CN103616035A - Performance parameter calibration method of laser strapdown inertial navigation system - Google Patents

Performance parameter calibration method of laser strapdown inertial navigation system Download PDF

Info

Publication number
CN103616035A
CN103616035A CN201310570907.7A CN201310570907A CN103616035A CN 103616035 A CN103616035 A CN 103616035A CN 201310570907 A CN201310570907 A CN 201310570907A CN 103616035 A CN103616035 A CN 103616035A
Authority
CN
China
Prior art keywords
beta
delta
centerdot
theta
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310570907.7A
Other languages
Chinese (zh)
Other versions
CN103616035B (en
Inventor
王骞
李良君
黄锡成
李仔冰
杨锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Original Assignee
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials filed Critical Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority to CN201310570907.7A priority Critical patent/CN103616035B/en
Publication of CN103616035A publication Critical patent/CN103616035A/en
Application granted granted Critical
Publication of CN103616035B publication Critical patent/CN103616035B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

The invention discloses a performance parameter calibration method of a laser strapdown inertial navigation system. According to the performance parameter calibration method, a marble flat plate and an overturning bracket or a low-precision rotary table are/is taken as calibration equipment, and an output speed of laser strapdown inertial navigation under a navigation mode is taken as an observation amount according to the characteristic of laser strapdown inertial navigation. According to the method disclosed by the invention, parameter calibration can be successfully carried out on the laser strapdown inertial navigation and the cost of calibration equipment and the limit on a calibration testing field are reduced; the problems that an existing calibration method needs a high-precision rotary table and the requirements on the field and the equipment are high are solved.

Description

A kind of Ring Laser Gyroscope SINS performance parameter calibration method
Technical field
The present invention relates to strapdown inertial navigation system, particularly a kind of Laser strapdown inertial navigation performance parameter calibration method.
Background technology
At present to be used to organize the method that the demarcation of inertia device performance parameter adopts be to carry out speed-location position in high precision turntable to traditional strapdown, this scaling method requires Laser strapdown inertial navigation accurately to aim at local geographic coordinate system, technical requirement is harsh, otherwise will affect stated accuracy towards error.Although the method precision is higher, must be fixed at the enterprising rower of degree of precision turntable, equipment, place are limited larger, and calibration cost is high.
Summary of the invention
Technical matters to be solved by this invention is, not enough for prior art, and a kind of Ring Laser Gyroscope SINS performance parameter calibration method is provided, and solves existing scaling method and must use high precision turntable, to place and the higher problem of equipment requirement.
For solving the problems of the technologies described above, the technical solution adopted in the present invention is: a kind of Ring Laser Gyroscope SINS performance parameter calibration method, and the method is:
1) Ring Laser Gyroscope SINS is arranged on mould turnover, mould turnover is placed on to flat board upper, and Ring Laser Gyroscope SINS is aimed to local geographic coordinate system;
2) set up the error model of Ring Laser Gyroscope SINS:
δa bxxxxa bxxya byxza bz
δa byyyxa bxyya byyza bz
δa bzzzxa bxzya byzza bz
δω bxxxxω bxxyω byxzω bz+(β xyxa bxxyya byxyza bzby+(β xzxa bxxzya byxzza bzbz
δω byyyxω bxyyω byyzω bz+(β yxxa bxyxya byyxza bzbx+(β yzxa bxyzya byyzza bzbz
δω bzzzxω bxzyω byzzω bz+(β zxxa bxzxya byzxza bzbx+(β zyxa bxzyya byzyza bzby
Wherein, δ a bi, δ ω bifor the projection at Ring Laser Gyroscope SINS coordinate system of accelerometer and gyro error; α ifor accelerometer bias; α iifor accelerometer scale factor; α ijfor accelerometer alignment error; a bifor: the projection of terrestrial gravitation; β ifor gyroscopic drift; β iifor gyro scale factor; β ijfor gyro misalignment; β ijkthe gyroscopic drift causing for acceleration; ω bi---the projection of absolute angle speed in Ring Laser Gyroscope SINS coordinate system; I=x, y, z; J=x, y, z; I ≠ j;
3) utilize following formula to demarcate β iand β ii:
∫ 0 t δω E dt = β x t + β xx θ ;
∫ 0 t δω N dt = β y θ · sin θ + β yx sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) ;
Wherein, the angle of pitch that θ is Ring Laser Gyroscope SINS, t is for demarcating the test duration (setting rest position time 2~5min, rotation time≤30s before demarcating);
4) utilize following formula to demarcate α i, α ii, α ij:
When the pitching angle theta of rotary laser strapdown inertial navitation system (SINS):
θ=90°:
δ V · E = - α xz g + α xy g - g β y θ · - g β yz + g β z θ · + g β zx ; δ V · N = - α y - α yz g - α z - α zy g + g β x t + g β x t + g β xx π 2 ;
θ=180°:
δ V · E = 2 β z θ · g + 2 g β zx - 2 α xz g ; δ V · N = - 2 α y + g β x t + g β xx π ;
When the roll angle γ of rotary laser strapdown inertial navitation system (SINS):
γ=90°:
δ V · E = - α x - α xz g + α z - α zx g - g β y t - g β yy π 2 δ V · N = - α yz g - α yx g + g β x γ · + g β xy + g β z γ · + g β zy ;
γ=180°:
δ V · E = - 2 α x - g β y t - g β yy π δ V · N = - 2 α yz g + 2 β z γ · g + 2 β zy g ;
When the ψ of the position angle of rotary laser strapdown inertial navitation system (SINS):
ψ=90°:
δ V · E = - α x - α xz g + α y + α yz g + g β x ψ · + g β xz - g β y ψ · - g β yz δ V · N = - α y - α yz g - α x - α xz g + g β x ψ · + g β xz + g β y ψ · + g β yz ;
ψ=180°:
δ V · E = - 2 α x - 2 α xz g + 2 β xz g + 2 β x ψ · g δ V · N = - 2 α y - 2 α yz g + 2 β yz g + 2 β y ψ · g ;
5) demarcate gyro misalignment:
Utilize following formula to estimate β zxand β yx:
Figure BDA0000415584000000035
Wherein,
Utilize following formula to estimate β zyand β xy:
Figure BDA0000415584000000041
Wherein,
Figure BDA0000415584000000042
Utilize following formula to estimate β xzand β yz:
Wherein,
Figure BDA0000415584000000044
In described step 3), β iand β iithe computation process of calibration formula as follows:
1) simplify the error model of Ring Laser Gyroscope SINS, obtain the simplification error model of following Ring Laser Gyroscope SINS:
E-passage:
δ V · E = - g Φ N + δ a E Φ · N = δV E R + δ ω N ;
N-passage:
δ V · N = g Φ E + δa N Φ · E = - δV N R + δ ω E ;
Wherein,
Figure BDA0000415584000000047
for inertial navigation east orientation accelerometer output acceleration, δ V efor Ring Laser Gyroscope SINS east orientation is measured passage output speed, Φ nfor Ring Laser Gyroscope SINS north orientation is measured passage output rotational angle,
Figure BDA0000415584000000048
for Ring Laser Gyroscope SINS north orientation, measure passage output rotational angular velocity, R is the radius of gyration,
Figure BDA0000415584000000049
for Ring Laser Gyroscope SINS north orientation accelerometer output acceleration, δ V nfor Ring Laser Gyroscope SINS north orientation is measured passage output speed, Φ efor Ring Laser Gyroscope SINS east orientation is measured passage output rotational angle,
Figure BDA00004155840000000410
for Ring Laser Gyroscope SINS east orientation is measured passage output rotational angular velocity, δ a e, δ a nfor the accelerometer error projection in local geographic coordinate system, δ ω e, δ ω nfor the gyro error projection in local geographic coordinate system; G is acceleration of gravity;
2) ignore in above-mentioned simplification error model
Figure BDA0000415584000000051
with
Figure BDA0000415584000000052
, obtain new error model:
δ V · E = - g Φ N ( 0 ) + δa E - g ∫ t 0 t δω N dt δ V · N = g Φ E ( 0 ) + δa N + g ∫ t 0 t δω E dt ;
Wherein, Φ e(0), Φ n(0) be horizontal aligument error, and:
Φ N ( 0 ) = 1 g ( α x + α xz g ) Φ E ( 0 ) = - 1 g ( α y + α yz g ) ;
3) determine the direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system
C b LL = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ;
c 11=cosγcosψ+sinθsinγsinψ
c 12=cosθsinψ
c 13=sinγcosψ-sinθcosγsinψ
c 21=-cosγsinψ+sinθsinγcosψ
Wherein, c 22=cos θ cos ψ;
c 23=-sinγsinψ-sinθcosγcosψ
c 31=-cosθsinγ
c 32=sinθ
c 33=cosθcosγ
θ, γ, ψ is respectively the angle of pitch of Ring Laser Gyroscope SINS, roll angle and position angle;
4) rotation mould turnover, guarantees that the time of the navigation mode of Ring Laser Gyroscope SINS work is 2~5 minutes, obtains the absolute angle speed omega of Ring Laser Gyroscope SINS in rotary course b:
ω b = θ · 0 0 ;
Wherein, for angular velocity of rotation;
5) suppose that the roll angle γ of Ring Laser Gyroscope SINS and position angle ψ keep motionless, the pitching angle theta of rotary laser strapdown inertial navitation system (SINS), obtains the new direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system
C b ′ LL = 1 0 0 0 cos θ - sin θ 0 sin θ cos θ ;
6) according to the error model of Ring Laser Gyroscope SINS and absolute angle speed omega b, obtain:
δω bx = β x + β xx θ · δω by = β y + β yx θ · δω bz = β z + β zx θ · ;
7) gyro error is transformed into local geographic coordinate system from Ring Laser Gyroscope SINS coordinate system, obtains:
δω E δ ω N δω Up = C b ′ LL δω bx δω by δω bz = δω x b δω y b cos θ - δω z b sin θ δω y b sin θ + δω z b cos θ ;
δ ω upfor the output of rotation axis to responsive gyro; for absolute angle speed omega bprojection in Ring Laser Gyroscope SINS coordinate system;
8) by the formula of the formula substitution step 7) of step 6), obtain gyro error being projected as in local geographic coordinate system:
δω E = β x + β xx θ · δω N = β y cos θ + β yx θ · cos θ - β z sin θ - β zx θ · sin θ ;
δ ω efor rotating output, the δ ω of rear east orientation gyro nfor rotating the output of rear north gyro;
9) the formula integration to step 8), obtains:
∫ 0 t δω E dt = β x t + β xx θ ;
∫ 0 t δω N dt = β y θ · sin θ + β yz sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) .
Compared with prior art, the beneficial effect that the present invention has is: the calibration facility that the present invention adopts is marble flat board and turnover bracket (also available low precision turntable), characteristic according to Laser strapdown inertial navigation, adopt the output speed of Laser strapdown inertial navigation under navigation mode as observed quantity, a large amount of experimental results show that method of the present invention can be successfully to Laser strapdown inertial navigation demarcate, reduced calibration facility cost and to demarcating the restriction of test site.
Embodiment
The error model of being used to group is as follows:
δa bxxxxa bxxya byxza bz
δa byyyxa bxyya byyza bz
δa bzzzxa bxzya byzza bz
δω bxxxxω bxxyω byxzω bz+(β xyxa bxxyya byxyza bzby+(β xzxa bxxzya byxzza bzbz
δω byyyxω bxyyω byyzω bz+(β yxxa bxyxya byyxza bzbx+ (1)(β yzxa bxyzya byyzza bzbz
δω bzzzxω bxzyω byzzω bz+(β zxxa bxzxya byzxza bzbx+(β zyxa bxzyya byzyza bzby
In formula (1): δ a bi, δ ω bi, (i=x, y, z)---accelerometer and gyro error are in the projection of carrier system; α i: accelerometer bias; α ii: accelerometer scale factor; α ij: accelerometer alignment error (i ≠ j); a bi: the projection of certain force; β i: gyroscopic drift; β ii: gyro scale factor; β ij: gyro misalignment (i ≠ j); β ijk: the gyroscopic drift that acceleration causes (deflection error); ω bi: the projection of absolute angle speed in carrier coordinate system.
In demarcating test, generally do not consider gyro deflection error.The object of demarcating is exactly to determine above parameter.
In order to study this scaling method, need to provide the error model that Laser strapdown inertial navigation is simplified.Single channel Laser strapdown ins error model has following form:
E-passage:
δ V · E = - g Φ N + δa E Φ · N = δV E R + δω N
N-passage:
δ V · N = g Φ E + δa N Φ · E = - δV N R + δ ω E
δ a wherein e, δ a n, δ ω e, δ ω nfor the accelerometer in local geographic coordinate system and gyro error projection.
Due to what adopt, be the Laser strapdown ins error model of simplifying, the time that therefore Laser strapdown inertial navigation is operated in navigation mode after each rotation is 2~5 minutes.
Ignore in error model
Figure BDA0000415584000000082
with
Figure BDA0000415584000000083
, can again obtain error model as follows:
δ V · E = - g Φ N ( 0 ) + δa E - g ∫ t 0 t δ ω N dt δ V · N = g Φ E ( 0 ) + δa N + g ∫ t 0 t δω E dt - - - ( 2 )
Φ wherein e(0), Φ n(0) be horizontal aligument error, and obtain according to equation (2) and error model (1):
Φ N ( 0 ) = 1 g ( α x + α xz g ) Φ E ( 0 ) = - 1 g ( α y + α yz g ) - - - ( 3 )
Direction cosine matrix between carrier (being Ring Laser Gyroscope SINS) coordinate system and local geographic coordinate system can be write as following form by pitching, roll and position angle:
C b LL = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 - - - ( 4 )
Wherein:
c 11=cosγcosψ+sinθsinγsinψ
c 12=cosθsinψ
c 13=sinγcosψ-sinθcosγsinψ
c 21=-cosγsinψ+sinθsinγcosψ
c 22=cosθcosψ
c 23=-sinγsinψ-sinθcosγcosψ
c 31=-cosθsinγ
c 32=sinθ
c 33=cosθcosγ
θ, γ, ψ is respectively the pitching of carrier, roll and position angle.
This scaling method comprises the specific upset order of Laser strapdown inertial navigation different rotation angle under navigation mode.Each is after twice upset, and Laser strapdown inertial navigation need to change to guarantee the navigation time (otherwise error model (2) is by invalid) of navigation mode.
The Laser strapdown inertial navigation of take rotation θ angle is example, and under above-mentioned rotation, navigation error model can be with formal construction below.In rotary course, the absolute angle speed of carrier system has following form:
ω b = θ · 0 0 - - - ( 5 )
Figure BDA0000415584000000098
for angular velocity of rotation.
In equation above with respect to
Figure BDA0000415584000000092
the projection of big or small earth autobiography angular velocity be left in the basket, consider that carrier coordinate system is with respect to the initial orientation of local geographic coordinate system, direction cosine matrix can obtain at hypothesis ψ, form under γ is enough little, there is no need to require in demarcating for the first time, each axle of carrier strictly to be aimed at, but require carrier coordinate system with respect to local geographic coordinate system initial orientation rough alignment (1-3 °).
Under above-mentioned hypothesis, the transition matrix between carrier and local geographic coordinate system has following form:
C b LL = 1 0 0 0 cos θ - sin θ 0 sin θ cos θ
With gyroscope error model (1) and carrier angular velocity equation (5), can obtain:
δω x b = β x + β xx θ · δω y b = β y + β yx θ · δω z b = β z + β zx θ · - - - ( 6 )
Again gyro error is tied to the conversion of local Department of Geography from carrier as follows:
δω E δ ω N δω Up = C b LL δ ω x b δ ω y b δ ω z b = δω x b δω y b cos θ - δω z b sin θ δω y b sin θ + δω z b cos θ - - - ( 7 )
Bring equation (6) into equation (7), gyro error is projected as local geographic coordinate system:
δω E = β x + β xx θ · δω N = β y cos θ + β yx θ · cos θ - β z sin θ - β zx θ · sin θ
Above formula is carried out to integration, obtains:
∫ 0 t δω E dt = β x t + β xx θ - - - ( 8 )
∫ 0 t δω N dt = β y θ · sin θ + β yx sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) - - - ( 9 )
Accelerometer error is adopted to similar method, and in fact, certain force is projected as carrier coordinate system:
a x b a y b a z b = 1 0 0 0 cos θ sin θ 0 - sin θ cos θ 0 0 g = 0 g sin θ g cos θ
The projection form of accelerometer error in carrier coordinate system can be described as:
δa x b = α x + α xy g sin θ + α xy g cos θ δa y b = α y + α yy g sin θ + α yz g cos θ δa z b = α z + α zy g sin θ + α zz g cos θ - - - ( 10 )
Acceleration error is projected as local geographic coordinate system:
δa E = δa x b δa N = δa y b cos θ - δa z b sin θ - - - ( 11 )
Bring formula (10) into (11), can obtain:
δa E = α x + α xy g sin θ + α xz g cos θ δa N = α y cos θ + α yy g sin θ cos θ + α yz g cos 2 θ - α z sin θ - α zy g sin 2 θ - α zz g cos θ sin θ - - - ( 12 )
Aggregative formula (2), (3), (8), (9), (12), velocity survey model can be described as:
δ V · E = - α xy g + α xy g sin θ + α xz g cos θ - g β y θ · - g β yz sin θ - g β z θ · ( cos θ - 1 ) - g β zx ( cos θ - 1 ) - - - ( 13 )
δ V · N = - α y - α yz g + α y cos θ + α yy g sin θ cos θ + α yz g cos 2 θ - α z sin θ - α zy g sin 2 θ - α zz g cos θ sin θ + g β x t + g β xx θ - - - ( 14 )
When θ=90 °, above-mentioned equation can be changed into:
δ V · E = - α xz g + α xy g - g β y θ · - g β yz + g β z θ · + g β zx ; δ V · N = - α y - α yz g - α z - α zy g + g β x t + g β xx π 2 ;
When θ=180 °
δ V · E = 2 β z θ · g + 2 g β zx - 2 α xz g ;
δ V · N = - 2 α y + g β x t + g β xx π ;
Other rotation angle γ, the velocity survey equation under ψ, also can calculate as stated above.
Rotation γ angle obtains velocity error and measures:
δ V · E = - α x - α xz g + α x cos γ - α xx g sin γ cos γ + α xz g cos 2 γ + α z sin γ - α zx g sin 2 γ + α zz g cos γ sin γ - g β y t - g β yy γ δ V · N = - α y - α yz g + α y - α yx g sin γ + α yz g cos γ + g β x γ · sin γ + g β xy sin γ - g β z γ · ( cos γ - 1 ) - g β zy ( cos γ - 1 ) - - - ( 15 )
When γ=90 °, above-mentioned equation becomes:
δ V · E = - α x - α xz g + α z - α zx g - g β y t - g β yy π 2 δ V · N = - α yz g - α yx g + g β x γ · + g β xy + g β z γ · + g β zy
When γ=180 °,
δ V · E = - 2 α x - g β y t - g β yy π δ V · N = - 2 α yz g + 2 β z γ · g + 2 β zy g - - - ( 16 )
Rotation ψ angular measurement model is:
δ V · E = - α x - α xz g + α x cos ψ + α xz g cos ψ + α y sin ψ + α yz g sin ψ - g β x ψ · ( cos ψ - 1 ) - g β xz ( cos ψ - 1 ) - g β y ψ · sin ψ - β yz g sin ψ δ V · N = - α y - α yz g - α x sin ψ - α xz g sin ψ + α y cos ψ + α yz g cos ψ + g β x ψ · sin ψ + g β xz sin ψ - g β y ψ · ( cos ψ - 1 ) - g β yz ( cos ψ - 1 ) - - - ( 17 )
When ψ=90 °
δ V · E = - α x - α xz g + α y + α yz g + g β x ψ · + g β xz - g β y ψ · - g β yz δ V · N = - α y - α yz g - α x - α xz g + g β x ψ · + g β xz + g β y ψ · + g β yz - - - ( 18 )
When ψ=180 °
δ V · E = - 2 α x - 2 α xz g + 2 β xz g + 2 β x ψ · g δ V · N = - 2 α y - 2 α yz g + 2 β yz g + 2 β y ψ · g - - - ( 19 )
Gyro misalignment calibration process is as follows:
Suppose that all calibrating parameters, except gyro misalignment, all have demarcated out and compensated, program below can be used for estimating β ij.
The 1st step rotation θ=90 °
Measurement model:
Figure BDA0000415584000000122
The 2nd step rotation θ=180 °
Measurement model:
Figure BDA0000415584000000123
The 3rd step is estimated β zxand β yx
Figure BDA0000415584000000124
The 4th step rotation γ=90 °
Measurement model:
Figure BDA0000415584000000125
The 5th step rotation γ=180 °
Measurement model:
Figure BDA0000415584000000126
The 6th step is estimated β zyand β xy
Figure BDA0000415584000000127
The 7th step rotation ψ=180 °
Measurement model:
Figure BDA0000415584000000131
The 8th step is estimated β zyand β xy
Figure BDA0000415584000000132
Here (15) have been utilized, (16), (18), the measurement model equation that (19) are set up.
What it is emphasized that the equation of definition only describes is the error in rotary course, and total velocity error model comprises:
δV t=δV I+δV II (20)
δ V i---the velocity error in rotary course, as (13), (14);
δ V iI---the cumulative velocity error (2-3min) of measurement after rotary course.
Second portion in equation (20) is left in the basket with respect to first, so calibration algorithm utilization is equation (13) and (14).
Scaling method step of the present invention is summarized as follows:
Figure BDA0000415584000000133
inertial navigation system is arranged on mould turnover and is placed in dull and stereotyped upper (or on low precision turntable), and the local geographic coordinate system of rough alignment;
laser strapdown inertial navigation enters alignment pattern, and after aligning finishes, system enters navigation mode;
system casing rotates different angle (once or twice) in order, and preserves the output speed (2-5min) of Laser strapdown inertial navigation;
Figure BDA0000415584000000136
system exits (should refer to navigation mode) and gets back to initial position;
Figure BDA0000415584000000137
said procedure rotates different angles repeatedly to be carried out, and obtains enough measurements export to calibrate each parameter with this;
Figure BDA0000415584000000138
the velocity survey model of each position is set up, and the speed of storage is carried out to level and smooth (in the short time, speed should be straight line, and its differential should be normal value) in advance;
Figure BDA0000415584000000139
utilize the speed output of level and smooth mistake and the parameter that measurement model estimates accelerometer and gyro;
Figure BDA0000415584000000141
estimation routine can adopt traditional least square or Kalman filtering algorithm.
Traditional turntable speed is added to the scaling method of position and this scaling method and respectively same set of Laser strapdown is used to group and demarcates, calibration result is as table 1:
Two kinds of mode comparing results of table 1
Figure BDA0000415584000000142
From two groups of calibration results, can find out, two kinds of differences of demarcating mode meet index request, prove that scaling method of the present invention is feasible.

Claims (2)

1. a Ring Laser Gyroscope SINS performance parameter calibration method, is characterized in that, the method is:
1) Ring Laser Gyroscope SINS is arranged on mould turnover, mould turnover is placed on to flat board upper, and Ring Laser Gyroscope SINS is aimed to local geographic coordinate system;
2) set up the error model of Ring Laser Gyroscope SINS:
δa bxxxxa bxxya byxza bz
δa byyyxa bxyya byyza bz
δa bzzzxa bxzya byzza bz
δω bxxxxω bxxyω byxzω bz+(β xyxa bxxyya byxyza bzby+(β xzxa bxxzya byxzza bzbz
δω byyyxω bxyyω byyzω bz+(β yxxa bxyxya byyxza bzbx+(β yzxa bxyzya byyzza bzbz
δω bzzzxω bxzyω byzzω bz+(β zxxa bxzxya byzxza bzbx+(β zyxa bxzyya byzyza bzby
Wherein, δ a bi, δ ω bifor the projection at Ring Laser Gyroscope SINS coordinate system of accelerometer and gyro error; α ifor accelerometer bias; α iifor accelerometer scale factor; α ijfor accelerometer alignment error; a bifor: the projection of terrestrial gravitation; β ifor gyroscopic drift; β iifor gyro scale factor; β ijfor gyro misalignment; β ijkthe gyroscopic drift causing for acceleration; ω bi---the projection of absolute angle speed in Ring Laser Gyroscope SINS coordinate system; I=x, y, z; J=x, y, z; I ≠ j;
3) utilize following formula to demarcate β iand β ii:
∫ 0 t δω E dt = β x t + β xx θ ;
∫ 0 t δω N dt = β y θ · sin θ + β yx sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) ;
Wherein, the angle of pitch that θ is Ring Laser Gyroscope SINS, t is for demarcating the test duration;
4) utilize following formula to demarcate α i, α ii, α ij:
When the pitching angle theta of rotary laser strapdown inertial navitation system (SINS):
θ=90°:
δ V · E = - α xz g + α xy g - g β y θ · - g β yz + g β z θ · + g β zx ; δ V · N = - α y - α yz g - α z - α zy g + g β x t + g β x t + g β xx π 2 ;
θ=180°:
δ V · E = 2 β z θ · g + 2 g β zx - 2 α xz g ; δ V · N = - 2 α y + g β x t + g β xx π ;
When the roll angle γ of rotary laser strapdown inertial navitation system (SINS):
γ=90°:
δ V · E = - α x - α xz g + α z - α zx g - g β y t - g β yy π 2 δ V · N = - α yz g - α yx g + g β x γ · + g β xy + g β z γ · + g β zy ;
γ=180°:
δ V · E = - 2 α x - g β y t - g β yy π δ V · N = - 2 α yz g + 2 β z γ · g + 2 β zy g ;
When the ψ of the position angle of rotary laser strapdown inertial navitation system (SINS):
ψ=90°:
δ V · E = - α x - α xz g + α y + α yz g + g β x ψ · + g β xz - g β y ψ · - g β yz δ V · N = - α y - α yz g - α x - α xz g + g β x ψ · + g β xz + g β y ψ · + g β yz ; ψ=180°:
δ V · E = - 2 α x - 2 α xz g + 2 β xz g + 2 β x ψ · g δ V · N = - 2 α y - 2 α yz g + 2 β yz g + 2 β y ψ · g ;
5) demarcate gyro misalignment:
Utilize following formula to estimate β zxand β yx:
Wherein,
Figure FDA0000415583990000032
Utilize following formula to estimate β zyand β xy:
Figure FDA0000415583990000033
Wherein,
Figure FDA0000415583990000034
Utilize following formula to estimate β xzand β yz:
Figure FDA0000415583990000035
Wherein,
Figure FDA0000415583990000036
2. Ring Laser Gyroscope SINS performance parameter calibration method according to claim 1, is characterized in that, in described step 3), and β iand β iithe computation process of calibration formula as follows:
1) simplify the error model of Ring Laser Gyroscope SINS, obtain the simplification error model of following Ring Laser Gyroscope SINS:
E-passage:
δ V · E = - g Φ N + δ a E Φ · N = δV E R + δ ω N ;
N-passage:
δ V · N = g Φ E + δa N Φ · E = - δV N R + δ ω E ;
Wherein,
Figure FDA0000415583990000042
for inertial navigation east orientation accelerometer output acceleration, δ V efor Ring Laser Gyroscope SINS east orientation is measured passage output speed, Φ nfor Ring Laser Gyroscope SINS north orientation is measured passage output rotational angle,
Figure FDA0000415583990000043
for Ring Laser Gyroscope SINS north orientation, measure passage output rotational angular velocity, R is the radius of gyration, for Ring Laser Gyroscope SINS north orientation accelerometer output acceleration, δ V nfor Ring Laser Gyroscope SINS north orientation is measured passage output speed, Φ efor Ring Laser Gyroscope SINS east orientation is measured passage output rotational angle, for Ring Laser Gyroscope SINS east orientation is measured passage output rotational angular velocity, δ a e, δ a nfor the accelerometer error projection in local geographic coordinate system, δ ω e, δ ω nfor the gyro error projection in local geographic coordinate system; G is acceleration of gravity;
2) ignore in above-mentioned simplification error model with , obtain new error model:
δ V · E = - g Φ N ( 0 ) + δa E - g ∫ t 0 t δω N dt δ V · N = g Φ E ( 0 ) + δa N + g ∫ t 0 t δω E dt ;
Wherein, Φ e(0), Φ n(0) be horizontal aligument error, and:
Φ N ( 0 ) = 1 g ( α x + α xz g ) Φ E ( 0 ) = - 1 g ( α y + α yz g ) ;
3) determine the direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system
Figure FDA0000415583990000049
C b LL = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ;
c 11=cosγcosψ+sinθsinγsinψ
c 12=cosθsinψ
c 13=sinγcosψ-sinθcosγsinψ
c 21=-cosγsinψ+sinθsinγcosψ
Wherein, c 22=cos θ cos ψ;
c 23=-sinγsinψ-sinθcosγcosψ
c 31=-cosθsinγ
c 32=sinθ
c 33=cosθcosγ
θ, γ, ψ is respectively the angle of pitch of Ring Laser Gyroscope SINS, roll angle and position angle;
4) rotation mould turnover, guarantees that the time of the navigation mode of Ring Laser Gyroscope SINS work is 2~5 minutes, obtains the absolute angle speed omega of Ring Laser Gyroscope SINS in rotary course b:
ω b = θ · 0 0 ;
Wherein,
Figure FDA0000415583990000052
for angular velocity of rotation;
5) suppose that the roll angle γ of Ring Laser Gyroscope SINS and position angle ψ keep motionless, the pitching angle theta of rotary laser strapdown inertial navitation system (SINS), obtains the new direction cosine matrix between Ring Laser Gyroscope SINS coordinate system and local geographic coordinate system
Figure FDA0000415583990000053
C b ′ LL = 1 0 0 0 cos θ - sin θ 0 sin θ cos θ ;
6) according to the error model of Ring Laser Gyroscope SINS and absolute angle speed omega b, obtain:
δω bx = β x + β xx θ · δω by = β y + β yx θ · δω bz = β z + β zx θ · ;
7) gyro error is transformed into local geographic coordinate system from Ring Laser Gyroscope SINS coordinate system, obtains:
δω E δ ω N δω Up = C b ′ LL δω bx δω by δω bz = δω x b δω y b cos θ - δω z b sin θ δω y b sin θ + δω z b cos θ ;
δ ω upfor the output of rotation axis to responsive gyro;
Figure FDA0000415583990000057
for absolute angle speed omega bprojection in Ring Laser Gyroscope SINS coordinate system;
8) by the formula of the formula substitution step 7) of step 6), obtain gyro error being projected as in local geographic coordinate system:
δω E = β x + β xx θ · δω N = β y cos θ + β yx θ · cos θ - β z sin θ - β zx θ · sin θ ;
δ ω efor rotating output, the δ ω of rear east orientation gyro nfor rotating the output of rear north gyro;
9) the formula integration to step 8), obtains:
∫ 0 t δω E dt = β x t + β xx θ ;
∫ 0 t δω N dt = β y θ · sin θ + β yz sin θ + β z θ · ( cos θ - 1 ) + β zx ( cos θ - 1 ) .
CN201310570907.7A 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system Active CN103616035B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310570907.7A CN103616035B (en) 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310570907.7A CN103616035B (en) 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system

Publications (2)

Publication Number Publication Date
CN103616035A true CN103616035A (en) 2014-03-05
CN103616035B CN103616035B (en) 2016-03-30

Family

ID=50166741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310570907.7A Active CN103616035B (en) 2013-11-13 2013-11-13 A kind of performance parameter calibration method of laser strapdown inertial navigation system

Country Status (1)

Country Link
CN (1) CN103616035B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940443A (en) * 2014-03-11 2014-07-23 哈尔滨工程大学 Gyroscope error calibration method
CN104457786A (en) * 2014-10-16 2015-03-25 哈尔滨工程大学 Outer field strapdown inertial unit rapid calibration method adopting multi-sensor fusion technology
CN105136142A (en) * 2015-10-16 2015-12-09 北京机械设备研究所 Indoor positioning method based on micro inertial sensor
CN105136166A (en) * 2015-08-17 2015-12-09 南京航空航天大学 Strapdown inertial navigation error model simulation method with specified inertial navigation position precision
CN105953820A (en) * 2016-06-20 2016-09-21 浙江大学 Optical calibration device for dynamic navigation performances of inertia measurement combination
CN106153074A (en) * 2016-06-20 2016-11-23 浙江大学 A kind of optical calibrating system and method for the dynamic navigation performance of IMU
CN106908079A (en) * 2015-12-23 2017-06-30 北京自动化控制设备研究所 Three axis optical fibre gyro combines constant multiplier automatic test device and method of testing
CN104535082B (en) * 2014-12-05 2017-07-07 中国航天空气动力技术研究院 A kind of method that inertial navigation components performance is judged based on flight test and theoretical calculation
CN108387244A (en) * 2017-12-21 2018-08-10 北京航天时代激光导航技术有限责任公司 A kind of determination method of used group of instrument and prism installation error stability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155957A (en) * 2011-03-21 2011-08-17 哈尔滨工程大学 Mobile strapdown attitude and heading reference based method for calibrating marine optical fiber gyroscope assembly on line
CN102393210A (en) * 2011-08-23 2012-03-28 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102806365A (en) * 2012-08-24 2012-12-05 迪莱姆数控机电(杭州)有限公司 High-efficiency special double-end numerical control lathe for processing bearing type parts and system thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155957A (en) * 2011-03-21 2011-08-17 哈尔滨工程大学 Mobile strapdown attitude and heading reference based method for calibrating marine optical fiber gyroscope assembly on line
CN102393210A (en) * 2011-08-23 2012-03-28 北京航空航天大学 Temperature calibration method of laser gyro inertia measurement unit
CN102806365A (en) * 2012-08-24 2012-12-05 迪莱姆数控机电(杭州)有限公司 High-efficiency special double-end numerical control lathe for processing bearing type parts and system thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940443B (en) * 2014-03-11 2017-02-08 哈尔滨工程大学 Gyroscope error calibration method
CN103940443A (en) * 2014-03-11 2014-07-23 哈尔滨工程大学 Gyroscope error calibration method
CN104457786A (en) * 2014-10-16 2015-03-25 哈尔滨工程大学 Outer field strapdown inertial unit rapid calibration method adopting multi-sensor fusion technology
CN104457786B (en) * 2014-10-16 2017-04-12 哈尔滨工程大学 Outer field strapdown inertial unit rapid calibration method adopting multi-sensor fusion technology
CN104535082B (en) * 2014-12-05 2017-07-07 中国航天空气动力技术研究院 A kind of method that inertial navigation components performance is judged based on flight test and theoretical calculation
CN105136166A (en) * 2015-08-17 2015-12-09 南京航空航天大学 Strapdown inertial navigation error model simulation method with specified inertial navigation position precision
CN105136166B (en) * 2015-08-17 2018-02-02 南京航空航天大学 A kind of SINS error model emulation mode of specified inertial navigation positional precision
CN105136142A (en) * 2015-10-16 2015-12-09 北京机械设备研究所 Indoor positioning method based on micro inertial sensor
CN106908079A (en) * 2015-12-23 2017-06-30 北京自动化控制设备研究所 Three axis optical fibre gyro combines constant multiplier automatic test device and method of testing
CN106153074A (en) * 2016-06-20 2016-11-23 浙江大学 A kind of optical calibrating system and method for the dynamic navigation performance of IMU
CN105953820A (en) * 2016-06-20 2016-09-21 浙江大学 Optical calibration device for dynamic navigation performances of inertia measurement combination
CN108387244A (en) * 2017-12-21 2018-08-10 北京航天时代激光导航技术有限责任公司 A kind of determination method of used group of instrument and prism installation error stability
CN108387244B (en) * 2017-12-21 2020-11-10 北京航天时代激光导航技术有限责任公司 Inertial measurement unit and prism installation error stability determination method

Also Published As

Publication number Publication date
CN103616035B (en) 2016-03-30

Similar Documents

Publication Publication Date Title
CN103616035A (en) Performance parameter calibration method of laser strapdown inertial navigation system
CN106525073B (en) A kind of inertial space Gyro Calibration test method based on three-axle table
CN101975872B (en) Method for calibrating zero offset of quartz flexible accelerometer component
CN102486377B (en) Method for acquiring initial course attitude of fiber optic gyro strapdown inertial navigation system
CN103575299B (en) Utilize dual-axis rotation inertial navigation system alignment and the error correcting method of External Observation information
CN107655493B (en) SINS six-position system-level calibration method for fiber-optic gyroscope
CN102706366B (en) SINS (strapdown inertial navigation system) initial alignment method based on earth rotation angular rate constraint
CN103900565B (en) A kind of inertial navigation system attitude acquisition method based on differential GPS
CN104596543B (en) Gyroscope combined error coefficient scaling method under a kind of benchmark uncertain condition
CN100547352C (en) The ground speed testing methods that is suitable for fiber optic gyro strapdown inertial navigation system
CN103900608B (en) A kind of low precision inertial alignment method based on quaternary number CKF
CN103453917A (en) Initial alignment and self-calibration method of double-shaft rotation type strapdown inertial navigation system
CN102564455B (en) Star sensor installation error four-position calibration and compensation method
CN103900566B (en) A kind of eliminate the method that rotation modulation type SINS precision is affected by rotational-angular velocity of the earth
CN104897178A (en) Dual-inertial navigation combination spin modulation navigation and online relative performance assessment method
CN103674064B (en) Initial calibration method of strapdown inertial navigation system
CN102680000A (en) Zero-velocity/course correction application online calibrating method for optical fiber strapdown inertial measuring unit
CN103411623A (en) Rate gyroscope calibrating method
CN103674059A (en) External measured speed information-based horizontal attitude error correction method for SINS (serial inertial navigation system)
CN102095424A (en) Attitude measuring method suitable for vehicle fiber AHRS (Attitude and Heading Reference System)
CN102207380B (en) High-precision horizontal axis tilt error compensation method
CN103575276A (en) Initial alignment model reduction method for biaxial rotation inertial navigation system
CN104501833B (en) Accelerometer combined error coefficient scaling method under a kind of benchmark uncertain condition
CN103954299B (en) A kind of method demarcating strap down inertial navigation combination gyroscope combination
CN102155956A (en) High-precision method for compensating horizontal axis tilt error of vertical angle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140305

Assignee: BEIJING INSTITUTE OF CONTROL AND ELECTRONIC TECHNOLOGY

Assignor: HUNAN AEROSPACE ELECTROMECHANICAL EQUIPMENT AND SPECIAL MATERIAL INSTITUTE

Contract record no.: X2021980016109

Denomination of invention: A calibration method for performance parameters of Laser Strapdown Inertial Navigation System

Granted publication date: 20160330

License type: Exclusive License

Record date: 20211229

EE01 Entry into force of recordation of patent licensing contract