitting end, including a multi-channel microwave switching device. The input common end of the multi-channel microwave switchgear is connected to the modulated radio frequency pulse signal output by the quadrature modulation up-conversion module, and the multiple output ends are respectively connected and output the radio frequency signals to different transmitter power amplifier modules. When working, according to the control instruction sent by the receiving control device, the switch strobe signal output by the timer module is used as the trigger signal to switch the radio frequency signal in different paths in the microwave switch device, and the radio frequency signal is turned on to different transmitter power amplifiers The power is amplified and radiated through the transmitting antenna, so as to realize the time expansion of the transmission channel of the BMCIRS system.
4、接收端通道切换模块,包括一台多通道微波开关设备。该多通道微波开关设备的多个输入端子连接不同的接收天线,输出公共端连接接收机下变频模块。工作时,根据接收到的控制设备发送的控制指令,以定时器模块输出的开关选通信号作为触发信号,进行不同天线处接收信号在微波开关设备中的通路切换,射频信号被分时导通至接收机下变频模块,从而实现BMCIRS系统接收通道在时间上的扩展。4. The channel switching module at the receiving end, including a multi-channel microwave switching device. Multiple input terminals of the multi-channel microwave switch device are connected to different receiving antennas, and a common output terminal is connected to a receiver down-conversion module. When working, according to the received control command sent by the control device, the switch strobe signal output by the timer module is used as the trigger signal to switch the path of the signal received at different antennas in the microwave switch device, and the radio frequency signal is time-shared. To the receiver down-conversion module, so as to realize the time expansion of the receiving channel of the BMCIRS system.
5、接收机下变频模块,包括至少一台多通道下变频器,该多通道下变频器以频率源模块输出本振信号作为混频信号,对接收端通道切换模块输出的、接收天线接收到的射频信号进行射频预选、低噪声放大、下变频混频和中频滤波、放大,输出为中频信号,作为AD采样与存储硬件模块的输入;5. The receiver down-conversion module includes at least one multi-channel down-converter. The multi-channel down-converter uses the frequency source module to output the local oscillator signal as a mixing signal, and receives the output from the channel switching module at the receiving end and the receiving antenna. RF pre-selection, low-noise amplification, down-conversion mixing, intermediate frequency filtering, and amplification of the RF signal, and the output is an intermediate frequency signal, which is used as the input of the AD sampling and storage hardware module;
6、AD采样与存储模块,用于根据控制设备的参数设置,在外部定时器的触发下,以频率源模块输出的外采样时钟信号作为采样时钟,对接收机下变频模块输出的中频信号进行高速数据采集和记录,最终形成所需的原始回波数据;6. The AD sampling and storage module is used to perform the intermediate frequency signal output by the down-conversion module of the receiver with the external sampling clock signal output by the frequency source module as the sampling clock under the trigger of the external timer according to the parameter setting of the control device. High-speed data acquisition and recording, and finally form the required original echo data;
7、频率源模块,包括至少两台模拟信号发生器。根据控制设备的参数设置,一台模拟信号发生器为接收机下变频模块提供本振信号输入,另一台模拟信号发生器为基带信号产生模块和AD采样与存储模块提供外采样时钟信号;7. A frequency source module, including at least two analog signal generators. According to the parameter settings of the control equipment, one analog signal generator provides local oscillator signal input for the receiver down-conversion module, and the other analog signal generator provides external sampling clock signals for the baseband signal generation module and AD sampling and storage module;
8、定时器模块,用于根据控制设备的参数设置,一方面为基带信号产生模块和AD采样与存储模块提供触发输入脉冲,另一方面为发射端通道切换模块和接收端通道切换模块提供开关选通信号;8. The timer module is used to set the parameters of the control device. On the one hand, it provides trigger input pulses for the baseband signal generation module and AD sampling and storage module, and on the other hand, it provides switches for the channel switching module at the transmitting end and the channel switching module at the receiving end. strobe signal;
9、控制设备,与上述基带信号产生模块、正交调制上变频模块、发射端通道切换模块、接收端通道切换模块、接收机下变频硬件模块、AD采样与存储硬件模块、频率源模块、定时器模块相连接,用于对上述硬件设备进行配置后,通过协调运行进行宽频多通道相参雷达成像仿真。9. Control equipment, together with the above-mentioned baseband signal generation module, quadrature modulation up-conversion module, transmitter channel switch module, receiver channel switch module, receiver down-conversion hardware module, AD sampling and storage hardware module, frequency source module, timing Connected with the controller module, it is used to perform broadband multi-channel coherent radar imaging simulation through coordinated operation after configuring the above hardware devices.
该控制设备通过接口总线LXI(LAN)与上述其他硬件模块进行IO通信连接,其中上述硬件模块中的基带信号产生模块、正交调制上变频模块、发射端通道切换模块、接收端通道切换模块、频率源模块、定时器模块均采用通用仪器设备构成,符合美国国家仪器NI(National Instrument)公司的虚拟仪器软件构架VISA(Virtual Instrument Software Architecture)标准协议,控制设备通过VISA应用程序接口对其进行控制;硬件模块中的接收机下变频硬件模块、AD采样与存储硬件模块采用定制设备构成,其应用程序接口也按照VISA标准协议定制以被控制设备控制。因此,控制设备均以VISA标准协议进行设备控制。The control device performs IO communication connection with the above-mentioned other hardware modules through the interface bus LXI (LAN), wherein in the above-mentioned hardware modules, the baseband signal generation module, the quadrature modulation up-conversion module, the channel switching module of the transmitting end, the channel switching module of the receiving end, The frequency source module and the timer module are all composed of general instruments and equipment, which conform to the VISA (Virtual Instrument Software Architecture) standard protocol of the National Instruments NI (National Instrument) company, and the control equipment controls it through the VISA application program interface. ; The receiver down-conversion hardware module, AD sampling and storage hardware module in the hardware module are composed of customized equipment, and its application program interface is also customized according to the VISA standard protocol to be controlled by the control equipment. Therefore, the control devices are controlled by the VISA standard protocol.
在上述实施例BMCIRS系统的基础上,本发明还提供了一种上述BMCIRS系统的控制方法。请参照图3,该控制方法由上述的控制设备执行,包括:On the basis of the BMCIRS system in the above embodiment, the present invention also provides a control method for the above BMCIRS system. Referring to Fig. 3, the control method is executed by the above-mentioned control device, including:
步骤A:接收用户输入的系统工作模式信息,即系统工作发射通道个数N和接收通道个数M,其中,该系统工作模式信息至少包括以下方案中的一种:单发单收,N=1,M=1工作模式、单发多收,N=1,M≥2工作模式、多发单收,N≥2,M=1工作模式、多发多收,N≥2,M≥2工作模式;Step A: Receive the system working mode information input by the user, that is, the number N of transmission channels and the number M of receiving channels of the system working, wherein the system working mode information includes at least one of the following schemes: single transmission and single reception, N= 1, M=1 working mode, single sending and multiple receiving, N=1, M≥2 working mode, multiple sending and single receiving, N≥2, M=1 working mode, multiple sending and multiple receiving, N≥2, M≥2 working mode ;
步骤B:根据该系统工作模式信息对相应的硬件设备进行配置和初始化设置,如果选择单发单收工作模式,则执行步骤B1;如果选择单发多收工作模式,执行步骤B2;如果选择多发单收工作模式,执行步骤B3;如果选择多发多收工作模式,执行步骤B4;Step B: Configure and initialize the corresponding hardware devices according to the working mode information of the system. If the single-sending and single-receiving working mode is selected, perform step B1; if the single-sending and multiple-receiving working mode is selected, perform step B2; In the single-receipt working mode, perform step B3; if you choose the multi-transmission and multi-receive working mode, perform step B4;
子步骤B1,按照单发单收工作模式配置设备,该子步骤又包括:Sub-step B1, configuring the device according to the single-send-single-receive working mode, this sub-step further includes:
分步骤B1a,配置一台波形发生器构成基带信号产生模块,并向其发送指令,令其初始化;Sub-step B1a, configure a waveform generator to form a baseband signal generation module, and send instructions to it to initialize it;
分步骤B1b,配置与上述波形发生器配套的一台矢量微波信号源构成正交调制上变频模块,并向其发送指令,令其初始化;In sub-step B1b, configure a vector microwave signal source matched with the above-mentioned waveform generator to form a quadrature modulation up-conversion module, and send instructions to it to initialize it;
分步骤B1c,配置一台通道个数为K的多通道下变频器构成接收机下变频模块,并向其发送指令,令其K条通道中的任意一条被激活作为接收通路;Sub-step B1c, configuring a multi-channel down-converter with K channels to form a receiver down-conversion module, and sending an instruction to it to activate any one of its K channels as a receiving channel;
分步骤B1d,配置一台通道个数为L的多通道高速数据采集与记录器构成AD采样与存储模块,并向其发送指令,令其L条通道中的任意一条被激活作为采样通道;Sub-step B1d, configure a multi-channel high-speed data acquisition and recorder with L channels to form an AD sampling and storage module, and send an instruction to it to activate any one of its L channels as a sampling channel;
分步骤B1e,配置两台模拟信号发生器分别作为外采样时钟频率源和下变频本振频率源构成频率源模块,并向其发送指令,令其初始化;Sub-step B1e, configure two analog signal generators as the external sampling clock frequency source and down-converted local oscillator frequency source to form the frequency source module, and send instructions to it to initialize it;
分步骤B1f,配置一台脉冲信号发生器构成定时器模块,并向其发送指令,令其初始化;执行步骤C;Sub-step B1f, configure a pulse signal generator to form a timer module, and send instructions to it to initialize it; perform step C;
执行完上述B1a至B1f之后,BMCIRS系统硬件结构如图4-1所示。After executing the above B1a to B1f, the hardware structure of the BMCIRS system is shown in Figure 4-1.
子步骤B2,按照单发多收工作模式配置设备,该子步骤又包括:Sub-step B2, configuring the device according to the single-send-multiple-receive working mode, this sub-step further includes:
分步骤B2a,配置一台任意波形发生器构成基带信号产生模块,并向其发送指令,令其初始化;Sub-step B2a, configure an arbitrary waveform generator to form a baseband signal generation module, and send instructions to it to initialize it;
分步骤B2b,配置一台矢量微波信号源构成正交调制上变频模块,并向其发送指令,令其初始化;In sub-step B2b, configure a vector microwave signal source to form a quadrature modulation up-conversion module, and send instructions to it to initialize it;
分步骤B2c,配置一台通道个数为K的多通道下变频器构成接收机下变频模块,并向其发送指令,当M≤K情况下,令其M条通道被激活作为接收通路,当M>K情况下,令其全部K条通道被激活作为接收通路;Sub-step B2c, configure a multi-channel down-converter with K channels to form a receiver down-conversion module, and send instructions to it. When M≤K, make its M channels activated as receiving channels. When In the case of M>K, all K channels are activated as receiving channels;
分步骤B2d,配置一台通道个数为L的多通道高速数据采集与记录器构成AD采样与存储模块,并向其发送指令,当M≤L情况下,令其M条通道被激活作为采样通道,当M>L情况下,令其全部L条通道被激活作为采样通道;Sub-step B2d, configure a multi-channel high-speed data acquisition and recorder with L channels to form an AD sampling and storage module, and send instructions to it, and when M≤L, make its M channels activated as sampling channels, when M>L, all L channels are activated as sampling channels;
分步骤B2e,配置一台微波开关网络设备构成接收端通道切换模块,并向其发送指令,令其初始化;Sub-step B2e, configure a microwave switch network device to form a channel switching module at the receiving end, and send instructions to it to initialize it;
分步骤B2f,配置两台模拟信号发生器分别作为外采样时钟频率源和下变频本振频率源构成频率源模块,并向其发送指令,令其初始化;Sub-step B2f, configure two analog signal generators as the external sampling clock frequency source and down-converted local oscillator frequency source to form a frequency source module, and send instructions to it to initialize it;
分步骤B2g,配置一台脉冲信号发生器构成定时器模块,并向其发送指令,令其初始化;执行步骤C;Sub-step B2g, configure a pulse signal generator to form a timer module, and send instructions to it to initialize it; perform step C;
执行完上述B2a至B2g之后,,BMCIRS系统硬件结构如图4-2所示。After executing the above B2a to B2g, the hardware structure of the BMCIRS system is shown in Figure 4-2.
子步骤B3,按照多发单收工作模式配置设备,该子步骤又包括:Sub-step B3, configuring the device according to the multi-send-single-receive working mode, this sub-step further includes:
分步骤B3a,配置两台任意波形发生器构成基带信号产生模块的两个通道,并向其发送指令,令其初始化;Sub-step B3a, configure two arbitrary waveform generators to form the two channels of the baseband signal generation module, and send instructions to them to initialize them;
分步骤B3b,配置两台矢量微波信号源构成正交调制上变频模块的两个通道,并向其发送指令,令其初始化;当用户输入的系统工作模式信息N=2时,执行步骤B3d;In sub-step B3b, configure two vector microwave signal sources to form two channels of the quadrature modulation up-conversion module, and send instructions to them to initialize them; when the system operation mode information N=2 input by the user, execute step B3d;
分步骤B3c,配置一台微波开关网络设备构成发射端通道切换模块,并向其发送指令,令其初始化;Sub-step B3c, configuring a microwave switch network device to form a channel switching module at the transmitter, and sending instructions to it to initialize it;
分步骤B3d,配置一台通道个数为K的多通道下变频器构成接收机下变频模块,并向其发送指令,令其K条通道中的任意一条被激活作为接收通路;Sub-step B3d, configuring a multi-channel down-converter with the number of channels K to form a receiver down-conversion module, and sending an instruction to it to activate any one of its K channels as a receiving channel;
分步骤B3e,配置一台通道个数为L的多通道高速数据采集与记录器构成AD采样与存储模块,并向其发送指令,令其L条通道中的任意一条被激活作为采样通道;Sub-step B3e, configure a multi-channel high-speed data acquisition and recorder with L channels to form an AD sampling and storage module, and send an instruction to it to activate any one of its L channels as a sampling channel;
分步骤B3f,配置两台模拟信号发生器分别作为外采样时钟频率源和下变频本振频率源构成频率源模块,并向其发送指令,令其初始化;Sub-step B3f, configure two analog signal generators as external sampling clock frequency source and down-converted local oscillator frequency source to form a frequency source module, and send instructions to it to initialize it;
分步骤B3g,配置一台脉冲信号发生器构成定时器模块,并向其发送指令,令其初始化;执行步骤C;Sub-step B3g, configure a pulse signal generator to form a timer module, and send instructions to it to initialize it; perform step C;
执行完上述B3a至B3g之后,,BMCIRS系统硬件结构如图4-3所示。After executing the above B3a to B3g, the hardware structure of the BMCIRS system is shown in Figure 4-3.
子步骤B4,按照多发多收工作模式配置设备,该子步骤又包括:Sub-step B4, configuring the device according to the multi-sending and multi-receiving working mode, this sub-step further includes:
分步骤B4a,配置两台任意波形发生器构成基带信号产生模块的两个通道,并向其发送指令,令其初始化;Sub-step B4a, configure two arbitrary waveform generators to form two channels of the baseband signal generation module, and send instructions to them to initialize them;
分步骤B4b,配置两台矢量微波信号源构成正交调制上变频模块的两个通道,并向其发送指令,令其初始化;当用户输入的系统工作模式信息N=2时,执行步骤B4d;In sub-step B4b, configure two vector microwave signal sources to form two channels of the quadrature modulation up-conversion module, and send instructions to them to initialize them; when the system operation mode information N=2 input by the user, execute step B4d;
分步骤B4c,配置一台微波开关网络设备构成发射端通道切换模块,并向其发送指令,令其初始化;Sub-step B4c, configuring a microwave switch network device to form a channel switching module at the transmitter, and sending instructions to it to initialize it;
分步骤B4d,配置一台通道个数为K的多通道下变频器构成接收机下变频模块,并向其发送指令,当M≤K情况下,令其M条通道被激活作为接收通路,当M>K情况下,令其全部K条通道被激活作为接收通路;Sub-step B4d, configure a multi-channel down-converter with the number of channels K to form a receiver down-conversion module, and send instructions to it, when M≤K, make its M channels activated as receiving channels, when In the case of M>K, all K channels are activated as receiving channels;
分步骤B4e,配置一台通道个数为L的多通道高速数据采集与记录器构成AD采样与存储模块,并向其发送指令,当M≤L情况下,令其M条通道被激活作为采样通道,当M>L情况下,令其全部L条通道被激活作为采样通道;Sub-step B4e, configure a multi-channel high-speed data acquisition and recorder with L channels to form an AD sampling and storage module, and send instructions to it, and when M≤L, make its M channels activated as sampling channels, when M>L, all L channels are activated as sampling channels;
分步骤B4f,配置一台微波开关网络设备构成接收端通道切换模块,并向其发送指令,令其初始化;Sub-step B4f, configure a microwave switch network device to form a channel switching module at the receiving end, and send instructions to it to initialize it;
分步骤B4g,配置两台模拟信号发生器分别作为外采样时钟频率源和下变频本振频率源构成频率源模块,并向其发送指令,令其初始化;Sub-step B4g, configure two analog signal generators as external sampling clock frequency source and down-conversion local oscillator frequency source to form a frequency source module, and send instructions to it to initialize it;
分步骤B4h,配置一台脉冲信号发生器构成定时器模块,并向其发送指令,令其初始化;执行步骤C;Sub-step B4h, configure a pulse signal generator to form a timer module, and send instructions to it to initialize it; perform step C;
执行完上述B4a至B4g之后,,BMCIRS系统硬件结构如图4-4所示。After executing the above B4a to B4g, the hardware structure of the BMCIRS system is shown in Figure 4-4.
步骤C:接收用户输入的系统工作参数集,通过约束方程组对系统工作参数集中的参数进行参数可行性分析,反馈给用户进行修改,直到系统工作参数集符合要求;Step C: Receive the system working parameter set input by the user, conduct parameter feasibility analysis on the parameters in the system working parameter set through the constraint equation group, and feed back to the user for modification until the system working parameter set meets the requirements;
系统工作参数集中的参数用于生成各硬件模块设备的输入控制参数,包括系统工作频率fc、带宽B、脉冲宽度τ、采样频率fs、脉冲重复频率PRF、峰值发射功率Pt、天线增益G、方位波束宽度θa、俯仰波束宽度θc,平台速度V、平台高度H、入射角范围Ф∈[Ф1,Ф2]、接收机噪声系数Fn、系统损耗Ln、接收机下变频本振频率f0、中频输出频率fI、发射通道个数N和接收通道个数M等参数;约束方程组包括:The parameters in the system working parameter set are used to generate the input control parameters of each hardware module device, including system working frequency f c , bandwidth B, pulse width τ, sampling frequency f s , pulse repetition frequency PRF, peak transmit power P t , antenna gain G. Azimuth beam width θ a , elevation beam width θ c , platform velocity V, platform height H, incident angle range Ф∈[Ф 1 , Ф 2 ], receiver noise factor F n , system loss L n , receiver down Variable frequency local oscillator frequency f 0 , intermediate frequency output frequency f I , the number of transmitting channels N and the number of receiving channels M and other parameters; the constraint equations include:
其中,式(1)为奈奎斯特采样约束方程;Among them, formula (1) is the Nyquist sampling constraint equation;
式(2)为方位模糊约束方程,D为天线方位向尺寸;Equation (2) is the azimuth fuzzy constraint equation, and D is the azimuth dimension of the antenna;
式(3)为距离模糊约束方程,C为光速,Wswath为测绘带地距宽度;Equation (3) is the distance fuzzy constraint equation, C is the speed of light, and W swath is the width of the surveying zone;
式(4)为图像信噪比约束方程(雷达方程),K为波尔兹曼常数,T0为绝对温度,Dr=C/2B为距离分辨率,λ=C/fc为雷达工作波长,Pav=Pt×τ×PRF为平均功率,NEσ0表示噪声等效后向散射系数,Thereshold表示NEσ0的判定阈值,Thereshold的典型取值为-30dB。通常,NEσ0可用来衡量最终获得的SAR图像信噪比,NEσ0小于判定阈值Thereshold时,可认为最终的SAR图像信噪比符合设计要求;NEσ0大于判定阈值Thereshold时,则认为目标在最终的SAR图像中淹没在噪声里,而无法识别。因此,当NEσ0在给定入射角范围内超过阈值Thereshold情况下,判定该“系统工作参数”集不具有可行性,反馈用户进行修改。Equation (4) is the image signal-to-noise ratio constraint equation (radar equation), K is the Boltzmann constant, T 0 is the absolute temperature, D r =C/2B is the distance resolution, λ=C/f c is the radar working Wavelength, P av =P t ×τ×PRF is the average power, NEσ0 represents the noise equivalent backscattering coefficient, Thereshold represents the judgment threshold of NEσ0, and the typical value of Thereshold is -30dB. Usually, NEσ0 can be used to measure the SNR of the final SAR image. When NEσ0 is less than the decision threshold Thereshold, it can be considered that the final SAR image SNR meets the design requirements; when NEσ0 is greater than the decision threshold Thereshold, it is considered that the target is in the final SAR image drowned in the noise, unrecognizable. Therefore, when NEσ0 exceeds the threshold Thereshold within a given range of incident angles, it is determined that the set of "system operating parameters" is not feasible, and feedback is given to the user for modification.
式(5)为测绘带宽度方程,其中W1为测绘带宽度设计下限,W2为测绘带宽度设计上限。当测绘带宽度Wswath在给定入射角范围内不满足用户限制条件W1≤Wswath≤W2情况下,判定该“系统工作参数”集不具有可行性,反馈用户进行修改;Equation (5) is the width equation of the surveying swath, where W1 is the design lower limit of the swath width, and W2 is the upper design limit of the swath width. When the width of the surveying swath W swath does not meet the user restriction condition W 1 ≤ W swath ≤ W 2 within the given incident angle range, it is determined that the set of "system operating parameters" is not feasible, and feedback to the user for modification;
当在给定入射角范围内,NEσ0不超过阈值Thereshold,且测绘带宽度Wswath满足用户限制条件W1≤Wswath≤W2的情况下,判定该“系统工作参数”集具有可行性。When NEσ0 does not exceed the threshold Thereshold within a given incident angle range, and the swath width W swath satisfies the user restriction condition W 1 ≤ W swath ≤ W 2 , it is determined that the set of "system operating parameters" is feasible.
步骤D:接收用户输入的“发射信号参数”集,进行发射信号预失真校正,导出发射信号预失真数字波形文件,并将发射信号预失真数字波形文件作为参数文件发送给基带信号产生模块;Step D: Receive the "transmission signal parameter" set input by the user, perform transmission signal predistortion correction, export the transmission signal predistortion digital waveform file, and send the transmission signal predistortion digital waveform file as a parameter file to the baseband signal generation module;
“发射信号参数”集描述并唯一确定基带发射信号的波形,包括信号编码方式、信号带宽B、信号脉宽τ、D/A采样频率Fs等参数。其中,信号编码方式包括QPSK、2PSK、QAM、Chirp编码等方式;当“发射信号参数”集和系统工作频率fc被确定后,使用基带信号产生模块、正交调制上变频模块和信号观测设备执行子步骤D1~D5,进行基带发射信号波形预失真校正,导出预失真数字波形文件,并对基带信号产生模块进行参数配置;The "transmission signal parameters" set describes and uniquely determines the waveform of the baseband transmission signal, including signal encoding method, signal bandwidth B, signal pulse width τ, D/A sampling frequency F s and other parameters. Among them, the signal encoding methods include QPSK, 2PSK, QAM, Chirp encoding and other methods; when the "transmission signal parameter" set and the system operating frequency f c are determined, use the baseband signal generation module, quadrature modulation up-conversion module and signal observation equipment Execute sub-steps D1 to D5, perform baseband transmit signal waveform pre-distortion correction, export the pre-distortion digital waveform file, and perform parameter configuration on the baseband signal generation module;
该步骤D又可以包括:This step D can comprise again:
子步骤D1,根据“发射信号参数”集中的信号带宽和D/A采样频率参数,将信号带宽划分为多个离散频点fp=pΔf,其中p∈[1,P]表示第p个频点;对某个离散频点fp,生成该频点的理想连续波信号数字波形;Sub-step D1, divide the signal bandwidth into multiple discrete frequency points f p = pΔf according to the signal bandwidth and D/A sampling frequency parameters in the "transmission signal parameters" set, where p∈[1,P] represents the pth frequency point; for a discrete frequency point f p , generate the ideal continuous wave signal digital waveform of the frequency point;
子步骤D2,对子步骤D1所得到的对应频点fp的理想连续波信号数字波形,基带信号产生硬件模块通过DA合成将其转化为模拟信号,并作为正交调制上变频硬件模块的正交调制输入,输出已调射频信号;Sub-step D2, for the ideal continuous wave signal digital waveform corresponding to the frequency point fp obtained in sub-step D1, the baseband signal generation hardware module converts it into an analog signal through DA synthesis, and uses it as the positive signal of the quadrature modulation up-conversion hardware module AC modulation input, output modulated RF signal;
子步骤D3,对子步骤D2所得到的已调射频信号,使用信号观测设备,如示波器、频谱仪进行测量,其测量值作为该离散频点的测量值γ(fp);In sub-step D3, the modulated RF signal obtained in sub-step D2 is measured using signal observation equipment, such as an oscilloscope and a spectrum analyzer, and its measured value is used as the measured value γ(f p ) of the discrete frequency point;
子步骤D4,依次遍历p∈[1,P]的所有频点,执行D1~D3的过程,得到测量[γ(f1),…,γ(fp),…γ(fP)],并通过与理想波形的幅度相位比较,解算出各频点的幅度预失真校正值[A(f1),…,A(fp),…A(fP)]和相位校正值 Sub-step D4, traverse all the frequency points of p∈[1,P] in turn, execute the process of D1~D3, and obtain the measurement [γ(f 1 ),...,γ(f p ),...γ(f P )], And by comparing with the amplitude and phase of the ideal waveform, the amplitude predistortion correction value [A(f 1 ),...,A(f p ),...A(f P )] and phase correction value of each frequency point are calculated
子步骤D5,以子步骤D4所得到的结果作为校正值,首先根据“发射信号参数”集生成理想基带发射信号数字波形,通过Fourier变换获得其频谱s(fp),使用校正值进行预失真幅度和相位校正最后再对预失真校正后的频谱序列进行逆Fourier变换,即得到发射信号预失真数字波形文件,并将其导出,作为基带信号产生模块的输入参数文件。In sub-step D5, the result obtained in sub-step D4 is used as the correction value. First, the digital waveform of the ideal baseband transmission signal is generated according to the set of "transmission signal parameters", and its spectrum s(f p ) is obtained through Fourier transform, and the correction value is used for pre-distortion Amplitude and Phase Correction Finally, the inverse Fourier transform is performed on the predistortion corrected spectrum sequence to obtain the predistortion digital waveform file of the transmitted signal, which is exported as the input parameter file of the baseband signal generation module.
步骤E:将步骤C得到的系统工作参数集的各控制参数发送至相应的硬件模块中去;将步骤D得到的发射信号预失真数字波形文件发送到基带信号产生模块;Step E: sending each control parameter of the system working parameter set obtained in step C to the corresponding hardware module; sending the transmitted signal predistortion digital waveform file obtained in step D to the baseband signal generation module;
该步骤包括:This step includes:
子步骤E1,将工作频率参数fc发送给正交调制上变频模块,作为其输入参数;Sub-step E1, sending the working frequency parameter f c to the quadrature modulation up-conversion module as its input parameter;
子步骤E2,将发射通道个数参数N发送给发射端通道切换模块,作为其输入参数;Sub-step E2, sending the parameter N of the number of transmitting channels to the channel switching module at the transmitting end as its input parameter;
子步骤E3,将将接收通道个数参数M发送给接收端通道切换模块,作为其输入参数;Sub-step E3, send the parameter M of the number of receiving channels to the channel switching module at the receiving end as its input parameter;
子步骤E4,将工作频率参数fc、接收机噪声系数参数Fn发送给接收机下变频模块,作为其输入参数;Sub-step E4, sending the operating frequency parameter f c and the receiver noise figure parameter F n to the receiver down-conversion module as its input parameters;
子步骤E5,将脉冲宽度参数τ、采样频率参数fs、脉冲重复频率参数PRF发送给AD采样与存储模块,作为其输入参数;Sub-step E5, sending the pulse width parameter τ, the sampling frequency parameter f s , and the pulse repetition frequency parameter PRF to the AD sampling and storage module as its input parameters;
子步骤E6,将接收机下变频本振频率参数f0发送给频率源模块,作为其输入参数;Sub-step E6, sending the receiver down-conversion local oscillator frequency parameter f0 to the frequency source module as its input parameter;
子步骤E7,将脉冲重复频率参数PRF发送给定时器模块,作为其输入参数;以及Sub-step E7, sending the pulse repetition frequency parameter PRF to the timer module as its input parameter; and
子步骤E8,将步骤D得到的发射信号预失真数字波形文件作为参数文件,发送给基带信号产生模块;Sub-step E8, using the transmitted signal predistortion digital waveform file obtained in step D as a parameter file, and sending it to the baseband signal generation module;
步骤F,指示各设备按照输入控制参数进行参数配置,并接收硬件设备反馈运行参数,进行“系统校验”,以消除参数设置中的错误和冲突;Step F, instruct each device to perform parameter configuration according to the input control parameters, and receive the feedback of operating parameters from the hardware device, and perform "system verification" to eliminate errors and conflicts in parameter setting;
该步骤包括:This step includes:
子步骤F1,控制设备从各硬件模块中读取反馈的设备参数集F(β1,…,βq,…βQ),其中,βq表示第q个设备反馈的用户变量,q∈[1,Q],Q表示控制设备所能控制的最大设备数目;Sub-step F1, the control device reads the feedback device parameter set F(β 1 ,...,β q ,...β Q ) from each hardware module, where β q represents the user variable fed back by the qth device, q∈[ 1, Q], Q represents the maximum number of devices that the control device can control;
子步骤F2,对反馈设备参数集F(β1,…,βq,…βQ)与发送给设备的控制参数集f(α1,…,αq,…αQ)进行比较,其中αq表示控制设备发送给第q个设备的控制参数;Sub-step F2, compare the feedback device parameter set F(β 1 ,…,β q ,…β Q ) with the control parameter set f(α 1 ,…,α q ,…α Q ) sent to the device, where α q represents the control parameter sent by the control device to the qth device;
子步骤F3,根据比较结果进行处理,包括:Sub-step F3, processing according to the comparison result, including:
分步骤F3a,当设备q无反馈参数,则判定该设备未成功通信,反馈用户进行连接;Sub-step F3a, when the device q has no feedback parameters, it is determined that the device has not successfully communicated, and the user is fed back to connect;
分步骤F3b,当设备q的反馈参数βq与发送给其的控制参数αq不相等,则判定该设备参数设置错误,反馈用户进行修改;Sub-step F3b, when the feedback parameter β q of the device q is not equal to the control parameter α q sent to it, it is determined that the parameter setting of the device is wrong, and the user is fed back to modify it;
分步骤F3c,当所有设备均有反馈参数,且反馈参数与发送给其控制参数相等,则判定所有设备通信成功,参数设置正确,执行步骤G;Sub-step F3c, when all devices have feedback parameters, and the feedback parameters are equal to the control parameters sent to them, it is determined that all devices have successfully communicated and the parameter settings are correct, and perform step G;
步骤G,控制设备向各硬件设备发送启动指令,开始宽频多通道相参雷达成像仿真。Step G, the control device sends a startup command to each hardware device to start the broadband multi-channel coherent radar imaging simulation.
该步骤G又可以包括:This step G can comprise again:
子步骤G1,向定时器模块发送启动指令,令其输出定时脉冲;Sub-step G1, sending a start command to the timer module to make it output a timing pulse;
子步骤G2,向频率源模块发送启动指令,令其输出外采样时钟信号和接收机下变频本振信号;Sub-step G2, sending a startup command to the frequency source module to make it output the external sampling clock signal and the down-converted local oscillator signal of the receiver;
子步骤G3,向基带信号产生模块发送启动指令,令其接收定时器模块输出的定时脉冲和频率源模块输出的外采样时钟信号,输出基带发射信号和包络信号;Sub-step G3, sending a starting command to the baseband signal generation module, so that it receives the timing pulse output by the timer module and the external sampling clock signal output by the frequency source module, and outputs the baseband transmission signal and envelope signal;
子步骤G4,向正交调制上变频模块发送启动指令,令其接收基带信号产生模块输出的基带发射信号和包络信号,并进行正交调制,输出已调射频信号;Sub-step G4, sending a startup instruction to the quadrature modulation up-conversion module, so that it receives the baseband transmit signal and the envelope signal output by the baseband signal generation module, performs quadrature modulation, and outputs the modulated radio frequency signal;
子步骤G5,向发射端通道切换模块发送启动指令,令其接收定时器模块输出的开关选通脉冲,进行通道切换,将已调射频信号切换到相应发射通道的发射机功放上去,并通过发射天线辐射出去;Sub-step G5, send a starting command to the channel switching module of the transmitting end, so that it receives the switch strobe pulse output by the timer module, performs channel switching, switches the modulated RF signal to the transmitter power amplifier of the corresponding transmitting channel, and passes the transmitting Antenna radiates out;
子步骤G6,向接收端通道切换模块发送指令,令其接收定时器模块输出的开关选通信号脉冲,对相应接收通道接收天线接收到的射频信号进行通道切换;Sub-step G6, sending an instruction to the channel switching module of the receiving end, so that it receives the switch gating signal pulse output by the timer module, and performs channel switching on the radio frequency signal received by the receiving antenna of the corresponding receiving channel;
子步骤G7,向接收机下变频模块发送启动指令,令其接收来自接收端通道切换模块输出的射频信号和频率源模块输出的下变频本振信号,对射频信号其进行射频预选、低噪声放大、下变频混频和中频滤波、放大,输出为中频信号;Sub-step G7, send a startup command to the down-conversion module of the receiver, so that it receives the RF signal output from the channel switching module at the receiving end and the down-converted local oscillator signal output by the frequency source module, and performs RF preselection and low-noise amplification on the RF signal , down conversion frequency mixing and intermediate frequency filtering, amplification, the output is intermediate frequency signal;
子步骤G8,向AD采样与存储模块发送启动指令,令其接收定时器模块输出的定时脉冲和频率源模块输出的外采样时钟信号,对接收机下变频模块输出的中频信号进行采样,并保存成原始回波采样数据。Sub-step G8, send a start command to the AD sampling and storage module, make it receive the timing pulse output by the timer module and the external sampling clock signal output by the frequency source module, sample the intermediate frequency signal output by the receiver down-conversion module, and save into the original echo sampling data.
至此,已经结合附图对本实施例BMCIRS系统的控制方法进行了详细描述。依据以上描述,本领域技术人员应当对本发明BMCIRS系统的控制方法有了清楚的认识。So far, the control method of the BMCIRS system in this embodiment has been described in detail with reference to the accompanying drawings. According to the above description, those skilled in the art should have a clear understanding of the control method of the BMCIRS system of the present invention.
此外,上述控制方法中用到的接口和标准并不仅限于实施方式中提到的各种具体形式,本领域的普通技术人员可对其进行简单地熟知地替换,例如:In addition, the interfaces and standards used in the above control methods are not limited to the various specific forms mentioned in the implementation, and those skilled in the art can simply replace them with familiar ones, for example:
(1)控制设备对硬件模块的IO通信连接和控制,除可通过LXI(LAN)接口总线外,还可以GPIB、VXI、PXI接口总线形式,只要硬件设备具有相应接口总线的底层驱动即可;(1) The IO communication connection and control of the control device to the hardware module can be not only through the LXI (LAN) interface bus, but also in the form of GPIB, VXI, and PXI interface buses, as long as the hardware device has the underlying driver of the corresponding interface bus;
(2)定制硬件模块包括接收机下变频模块、AD采样与存储模块的应用程序接口协议除可采用通用仪器的VISA标准协议外,还可以用TCP/IP协议、UART协议来代替,只要按照相应的通信协议标准为用户提供控制该设备的编程控制接口即可。(2) Custom hardware modules including receiver down-conversion module, AD sampling and storage module application program interface protocol can be used in addition to VISA standard protocol of general instruments, TCP/IP protocol, UART protocol can also be used instead, as long as according to the corresponding The standard communication protocol standard provides users with a programming control interface to control the device.
综上所述,本发明提供一种可灵活有效控制硬件模块进行数据采集的BMCIRS系统控制方法。该方法通过特有的参数设计、设置和反馈校验方法实现BMCIRS系统多种模式下的复杂、连续性的微波成像实验数据采集,为实验和理论结合的方式开展微波成像散射机理、成像体制以及信号处理等相关问题的研究提供基础。In summary, the present invention provides a BMCIRS system control method that can flexibly and effectively control hardware modules for data collection. This method realizes complex and continuous microwave imaging experiment data acquisition in multiple modes of BMCIRS system through unique parameter design, setting and feedback verification methods, and develops microwave imaging scattering mechanism, imaging system and signal Dealing with and other related issues provides the basis for research.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310218993.5A CN103630894B (en) | 2013-06-04 | 2013-06-04 | The control method of broadband multi-channel coherent radar imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310218993.5A CN103630894B (en) | 2013-06-04 | 2013-06-04 | The control method of broadband multi-channel coherent radar imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103630894A true CN103630894A (en) | 2014-03-12 |
CN103630894B CN103630894B (en) | 2016-08-24 |
Family
ID=50212144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310218993.5A Active CN103630894B (en) | 2013-06-04 | 2013-06-04 | The control method of broadband multi-channel coherent radar imaging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103630894B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104361369A (en) * | 2014-08-27 | 2015-02-18 | 北京中电华大电子设计有限责任公司 | Radio-frequency instruction transmission circuit of ultra-high frequency read/write device |
CN104459638A (en) * | 2014-12-25 | 2015-03-25 | 中国矿业大学(北京) | Eight-channel share-based geological radar acquisition system |
CN104901753A (en) * | 2015-05-28 | 2015-09-09 | 北京信维科技股份有限公司 | Amplitude ratio and phase difference testing method and device for two homologous radio frequency signals |
CN108828596A (en) * | 2018-06-26 | 2018-11-16 | 电子科技大学 | GEO star machine Bistatic SAR multi-pass channel-distribution method based on feasibility criterion |
CN109194360A (en) * | 2018-10-17 | 2019-01-11 | 成都瑞迪威科技有限公司 | A kind of 16 channel number word multi-beam receiving and transmitting front end components |
CN109581526A (en) * | 2018-11-12 | 2019-04-05 | 北京航空航天大学 | A kind of real-time tracking fast imaging method applied to camera shooting type millimeter wave human body safety check instrument |
CN109683137A (en) * | 2018-12-24 | 2019-04-26 | 中国电子科技集团公司第二十研究所 | A kind of multi-channel synchronization method applied to phased-array radar |
CN110658520A (en) * | 2019-08-19 | 2020-01-07 | 中国科学院电子学研究所 | Synthetic aperture radar imaging system and method |
CN112291175A (en) * | 2020-10-29 | 2021-01-29 | 上海擎昆信息科技有限公司 | Baseband uplink transmitting device based on timing control |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1324068A2 (en) * | 1996-05-02 | 2003-07-02 | Honda Giken Kogyo Kabushiki Kaisha | Multibeam radar system |
CN2762154Y (en) * | 2004-12-13 | 2006-03-01 | 武汉大学 | High frequency ground rada digital coherent receiver |
-
2013
- 2013-06-04 CN CN201310218993.5A patent/CN103630894B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1324068A2 (en) * | 1996-05-02 | 2003-07-02 | Honda Giken Kogyo Kabushiki Kaisha | Multibeam radar system |
CN2762154Y (en) * | 2004-12-13 | 2006-03-01 | 武汉大学 | High frequency ground rada digital coherent receiver |
Non-Patent Citations (1)
Title |
---|
黄平平等: "多发多收星载SAR回波处理方法研究", 《电子与信息学报》, vol. 32, no. 5, 31 May 2010 (2010-05-31), pages 1056 - 1060 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104361369A (en) * | 2014-08-27 | 2015-02-18 | 北京中电华大电子设计有限责任公司 | Radio-frequency instruction transmission circuit of ultra-high frequency read/write device |
CN104459638A (en) * | 2014-12-25 | 2015-03-25 | 中国矿业大学(北京) | Eight-channel share-based geological radar acquisition system |
CN104901753A (en) * | 2015-05-28 | 2015-09-09 | 北京信维科技股份有限公司 | Amplitude ratio and phase difference testing method and device for two homologous radio frequency signals |
CN104901753B (en) * | 2015-05-28 | 2017-06-23 | 北京信维科技股份有限公司 | The amplitude-phase ratio method of testing and device of the homologous radiofrequency signal of two-way |
CN108828596A (en) * | 2018-06-26 | 2018-11-16 | 电子科技大学 | GEO star machine Bistatic SAR multi-pass channel-distribution method based on feasibility criterion |
CN109194360A (en) * | 2018-10-17 | 2019-01-11 | 成都瑞迪威科技有限公司 | A kind of 16 channel number word multi-beam receiving and transmitting front end components |
CN109581526A (en) * | 2018-11-12 | 2019-04-05 | 北京航空航天大学 | A kind of real-time tracking fast imaging method applied to camera shooting type millimeter wave human body safety check instrument |
CN109683137A (en) * | 2018-12-24 | 2019-04-26 | 中国电子科技集团公司第二十研究所 | A kind of multi-channel synchronization method applied to phased-array radar |
CN110658520A (en) * | 2019-08-19 | 2020-01-07 | 中国科学院电子学研究所 | Synthetic aperture radar imaging system and method |
CN112291175A (en) * | 2020-10-29 | 2021-01-29 | 上海擎昆信息科技有限公司 | Baseband uplink transmitting device based on timing control |
Also Published As
Publication number | Publication date |
---|---|
CN103630894B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103630894B (en) | The control method of broadband multi-channel coherent radar imaging system | |
DE102015112392B3 (en) | Method and apparatus for calibrating an IQ modulator | |
EP2741430B1 (en) | Phased array transmission device | |
CN114185008B (en) | System and method for compensating amplitude and phase errors of receiving channel of narrow-band digital array radar system | |
CN106058480B (en) | A kind of any polarized wave generates and calibration method | |
CN107728127A (en) | A kind of radar simulation test system | |
CN108051791A (en) | A kind of phased-array radar universal calibration device | |
CN101957444A (en) | Multichannel radar amplitude and phase automatic correcting method and device | |
CN109039508B (en) | Wireless multipath fading channel simulation system and method | |
CN111505591B (en) | Phased array sum and difference channel error correction system based on response mechanism | |
CN100550673C (en) | The calibrating installation of array communication system receiving chain and method | |
CN112014812B (en) | Phased array wind profile radar calibration system and method | |
CN109683146B (en) | Phased array transmission calibration method based on orthogonal coding waveform | |
KR102066742B1 (en) | Apparatus and method for calibrating mono-pulse of aesa radar | |
CN114205009A (en) | FPGA-based digital phased array antenna receiving channel automatic phase matching system and method | |
CN116545549A (en) | Test equipment, calibration system and calibration method | |
CN108051788A (en) | The signal source system and method for low coverage analogue echo are realized using opto-electronic conversion | |
CN108631886B (en) | Measurement system and method with digital dead space | |
CN109343014A (en) | For testing the device and method of the T/R component of phased-array radar | |
CN105897351A (en) | Uplink and downlink wave beam shaping measure system and method | |
CN103022698A (en) | System allowing for phased-array amplitude weighting | |
Judd | Using physical layer emulation to understand and improve wireless networks | |
Sun et al. | Digital radar implementation with amplitude predistortion | |
WO2024051837A1 (en) | Calibration circuit and method, phase-shifting circuit, radio-frequency transmitting circuit, radio-frequency receiving circuit, radar, and device | |
CN111903234B (en) | Method for broadband array multi-beam forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Tan Weixian Inventor after: Han Kuoye Inventor after: Ding Zhenyu Inventor after: Wang Yanping Inventor after: Hong Wen Inventor after: Huang Pingping Inventor before: Tan Weixian Inventor before: Han Kuoye Inventor before: Ding Zhenyu Inventor before: Wang Yanping Inventor before: Hong Wen |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: TAN WEIXIAN HAN KUOYE DING ZHENYU WANG YANPING HONG WEN TO: TAN WEIXIAN HAN KUOYE DING ZHENYU WANG YANPING HONG WEN HUANG PINGPING |
|
CB03 | Change of inventor or designer information |
Inventor after: Tan Weixian Inventor after: Huang Pingping Inventor after: Han Kuoye Inventor after: Ding Zhenyu Inventor after: Wang Yanping Inventor after: Hong Wen Inventor before: Tan Weixian Inventor before: Han Kuoye Inventor before: Ding Zhenyu Inventor before: Wang Yanping Inventor before: Hong Wen Inventor before: Huang Pingping |
|
COR | Change of bibliographic data | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |