CN103618140A - 基于Radant透镜的M+2N级联方式相控阵天线 - Google Patents

基于Radant透镜的M+2N级联方式相控阵天线 Download PDF

Info

Publication number
CN103618140A
CN103618140A CN201310644278.8A CN201310644278A CN103618140A CN 103618140 A CN103618140 A CN 103618140A CN 201310644278 A CN201310644278 A CN 201310644278A CN 103618140 A CN103618140 A CN 103618140A
Authority
CN
China
Prior art keywords
radant
signal
lens
diode
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310644278.8A
Other languages
English (en)
Other versions
CN103618140B (zh
Inventor
万涛
李长源
谢欢欢
王冰
王睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 20 Research Institute
Original Assignee
CETC 20 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 20 Research Institute filed Critical CETC 20 Research Institute
Priority to CN201310644278.8A priority Critical patent/CN103618140B/zh
Publication of CN103618140A publication Critical patent/CN103618140A/zh
Application granted granted Critical
Publication of CN103618140B publication Critical patent/CN103618140B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明提出了一种基于Radant透镜的M+2N级联方式相控阵天线,包括Radant透镜、辐射天线、T/R组件、馈电网络、收发系统,发射机发射射频信号,经馈电网络输出到实现方位移相的T/R组件中,然后输入到辐射天线中,最后经天线前端的实现俯仰移相的Radant透镜发射到自由空间中。接收的信号通过系统通道,经过和、差比较器后,形成要求的和、差信号,实现了二维单脉冲功能。整个M+2N级联系统的架构实现了M×N相控阵天线的功能。实现相控阵系统的损耗低、占用空间低、复杂度低、效率高的要求,降低相控阵雷达的成本,提高相控阵雷达的使用率。

Description

基于Radant透镜的M+2N级联方式相控阵天线
技术领域
本发明涉及天线技术领域,具体为一种基于Radant透镜的M+2N级联方式相控阵天线。
背景技术
为了实现M×N二维相控阵雷达的空域波束扫描,通常需要在相控阵天线后端使用M×N个数字移相器芯片,而芯片的成本始终是限制相控阵雷达广泛应用的关键因素。传统的M×N相控阵雷达级联方式通常为:
Figure BDA0000428298880000016
这样设计的雷达系统存在以下缺点:
1、M×N相控阵使用了M×N个T/R组件,因而在两个部件相连时需要M×N个连接电缆,并且馈电网络的级数会较大地增加,这些都会造成损耗增加,降低了系统效率。
2、M×N相控阵T/R组件的增加会增加冷却系统,这些移相器、电缆、冷却系统数量的增加使得系统更复杂,占用更多的空间。
3、M×N相控阵使用了M×N个T/R组件,目前T/R组件内部的芯片价格较高,使得雷达系统的造价很高,得不到广泛应用。
发明内容
要解决的技术问题
为解决现有技术存在的问题,本发明提出了一种基于Radant透镜的M+2N级联方式相控阵天线,能将普通相控阵移相器数量由M×N个减少为M+2N个,极大地节约了相控阵雷达的成本。
技术方案
本发明的技术方案为:
所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:包括Radant透镜、辐射天线、T/R组件、馈电网络、收发系统;所述相控阵天线发射信号时,收发系统将射频信号传输到馈电网络,馈电网络通将信号分成N份分别输入到两组T/R组件中,每组T/R组件包括2N个T/R组件,每组T/R组件将合成的信号传输给辐射天线,辐射天线将接收的信号转化为电磁波,通过Radant透镜后,传输到自由空间;所述相控阵天线接收信号时,自由空间的电磁波依次通过Radant透镜和辐射天线后,输入到两组T/R组件,两组T/R组件将信号传输到馈电网络后,信号进入收发系统;在收发系统内,一组T/R组件的输出信号分成两路信号进入上方位比较器,另一组T/R组件的输出信号分成两路信号进入下方位比较器,上方位比较器输出的上方位差信号与下方位比较器输出的下方位差信号经过比较器得到方位差信号和匹配负载,上方位比较器输出的上方位和信号与下方位比较器输出的下方位和信号经过比较器得到俯仰差信号以及和信号。
所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:T/R组件实现方位方向的相位控制,Radant透镜实现俯仰方向的相位控制。
所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:Radant透镜包括二极管电路、支撑材料、直流控制电源;所述二极管电路由若干层二极管电路组成,每层二极管电路包括若干二极管,每个二极管的两端与二极管电路板上的两条印刷金属条焊接连通,相邻二极管间距为C0/(2f0),C0是光速,f0是工作频率,两条印刷金属条分别接直流控制电源的正负极;支撑材料为长方体结构,相邻两层二极管电路粘贴覆在支撑材料两侧,相邻两层二极管电路间距为C0/(4f0)。
所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:最外侧的两层二极管的外侧面也粘贴有支撑材料。
所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:支撑材料采用等效介电常数为1.03~1.08、损耗角正切为0.001~0.004的PVC泡沫压缩材料。
所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:支撑材料采用等效介电常数为1.05、损耗角正切为0.0023的PVC泡沫压缩材料。
所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:支撑材料一侧面开有通槽,该侧面为与二极管电路上焊有二极管的侧面粘接的侧面,二极管处于通槽内。
有益效果
本发明解决了M×N相控阵雷达成本高、造价贵的问题,使用M+2N级联方式相控阵天线构建相控阵雷达,合理设计M+2N相控阵天线的级联通道,实现相控阵系统的损耗低、占用空间低、复杂度低、效率高的要求,降低相控阵雷达的成本,提高相控阵雷达的使用率。
附图说明
图1M+2N级联方式相控阵天线的流程图;
图2天馈线系统的组成框图;
图3Radant透镜结构图;
图4单层二极管电路及PVC支撑图。
其中:A、支撑材料;B、二极管电路;C、直流控制电源;D、二极管。
具体实施方式
下面结合具体实施例描述本发明:
如图1所示,本实施例中的基于Radant透镜的M+2N级联方式相控阵天线,包括Radant透镜、辐射天线、T/R组件、馈电网络、收发系统。
当相控阵天线发射信号时,收发系统将射频信号传输到馈电网络,馈电网络通将信号分成N份分别输入到两组T/R组件中,每组T/R组件包括2N个T/R组件,T/R组件有专用的电源进行供电,通过波束数据分发单元控制波束形成,每组T/R组件将合成的信号传输给辐射天线,辐射天线将接收的信号转化为电磁波,通过Radant透镜后,传输到自由空间。
相控阵天线接收信号时,自由空间的电磁波依次通过Radant透镜和辐射天线后,输入到两组T/R组件,两组T/R组件将信号传输到馈电网络后,信号进入收发系统;在收发系统内,一组T/R组件的输出信号分成两路信号进入上方位比较器,另一组T/R组件的输出信号分成两路信号进入下方位比较器,上方位比较器输出的上方位差信号与下方位比较器输出的下方位差信号经过比较器得到方位差信号和匹配负载,上方位比较器输出的上方位和信号与下方位比较器输出的下方位和信号经过比较器得到俯仰差信号以及和信号。为了使雷达的探测距离远,发射时满功率辐射,T/R组件不进行功率衰减。而接收信号时,为了实现抗干扰,要求相控阵具有低副瓣电平,因而使用T/R组件对要求的单元进行功率衰减。
进行波束扫描时,T/R组件控制方位的相位,实现方位的波束扫描,Radant透镜控制俯仰的相位,实现俯仰的波束扫描。Radant透镜由其透镜电源进行供电,控制透镜二极管的通断和反偏状态,形成不同的相位差,这样俯仰方向的相位控制由Radant透镜不同层数的通电状态来实现,可有效减少T/R组件的数量,使用M+2N个移相器级联实现了二维相控阵M×N个移相器的功能,极大地节约了相控阵的成本。
而本实施例中的Radant透镜包括二极管电路B、支撑材料A、直流控制电源C。
二极管电路由15层二极管电路组成,参照附图4,每个二极管的两端与二极管电路板上的两条印刷金属条焊接连通,相邻二极管间距为C0/(2f0),C0是光速,f0是工作频率,两条印刷金属条分别接直流控制电源的正负极。
支撑材料为长方体结构,相邻两层二极管电路粘贴覆在支撑材料两侧,相邻两层二极管电路间距为C0/(4f0),本实施例中共有16层支撑材料,其中如图3所示,在最外侧的两层二极管的外侧面也粘贴有支撑材料,对二极管电路进行保护和密封。
支撑材料要采用低介电常数、低损耗角正切的材料,我们经过大量实验研究发现,采用等效介电常数为1.03~1.08、损耗角正切为0.001~0.004的PVC泡沫压缩材料能够满足要求,进一步的本实施例中采用等效介电常数为1.05、损耗角正切为0.0023的PVC泡沫压缩材料作为支撑材料。
本实施例中支撑材料一侧面开有通槽,该侧面为与二极管电路上焊有二极管的侧面粘接的侧面,二极管处于通槽内,以便于散热,情况允许的时候,甚至可以在支撑材料两端加小型的风扇,加快空气流动,便于热量散发。
二极管电路两端接直流控制电源,控制电源的正反向流动和电流大小可实现二极管电路的通断。通过直流电源控制电路控制每层二极管电路的通断和反偏状态,能够实现透镜的不同移相量。当要求二极管正偏时,电源提供的电流大小为n×20mA的正向电流,这里n是二极管的总数量,二极管短路;当要求二极管反偏时,电源提供反向电压,二极管开路。直流控制电源具有恒流功能,除了将要求的二极管进行加电导通外,为了使工作状态稳定,将所有不要求的层次加反偏电压。
整个Radant透镜通过直流电源控制二极管电路的通﹑断状态,使得经过透镜的电磁波产生不同的相位偏移,最终在要求的特定空域中实现波束会聚,实现移相器的功能。每层二极管电路的移相量和总二极管电路的层数,根据要实现不同位数的移相器功能进行设计。

Claims (7)

1.一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:包括Radant透镜、辐射天线、T/R组件、馈电网络、收发系统;所述相控阵天线发射信号时,收发系统将射频信号传输到馈电网络,馈电网络通将信号分成N份分别输入到两组T/R组件中,每组T/R组件包括2N个T/R组件,每组T/R组件将合成的信号传输给辐射天线,辐射天线将接收的信号转化为电磁波,通过Radant透镜后,传输到自由空间;所述相控阵天线接收信号时,自由空间的电磁波依次通过Radant透镜和辐射天线后,输入到两组T/R组件,两组T/R组件将信号传输到馈电网络后,信号进入收发系统;在收发系统内,一组T/R组件的输出信号分成两路信号进入上方位比较器,另一组T/R组件的输出信号分成两路信号进入下方位比较器,上方位比较器输出的上方位差信号与下方位比较器输出的下方位差信号经过比较器得到方位差信号和匹配负载,上方位比较器输出的上方位和信号与下方位比较器输出的下方位和信号经过比较器得到俯仰差信号以及和信号。
2.根据权利要求1所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:T/R组件实现方位方向的相位控制,Radant透镜实现俯仰方向的相位控制。
3.根据权利要求2所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:Radant透镜包括二极管电路、支撑材料、直流控制电源;所述二极管电路由若干层二极管电路组成,每层二极管电路包括若干二极管,每个二极管的两端与二极管电路板上的两条印刷金属条焊接连通,相邻二极管间距为C0/(2f0),C0是光速,f0是工作频率,两条印刷金属条分别接直流控制电源的正负极;支撑材料为长方体结构,相邻两层二极管电路粘贴覆在支撑材料两侧,相邻两层二极管电路间距为C0/(4f0)。
4.根据权利要求3所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:最外侧的两层二极管的外侧面也粘贴有支撑材料。
5.根据权利要求4所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:支撑材料采用等效介电常数为1.03~1.08、损耗角正切为0.001~0.004的PVC泡沫压缩材料。
6.根据权利要求5所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:支撑材料采用等效介电常数为1.05、损耗角正切为0.0023的PVC泡沫压缩材料。
7.根据权利要求4~6任一所述一种基于Radant透镜的M+2N级联方式相控阵天线,其特征在于:支撑材料一侧面开有通槽,该侧面为与二极管电路上焊有二极管的侧面粘接的侧面,二极管处于通槽内。
CN201310644278.8A 2013-12-02 2013-12-02 基于Radant透镜的M+2N级联方式相控阵天线 Active CN103618140B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310644278.8A CN103618140B (zh) 2013-12-02 2013-12-02 基于Radant透镜的M+2N级联方式相控阵天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310644278.8A CN103618140B (zh) 2013-12-02 2013-12-02 基于Radant透镜的M+2N级联方式相控阵天线

Publications (2)

Publication Number Publication Date
CN103618140A true CN103618140A (zh) 2014-03-05
CN103618140B CN103618140B (zh) 2015-09-23

Family

ID=50168843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310644278.8A Active CN103618140B (zh) 2013-12-02 2013-12-02 基于Radant透镜的M+2N级联方式相控阵天线

Country Status (1)

Country Link
CN (1) CN103618140B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187094A (zh) * 2015-07-13 2015-12-23 中国电子科技集团公司第十研究所 双通道跟踪接收机扩跳频体制角误差信号的解调方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2189318Y (zh) * 1994-05-23 1995-02-08 中国科学院安徽光学精密机械研究所 反射式光电开关
WO1999036992A2 (en) * 1998-01-14 1999-07-22 Raytheon Company Array antenna having multiple independently steered beams
CN1296287A (zh) * 1999-11-05 2001-05-23 日本电气株式会社 半导体器件检查装置
CN103368655A (zh) * 2013-06-21 2013-10-23 哈尔滨工业大学深圳研究生院 一种基于自适应控制望远镜阵列的光信号接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2189318Y (zh) * 1994-05-23 1995-02-08 中国科学院安徽光学精密机械研究所 反射式光电开关
WO1999036992A2 (en) * 1998-01-14 1999-07-22 Raytheon Company Array antenna having multiple independently steered beams
CN1296287A (zh) * 1999-11-05 2001-05-23 日本电气株式会社 半导体器件检查装置
CN103368655A (zh) * 2013-06-21 2013-10-23 哈尔滨工业大学深圳研究生院 一种基于自适应控制望远镜阵列的光信号接收方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187094A (zh) * 2015-07-13 2015-12-23 中国电子科技集团公司第十研究所 双通道跟踪接收机扩跳频体制角误差信号的解调方法
CN105187094B (zh) * 2015-07-13 2017-08-04 中国电子科技集团公司第十研究所 双通道跟踪接收机扩跳频体制角误差信号的解调方法

Also Published As

Publication number Publication date
CN103618140B (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
CN105024143B (zh) 一种片式Ka频段宽角扫描卫星通信天线
CN106711622B (zh) 天线阵列和天线
CN103022727B (zh) 低剖面动中通收发共用一维有源相控阵天线
CN105958214A (zh) 一种可扩展高集成有源相控阵天线
CN105514566A (zh) 毫米波瓦式相控阵天线tr组件
CN108134216B (zh) 一种模拟波束赋形的天线阵列
CN101842714B (zh) 采用有源相控阵天线的通信系统和方法
WO2021104299A1 (zh) 一种阵列天线以及设备
CN103490175A (zh) 一种一体化基站天线
CN205752544U (zh) 一种双星双波束s频段卫星通信相控阵天线
CN102856667A (zh) 一种多波束天线系统
CN108432051A (zh) 一种阵列天线系统
CN102570031A (zh) 一种双极化电调定向基站天线及通信基站
CN101944657B (zh) 一种组合形式双线极化阵列天线
CN102403576A (zh) 低副瓣罗特曼透镜天线
CN203260740U (zh) 一种非对称馈电的多天线阵列
Herd et al. Advanced architecture for a low cost multifunction phased array radar
CN103618140B (zh) 基于Radant透镜的M+2N级联方式相控阵天线
KR20200132618A (ko) 시프트 직렬 급전을 이용한 이중편파 안테나
CN104143698A (zh) 多入多出天线装置
CN211123242U (zh) 一种基于mimo体制的提高雷达角度分辨率的布局
CN111585050B (zh) 一种宽频带平板阵列天线
CN103259571A (zh) 多重输入多重输出无线通讯系统的扩充模块
CN105048108B (zh) 时间调制范阿塔方向回溯三功能可重构共孔径天线阵
CN211182533U (zh) 相控阵天线结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant