CN103616035B - A kind of performance parameter calibration method of laser strapdown inertial navigation system - Google Patents

A kind of performance parameter calibration method of laser strapdown inertial navigation system Download PDF

Info

Publication number
CN103616035B
CN103616035B CN201310570907.7A CN201310570907A CN103616035B CN 103616035 B CN103616035 B CN 103616035B CN 201310570907 A CN201310570907 A CN 201310570907A CN 103616035 B CN103616035 B CN 103616035B
Authority
CN
China
Prior art keywords
beta
delta
centerdot
theta
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310570907.7A
Other languages
Chinese (zh)
Other versions
CN103616035A (en
Inventor
王骞
李良君
黄锡成
李仔冰
杨锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Original Assignee
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials filed Critical Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority to CN201310570907.7A priority Critical patent/CN103616035B/en
Publication of CN103616035A publication Critical patent/CN103616035A/en
Application granted granted Critical
Publication of CN103616035B publication Critical patent/CN103616035B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

The invention discloses a kind of performance parameter calibration method of laser strapdown inertial navigation system, adopt marble flat board and turnover bracket or low precision turntable as calibration facility, according to the characteristic of Laser strapdown inertial navigation, under employing navigation mode, the output speed of Laser strapdown inertial navigation is as observed quantity.Method of the present invention successfully can carry out parameter calibration to Laser strapdown inertial navigation, reduces calibration facility cost and to demarcating the restriction of test site, solving existing scaling method and must use high precision turntable, to place and the higher problem of equipment requirement.

Description

A kind of performance parameter calibration method of laser strapdown inertial navigation system
Technical field
The present invention relates to strapdown inertial navigation system, particularly a kind of Laser strapdown inertial navigation performance parameter calibration method.
Background technology
The method that the demarcation that strapdown traditional is at present used to organize inertia device performance parameter adopts carries out rate versus position demarcation in high precision turntable, this scaling method requires that local geographic coordinate system is accurately aimed in Laser strapdown inertial navigation, technical requirement is harsh, otherwise will affect stated accuracy towards error.Although the method precision is higher, must be fixed at the enterprising rower of degree of precision turntable, comparatively greatly, calibration cost is high for equipment, place restriction.
Summary of the invention
Technical matters to be solved by this invention is, not enough for prior art, provides a kind of performance parameter calibration method of laser strapdown inertial navigation system, solves existing scaling method and must use high precision turntable, to place and the higher problem of equipment requirement.
For solving the problems of the technologies described above, the technical solution adopted in the present invention is: a kind of performance parameter calibration method of laser strapdown inertial navigation system, and the method is:
1) Ring Laser Gyroscope SINS is arranged on mould turnover, mould turnover is placed on flat board, and Ring Laser Gyroscope SINS is aimed at local geographic coordinate system;
2) error model of Ring Laser Gyroscope SINS is set up:
δa bxxxxa bxxya byxza bz
δa byyyxa bxyya byyza bz
δa bzzzxa bxzya byzza bz
δω bxxxxω bxxyω byxzω bz+(β xyxa bxxyya byxyza bzby+(β xzxa bxxzya byxzza bzbz
δω byyyxω bxyyω byyzω bz+(β yxxa bxyxya byyxza bzbx+(β yzxa bxyzya byyzza bzbz
δω bzzzxω bxzyω byzzω bz+(β zxxa bxzxya byzxza bzbx+(β zyxa bxzyya byzyza bzby
Wherein, δ a bi, δ ω bifor accelerometer and gyro error are in the projection of Ring Laser Gyroscope SINS coordinate system; α ifor accelerometer bias; α iifor accelerometer scale factor; α ijfor accelerometer alignment error; a bifor: the projection of terrestrial gravitation; β ifor gyroscopic drift; β iifor gyro scale factor; β ijfor gyro misalignment; β ijkfor the gyroscopic drift that acceleration causes; ω bi---the projection of absolute angular velocities in Ring Laser Gyroscope SINS coordinate system; I=x, y, z; J=x, y, z; I ≠ j;
3) following formula is utilized to demarcate β iand β ii:
∫ 0 t δω E dt = β x t + β xx θ ;
∫ 0 t δω N dt = β y θ · sin θ + β yx sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) ;
Wherein, θ is the angle of pitch of Ring Laser Gyroscope SINS, and t is for demarcating the test duration (setting before demarcating, rest position time 2 ~ 5min, rotation time≤30s);
4) following formula is utilized to demarcate α i, α ii, α ij:
When the pitching angle theta of rotary laser strapdown inertial navitation system (SINS):
θ=90°:
δ V · E = - α xz g + α xy g - g β y θ · - gβ yz + g β z θ · + gβ zx ;
δ V · N = - α y - α yz g - α z - α zy g + gβ x t + gβ xx π 2 ;
θ=180°:
δ V · E = 2 β z θ · g + 2 gβ zx - 2 α xz g ;
δ V · N = - 2 α y + gβ x t + gβ xx π ;
As the roll angle γ of rotary laser strapdown inertial navitation system (SINS):
γ=90°:
δ V · E = - α x - α xz g + α z - α zx g - gβ y t - gβ yy π 2 δ V · N = - α yz g - α yx g + g β x γ · + gβ xy + g β z γ · + gβ zy ;
γ=180°:
δ V · E = - 2 α x - gβ y t - gβ yy π δ V · N = - 2 α yz g + 2 β z γ · g + 2 β zy g ;
As the position angle ψ of rotary laser strapdown inertial navitation system (SINS):
ψ=90°:
δ V · E = - α x - α xz g + α y + α yz g + g β x ψ · + gβ xz - g β y ψ · - gβ yz δ V · N = - α y - α yz g - α x - α xz g + g β x ψ · + gβ xz + g β y ψ · + gβ yz ;
ψ=180°:
δ V · E = - 2 α x - 2 α xz g + 2 β xz g + 2 β x ψ · g δ V · N = - 2 α y - 2 α yz g + 2 β yz g + 2 β y ψ · g ;
5) gyro misalignment is demarcated:
Following formula is utilized to estimate β zxand β yx:
Wherein,
Following formula is utilized to estimate β zyand β xy:
Wherein,
Following formula is utilized to estimate β xzand β yz:
Wherein,
In described step 3), β iand β iithe computation process of calibration formula as follows:
1) simplify the error model of Ring Laser Gyroscope SINS, obtain the simplification error model of following Ring Laser Gyroscope SINS:
E-passage:
δ V · E = - g Φ N + δa E Φ · N = δV E R + δω N ;
N-passage:
δ V · N = gΦ E + δa N Φ · E = - δV N R + δω E ;
Wherein, for inertial navigation east orientation accelerometer exports acceleration, δ V efor Ring Laser Gyroscope SINS east orientation Measurement channel output speed, Φ nfor Ring Laser Gyroscope SINS north orientation Measurement channel exports rotational angle, for Ring Laser Gyroscope SINS north orientation Measurement channel exports rotational angular velocity, R is the radius of gyration, for Ring Laser Gyroscope SINS north orientation accelerometer exports acceleration, δ V nfor Ring Laser Gyroscope SINS north orientation Measurement channel output speed, Φ efor Ring Laser Gyroscope SINS east orientation Measurement channel exports rotational angle, for Ring Laser Gyroscope SINS east orientation Measurement channel exports rotational angular velocity, δ a e, δ a nfor the accelerometer error projection in local geographic coordinate system, δ ω e, δ ω nfor the gyro error projection in local geographic coordinate system; G is acceleration of gravity;
2) ignore in above-mentioned simplification error model with , obtain new error model:
δ V · E = - gΦ N ( 0 ) + δa E - g ∫ t 0 t δω N dt δ V · N = gΦ E ( 0 ) + δa N + g ∫ t 0 t δω E dt ;
Wherein, Φ e(0), Φ n(0) be horizontal aligument error, and:
Φ N ( 0 ) = 1 g ( α x + α xz g ) Φ E ( 0 ) = - 1 g ( α y + α yz g ) ;
3) direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system is determined
C b LL = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ;
c 11=cosγcosψ+sinθsinγsinψ
c 12=cosθsinψ
c 13=sinγcosψ-sinθcosγsinψ
c 21=-cosγsinψ+sinθsinγcosψ
Wherein, c 22=cos θ cos ψ;
c 23=-sinγsinψ-sinθcosγcosψ
c 31=-cosθsinγ
c 32=sinθ
c 33=cosθcosγ
θ, γ, ψ are respectively the angle of pitch of Ring Laser Gyroscope SINS, roll angle and position angle;
4) rotate mould turnover, ensure that the time of the navigation mode of Ring Laser Gyroscope SINS work is 2 ~ 5 minutes, obtain the absolute angular velocities ω of Ring Laser Gyroscope SINS in rotary course b:
ω b = θ · 0 0 ;
Wherein, for angular velocity of rotation;
5) suppose that roll angle γ and the position angle ψ of Ring Laser Gyroscope SINS keep motionless, the pitching angle theta of rotary laser strapdown inertial navitation system (SINS), obtains the new direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system
C b ′ LL = 1 0 0 0 cos θ - sin θ 0 sin θ cos θ ;
6) according to error model and the absolute angular velocities ω of Ring Laser Gyroscope SINS b, obtain:
δω bx = β x + β xx θ · δω by = β y + β yx θ · δω bz = β z + β zx θ · ;
7) by gyro error from Ring Laser Gyroscope SINS ordinate transform to local geographic coordinate system, obtain:
δω E δω N δω Up = C b ′ LL δω bx δω by δω bz = δω x b δω y b cos θ - δω z b sin θ δω y b sin θ + δω z b cos θ ;
δ ω upfor rotation axis is to the output of responsive gyro; for absolute angular velocities ω bprojection in Ring Laser Gyroscope SINS coordinate system;
8) formula of step 6) is substituted in the formula of step 7), obtains gyro error being projected as in local geographic coordinate system:
δω E = β x + β xx θ · δω N = β y cos θ + β yx θ · cos θ - β z sin θ - β zx θ · sin θ ;
δ ω efor rotating output, the δ ω of rear east orientation gyro nfor rotating the output of rear north gyro;
9) to the formula integration of step 8), obtain:
∫ 0 t δω E dt = β x t + β xx θ ;
∫ 0 t δω N dt = β y θ · sin θ + β yx sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) .
Compared with prior art, the beneficial effect that the present invention has is: the calibration facility that the present invention adopts is the dull and stereotyped and turnover bracket of marble (also can with low precision turntable), according to the characteristic of Laser strapdown inertial navigation, under employing navigation mode, the output speed of Laser strapdown inertial navigation is as observed quantity, a large amount of experiments proves that method of the present invention can successfully be demarcated Laser strapdown inertial navigation, reduces calibration facility cost and the restriction to demarcation test site.
Embodiment
The error model of used group is as follows:
δa bxxxxa bxxya byxza bz
δa byyyxa bxyya byyza bz
δa bzzzxa bxzya byzza bz
δω bxxxxω bxxyω byxzω bz+(β xyxa bxxyya byxyza bzby+(β xzxa bxxzya byxzza bzbz
δω byyyxω bxyyω byyzω bz+(β yxxa bxyxya byyxza bzbx+(1)(β yzxa bxyzya byyzza bzbz
δω bzzzxω bxzyω byzzω bz+(β zxxa bxzxya byzxza bzbx+(β zyxa bxzyya byzyza bzby
In formula (1): δ a bi, δ ω bi, (i=x, y, z)---accelerometer and gyro error are in the projection of carrier system; α i: accelerometer bias; α ii: accelerometer scale factor; α ij: accelerometer alignment error (i ≠ j); a bi: the projection of certain force; β i: gyroscopic drift; β ii: gyro scale factor; β ij: gyro misalignment (i ≠ j); β ijk: the gyroscopic drift (flexure error) that acceleration causes; ω bi: the projection of absolute angular velocities in carrier coordinate system.
Gyro flexure error is not generally considered in demarcation test.The object of demarcating determines above parameter exactly.
In order to study this scaling method, need the error model providing Laser strapdown inertial navigation simplification.Single channel Laser strapdown ins error model has following form:
E-passage:
δ V · E = - g Φ N + δ a E Φ · N = δV E R + δω N
N-passage:
δ V · N = gΦ E + δa N Φ · E = - δV N R + δω E
Wherein δ a e, δ a n, δ ω e, δ ω nfor the accelerometer in local geographic coordinate system and gyro error projection.
Due to employing is the Laser strapdown ins error model simplified, and the time being therefore operated in navigation mode in the rear Laser strapdown inertial navigation of each rotation is 2 ~ 5 minutes.
Ignore in error model with , can again obtain error model as follows:
δ V · E = - gΦ N ( 0 ) + δa E - g ∫ t 0 t δω N dt δ V · N = gΦ E ( 0 ) + δa N + g ∫ t 0 t δω E dt - - - ( 2 )
Wherein Φ e(0), Φ n(0) be horizontal aligument error, and obtain according to equation (2) and error model (1):
Φ N ( 0 ) = 1 g ( α x + α xz g ) Φ E ( 0 ) = - 1 g ( α y + α yz g ) - - - ( 3 )
Direction cosine matrix between carrier (i.e. Ring Laser Gyroscope SINS) coordinate system and local geographic coordinate system can be write as following form by pitching, roll and position angle:
C b LL = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 - - - ( 4 )
Wherein:
c 11=cosγcosψ+sinθsinγsinψ
c 12=cosθsinψ
c 13=sinγcosψ-sinθcosγsinψ
c 21=-cosγsinψ+sinθsinγcosψ
c 22=cosθcosψ
c 23=-sinγsinψ-sinθcosγcosψ
c 31=-cosθsinγ
c 32=sinθ
c 33=cosθcosγ
θ, γ, ψ are respectively the pitching of carrier, roll and position angle.
This scaling method comprises the specific upset order of Laser strapdown inertial navigation different rotation angle under navigation mode.Each is after twice upset, and Laser strapdown inertial navigation needs conversion with the navigation time (otherwise error model (2) is by invalid) ensureing navigation mode.
Rotate θ angle for Laser strapdown inertial navigation, under above-mentioned rotation, navigation error model can with formal construction below.In rotary course, the absolute angular velocities of carrier system has following form:
ω b = θ · 0 0 - - - ( 5 )
for angular velocity of rotation.
In equation above relative to the projection of size earth autobiography angular velocity be left in the basket, consider the initial orientation of carrier coordinate system relative to local geographic coordinate system, direction cosine matrix can obtain at hypothesis ψ, form under γ is enough little, there is no need to require in first time is demarcated, each for carrier axle strictly to be aimed at, but require that carrier coordinate system is relative to local geographic coordinate system initial orientation rough alignment (1-3 °).
Under above-mentioned hypothesis, the transition matrix between carrier and local geographic coordinate system has following form:
C b LL = 1 0 0 0 cos θ - sin θ 0 sin θ cos θ
With gyroscope error model (1) and carrier angular velocity equation (5), can obtain:
δω x b = β x + β xx θ · δω y b = β y + β yx θ · δω z b = β z + β zx θ · - - - ( 6 )
Again gyro error is tied to the conversion of local Department of Geography from carrier as follows:
δω E δω N δω Up = C b LL δω x b δω y b δω z b = δω x b δω y b cos θ - δω z b sin θ δω y b sin θ + δω z b cos θ - - - ( 7 )
Bring equation (6) into equation (7), gyro error is projected as local geographic coordinate system:
δω E = β x + β xx θ · δω N = β y cos θ + β yx θ · cos θ - β z sin θ - β zx θ · sin θ
Integration is carried out to above formula, obtains:
∫ 0 t δω E dt = β x t + β xx θ - - - ( 8 )
∫ 0 t δω N dt = β y θ · sin θ + β yx sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) - - - ( 9 )
Similar method is adopted to accelerometer error, in fact, certain force being projected as in carrier coordinate system:
α x b α y b α z b = 1 0 0 0 cos θ sin θ 0 - sin θ cos θ 0 0 g = 0 g sin θ g cos θ
The projection form of accelerometer error in carrier coordinate system can be described as:
δα x b = α x + α xy g sin θ + α xy g cos θ δα y b = α y + α yy g sin θ + α yz g cos θ δα z b = α z + α zy g sin θ + α zz g cos θ - - - ( 10 )
Acceleration error is projected as local geographic coordinate system:
δα E = δα x b δα N = δα y b cos θ - δα z b sin θ - - - ( 11 )
Formula (10) is brought into (11), can obtain:
δa E = α x + α xy g sin θ + α xz g cos θ δa N = α y cos θ + α yy g sin θ cos θ + α yz g cos 2 θ - α z sin θ - α zy g sin 2 θ - α zz g cos θ sin θ - - - ( 12 )
Aggregative formula (2), (3), (8), (9), (12), velocity survey model can be described as:
δ V · E = - α xz g + α xy g sin θ + α xz g cos θ - g β y θ · - gβ yz sin θ - g β z θ · ( cos θ - 1 ) - gβ zx ( cos θ - 1 ) - - - ( 13 )
δ V · N = - α y - α yz g + α y cos θ + α yy g sin θ cos θ + α yz g cos 2 θ - α z sin θ - α zy g sin 2 θ - α zz g cos θ sin θ + gβ x t + gβ xx θ - - - ( 14 )
When θ=90 °, above-mentioned equation can be changed into:
δ V · E = - α xz g + α xy g - g β y θ · - gβ yz + g β z θ · + gβ zx ;
δ V · N = - α y - α yz g - α z - α zy g + gβ x t + gβ xx π 2 ;
When θ=180 °
δ V · E = 2 β z θ · g + 2 g β zx - 2 α xz g ;
δ V · N = - 2 α y + g β x t + g β xx π ;
Velocity survey equation under other rotation angle γ, ψ, also can calculate as stated above.Rotate γ angle and obtain velocity error measurement:
δ V · E = - α x - α xz g + α x cos γ - α xx g sin γ cos γ + α xz g cos 2 γ + α z sin γ - α zx g sin 2 γ + α zz g cos γ sin γ - g β y t - gβ yy γ δ V · N = - α y - α yz g + α y - α yx g sin γ + α yz g cos γ + g β x γ · sin γ + gβ xy sin γ - g β z γ · ( cos γ - 1 ) - gβ zy ( cos γ - 1 ) - - - ( 15 )
When γ=90 °, above-mentioned equation becomes:
δ V · E = - α x - α xz g + α z - α zx g - gβ y t - gβ yy π 2 δ V · N = - α yz g - α yx g + g β x γ · + gβ xy + g β z γ · + gβ zy
When γ=180 °,
δ V · E = - 2 α x - gβ y t - gβ yy π δ V · N = - 2 α yz g + 2 β z γ · g + 2 β zy g - - - ( 16 )
Rotating ψ angular measurement model is:
δ V · E = - α x - α xz g + α x cos ψ + α xz g cos ψ + α y sin ψ + α yz g sin ψ - g β x ψ · ( cos ψ - 1 ) - gβ xz ( cos ψ - 1 ) - g β y ψ · sin ψ - β yz g sin ψ δ V · N = - α y - α yz g - α x sin ψ - α xz g sin ψ + α y cos ψ + α yz g cos ψ + g β x ψ · sin ψ + gβ xz sin ψ - g β y ψ · ( cos ψ - 1 ) - gβ yz ( cos ψ - 1 ) - - - ( 17 )
When ψ=90 °
δ V · E = - α x - α xz g + α y + α yz g + g β x ψ · + gβ xz - g β y ψ · - gβ yz δ V · N = - α y - α yz g - α x - α xz g + g β x ψ · + gβ xz + g β y ψ · + gβ yz - - - ( 18 )
When ψ=180 °
δ V · E = - 2 α x - 2 α xz g + 2 β xz g + 2 β x ψ · g δ V · N = - 2 α y - 2 α yz g + 2 β yz g + 2 β y ψ · g - - - ( 19 )
Gyro misalignment calibration process is as follows:
Suppose that all calibrating parameters are except gyro misalignment, all demarcate out and compensate, program below can be used for estimating β ij.
1st step rotates θ=90 °
Measurement model:
2nd step rotates θ=180 °
Measurement model:
3rd step estimates β zxand β yx
4th step rotates γ=90 °
Measurement model:
5th step rotates γ=180 °
Measurement model:
6th step estimates β zyand β xy
7th step rotates ψ=180 °
Measurement model:
8th step estimates β zyand β xy
Here make use of (15), (16), (18), the measurement model equation that (19) are set up.
What it is emphasized that the equation of definition only describes is error in rotary course, and total velocity error model comprises:
δV t=δV I+δV II
δ V i---the velocity error in rotary course, as (13), (14);
δ V iI---the measurement progressive rate error (2-3min) after rotary course.
Part II in equation (20) is left in the basket relative to Part I, and what therefore calibration algorithm used is equation (13) and (14).
Scaling method step of the present invention is summarized as follows:
inertial navigation system is arranged on mould turnover and is placed in dull and stereotyped upper (or on low precision turntable), and the local geographic coordinate system of rough alignment;
laser strapdown inertial navigation enters alignment pattern, and aim at after terminating, system enters navigation mode;
system casing rotates different angles (once or twice) in order, and preserves the output speed (2-5min) of Laser strapdown inertial navigation;
system exits, and (should refer to navigation mode) gets back to initial position;
said procedure repeatedly rotates different angles and performs, and obtains enough measurement output calibrate each parameter with this;
the velocity survey model of each position is set up, and carries out level and smooth (in the short time, speed should be straight line, and its differential should be constant value) in advance the speed stored;
utilize smoothed speed output and measurement model to estimate the parameter of accelerometer and gyro;
estimation routine can adopt traditional least square or Kalman filtering algorithm.
Traditional turntable speed is added the scaling method of position and this scaling method to be used to group to same set of Laser strapdown respectively and to demarcate, calibration result is as table 1:
Table 1 two kinds of mode comparing results
As can be seen from two groups of calibration results, two kinds of differences of demarcating mode meet index request, prove that scaling method of the present invention is feasible.

Claims (1)

1. a performance parameter calibration method of laser strapdown inertial navigation system, is characterized in that, the method is:
1) Ring Laser Gyroscope SINS is arranged on mould turnover, mould turnover is placed on flat board, and Ring Laser Gyroscope SINS is aimed at local geographic coordinate system;
2) error model of Ring Laser Gyroscope SINS is set up:
δa bx=α xxxa bxxya byxza bz
δa by=α yyxa bxyya byyza bz
δa bz=α zzxa bxzya byzza bz
δω bx=β xxxω bxxyω byxzω bz+(β xyxa bxxyya byxyza bzby+(β xzxa bxxzya byxzza bzbz
δω by=β yyxω bxyyω byyzω bz+(β yxxa bxyxya byyxza bzbx+(β yzxa bxyzya byyzza bzbz
δω bz=β zzxω bxzyω byzzω bz+(β zxxa bxzxya byzxza bzbx+(β zyxa bxzyya byzyza bzby
Wherein, δ a bi, δ ω bifor accelerometer and gyro error are in the projection of Ring Laser Gyroscope SINS coordinate system; α ifor accelerometer bias; α iifor accelerometer scale factor; α ijfor accelerometer alignment error; a bifor the projection of terrestrial gravitation; β ifor gyroscopic drift; β iifor gyro scale factor; β ijfor gyro misalignment; β ijkfor the gyroscopic drift that acceleration causes; ω bi---the projection of absolute angular velocities in Ring Laser Gyroscope SINS coordinate system; I=x, y, z; J=x, y, z; I ≠ j;
3) following formula is utilized to demarcate β iand β ii:
∫ 0 t δω E d t = β x t + β x x θ ;
∫ 0 t δω N d t = β y θ · sin θ + β y x s i n θ + β z θ · ( c o s θ - 1 ) + β z x ( c o s θ - 1 ) ;
Wherein, θ is the angle of pitch of Ring Laser Gyroscope SINS, and t is for demarcating the test duration;
4) following formula is utilized to demarcate α i, α ii, α ij:
When the pitching angle theta of rotary laser strapdown inertial navitation system (SINS):
θ=90°:
δ V · E = - α x z g + α x y g - g β y θ · - gβ y z + g β z θ · + gβ z x ;
δ V · N = - α y - α y z g - α z - α z y g + gβ x t + gβ x x π 2 ;
θ=180°:
δ V · E = 2 β z θ · g + 2 gβ z x - 2 α x z g ;
δ V · N = - 2 α y + gβ x t + gβ x x π ;
As the roll angle γ of rotary laser strapdown inertial navitation system (SINS):
γ=90°:
δ V · E = - α x - α x z g + α z - α z x g - gβ y t - gβ y y π 2
δ V · N = - α y z g - α y x g + g β x γ · + gβ x y + g β z γ · + gβ z y ;
γ=180°:
δ V · E = - 2 α x - gβ y t - gβ y y π
δ V · N = - 2 α y z g + 2 β z γ · g + 2 β z y g ;
As the position angle ψ of rotary laser strapdown inertial navitation system (SINS):
ψ=90°:
δ V · E = - α x - α x z g + α y + α y z g + g β x ψ · + gβ x z - g β y ψ · - gβ y z
δ V · N = - α y - α y z g - α x - α x z g + g β x ψ · + gβ x z + g β y ψ · + gβ y z ;
ψ=180°:
δ V · E = - 2 α x - 2 α x z g + 2 β x z g + 2 β x ψ · g
δ V · N = - 2 α y - 2 α y z g + 2 β y z g + 2 β y ψ · g ;
5) gyro misalignment is demarcated:
Following formula is utilized to estimate β zxand β yx:
Wherein,
Following formula is utilized to estimate β zyand β xy:
Wherein,
Following formula is utilized to estimate β xzand β yz:
Wherein,
Described step 3) in, β iand β iithe computation process of calibration formula as follows:
1) simplify the error model of Ring Laser Gyroscope SINS, obtain the simplification error model of following Ring Laser Gyroscope SINS:
E-passage:
δ V · E = - gΦ N + δa E
Φ · N = δV E R + δω N ;
N-passage:
δ V · N = gΦ E + δa N
Φ · E = - δV N R + δω E ;
Wherein, for inertial navigation east orientation accelerometer exports acceleration, δ V efor Ring Laser Gyroscope SINS east orientation Measurement channel output speed, Φ nfor Ring Laser Gyroscope SINS north orientation Measurement channel exports rotational angle, for Ring Laser Gyroscope SINS north orientation Measurement channel exports rotational angular velocity, R is the radius of gyration, for Ring Laser Gyroscope SINS north orientation accelerometer exports acceleration, δ V nfor Ring Laser Gyroscope SINS north orientation Measurement channel output speed, Φ efor Ring Laser Gyroscope SINS east orientation Measurement channel exports rotational angle, for Ring Laser Gyroscope SINS east orientation Measurement channel exports rotational angular velocity, δ a e, δ a nfor the accelerometer error projection in local geographic coordinate system, δ ω e, δ ω nfor the gyro error projection in local geographic coordinate system; G is acceleration of gravity;
2) ignore in above-mentioned simplification error model with , obtain new error model:
δ V · E = - gΦ N ( 0 ) + δa E - g ∫ t 0 t δω N d t
δ V · N = gΦ E ( 0 ) + δa N + g ∫ t 0 t δω E d t ;
Wherein, Φ e(0), Φ n(0) be horizontal aligument error, and:
Φ N ( 0 ) = 1 g ( α x + α x z g )
Φ E ( 0 ) = - 1 g ( α y + α y z g ) ;
3) direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system is determined
C b L L = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ;
c 11=cosγcosψ+sinθsinγsinψ
c 12=cosθsinψ
c 13=sinγcosψ-sinθcosγsinψ
c 21=-cosγsinψ+sinθsinγcosψ
Wherein, c 22=cos θ cos ψ;
c 23=-sinγsinψ-sinθcosγcosψ
c 31=-cosθsinγ
c 32=sinθ
c 33=cosθcosγ
θ, γ, ψ are respectively the angle of pitch of Ring Laser Gyroscope SINS, roll angle and position angle;
4) rotate mould turnover, ensure that the time of the navigation mode of Ring Laser Gyroscope SINS work is 2 ~ 5 minutes, obtain the absolute angular velocities ω of Ring Laser Gyroscope SINS in rotary course b:
ω b = θ · 0 0 ;
Wherein, for angular velocity of rotation;
5) suppose that roll angle γ and the position angle ψ of Ring Laser Gyroscope SINS keep motionless, the pitching angle theta of rotary laser strapdown inertial navitation system (SINS), obtains the new direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system
C b ′ L L = 1 0 0 0 c o s θ - sin θ 0 s i n θ cos θ ;
6) according to error model and the absolute angular velocities ω of Ring Laser Gyroscope SINS b, obtain:
δω b x = β x + β x x θ ·
δω b y = β y + β y x θ · ;
δω b z = β z + β z x θ ·
7) by gyro error from Ring Laser Gyroscope SINS ordinate transform to local geographic coordinate system, obtain:
δω E δω N δω U p = C b ′ L L δω b x δω b y δω b z = δω x b δω y b cos θ - δω z b sin θ δω y b sin θ + δω z b cos θ ;
δ ω upfor rotation axis is to the output of responsive gyro; for absolute angular velocities ω bprojection in Ring Laser Gyroscope SINS coordinate system;
8) by step 6) formula substitute into step 7) formula in, obtain gyro error being projected as in local geographic coordinate system:
δω E = β x + β x x θ ·
δω N = β y c o s θ + β y x θ · c o s θ - β z s i n θ - β z x θ · s i n θ ;
δ ω efor rotating output, the δ ω of rear east orientation gyro nfor rotating the output of rear north gyro;
9) to step 8) formula integration, obtain:
∫ 0 t δω E d t = β x t + β x x θ ;
∫ 0 t δω N d t = β y θ · s i n θ + β y x s i n θ + β z θ · ( c o s θ - 1 ) + β z x ( c o s θ - 1 ) .
CN201310570907.7A 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system Active CN103616035B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310570907.7A CN103616035B (en) 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310570907.7A CN103616035B (en) 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system

Publications (2)

Publication Number Publication Date
CN103616035A CN103616035A (en) 2014-03-05
CN103616035B true CN103616035B (en) 2016-03-30

Family

ID=50166741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310570907.7A Active CN103616035B (en) 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system

Country Status (1)

Country Link
CN (1) CN103616035B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940443B (en) * 2014-03-11 2017-02-08 哈尔滨工程大学 Gyroscope error calibration method
CN104457786B (en) * 2014-10-16 2017-04-12 哈尔滨工程大学 Outer field strapdown inertial unit rapid calibration method adopting multi-sensor fusion technology
CN104535082B (en) * 2014-12-05 2017-07-07 中国航天空气动力技术研究院 A kind of method that inertial navigation components performance is judged based on flight test and theoretical calculation
CN105136166B (en) * 2015-08-17 2018-02-02 南京航空航天大学 A kind of SINS error model emulation mode of specified inertial navigation positional precision
CN105136142A (en) * 2015-10-16 2015-12-09 北京机械设备研究所 Indoor positioning method based on micro inertial sensor
CN106908079A (en) * 2015-12-23 2017-06-30 北京自动化控制设备研究所 Three axis optical fibre gyro combines constant multiplier automatic test device and method of testing
CN106153074B (en) * 2016-06-20 2023-05-05 浙江大学 Optical calibration system and method for inertial measurement combined dynamic navigation performance
CN105953820B (en) * 2016-06-20 2018-10-26 浙江大学 A kind of optical calibrating device of inertial measurement combination dynamic navigation performance
CN108387244B (en) * 2017-12-21 2020-11-10 北京航天时代激光导航技术有限责任公司 Inertial measurement unit and prism installation error stability determination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155957A (en) * 2011-03-21 2011-08-17 哈尔滨工程大学 Mobile strapdown attitude and heading reference based method for calibrating marine optical fiber gyroscope assembly on line
CN102393210A (en) * 2011-08-23 2012-03-28 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102806365A (en) * 2012-08-24 2012-12-05 迪莱姆数控机电(杭州)有限公司 High-efficiency special double-end numerical control lathe for processing bearing type parts and system thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155957A (en) * 2011-03-21 2011-08-17 哈尔滨工程大学 Mobile strapdown attitude and heading reference based method for calibrating marine optical fiber gyroscope assembly on line
CN102393210A (en) * 2011-08-23 2012-03-28 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102806365A (en) * 2012-08-24 2012-12-05 迪莱姆数控机电(杭州)有限公司 High-efficiency special double-end numerical control lathe for processing bearing type parts and system thereof

Also Published As

Publication number Publication date
CN103616035A (en) 2014-03-05

Similar Documents

Publication Publication Date Title
CN103616035B (en) A kind of performance parameter calibration method of laser strapdown inertial navigation system
CN107588769B (en) Vehicle-mounted strapdown inertial navigation, odometer and altimeter integrated navigation method
CN101514900B (en) Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS)
CN103090867B (en) Error restraining method for fiber-optic gyroscope strapdown inertial navigation system rotating relative to geocentric inertial system
CN101514899B (en) Optical fibre gyro strapdown inertial navigation system error inhibiting method based on single-shaft rotation
CN100516775C (en) Method for determining initial status of strapdown inertial navigation system
CN102221372B (en) Method for calibrating error of inertia measurement unit by using centrifugal machine and turntable
CN101975872B (en) Method for calibrating zero offset of quartz flexible accelerometer component
CN103900608B (en) A kind of low precision inertial alignment method based on quaternary number CKF
CN100547352C (en) The ground speed testing methods that is suitable for fiber optic gyro strapdown inertial navigation system
CN1330934C (en) Method for initial aiming of arbitrary double position of strapdown inertial navigation system
CN103900566B (en) A kind of eliminate the method that rotation modulation type SINS precision is affected by rotational-angular velocity of the earth
CN103453917A (en) Initial alignment and self-calibration method of double-shaft rotation type strapdown inertial navigation system
CN101963512A (en) Initial alignment method for marine rotary fiber-optic gyroscope strapdown inertial navigation system
CN102679978B (en) Initial alignment method of static base of rotary type strap-down inertial navigation system
CN104864874B (en) A kind of inexpensive single gyro dead reckoning navigation method and system
CN103697878B (en) A kind of single gyro list accelerometer rotation modulation north finding method
CN101706287A (en) Rotating strapdown system on-site proving method based on digital high-passing filtering
CN104596543A (en) Error coefficient calibration method for gyroscope combination under uncertain standard condition
CN103575296A (en) Dual-axis rotational inertial navigation system self-calibration method
CN107270938A (en) Single-shaft-rotation inertial navigation system posture demodulation method based on Taylor series fitting
CN105043414A (en) Platform body control parameter calculating method of triaxial inertia stabilization platform system
CN102168978B (en) Marine inertial navigation system swing pedestal open loop aligning method
CN103674059A (en) External measured speed information-based horizontal attitude error correction method for SINS (serial inertial navigation system)
CN102108856A (en) Small-angle well inclination state measuring method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140305

Assignee: BEIJING INSTITUTE OF CONTROL AND ELECTRONIC TECHNOLOGY

Assignor: HUNAN AEROSPACE ELECTROMECHANICAL EQUIPMENT AND SPECIAL MATERIAL INSTITUTE

Contract record no.: X2021980016109

Denomination of invention: A calibration method for performance parameters of Laser Strapdown Inertial Navigation System

Granted publication date: 20160330

License type: Exclusive License

Record date: 20211229