CN103608290B - 二氧化硅掺杂的含铝微粒材料 - Google Patents

二氧化硅掺杂的含铝微粒材料 Download PDF

Info

Publication number
CN103608290B
CN103608290B CN201280028811.1A CN201280028811A CN103608290B CN 103608290 B CN103608290 B CN 103608290B CN 201280028811 A CN201280028811 A CN 201280028811A CN 103608290 B CN103608290 B CN 103608290B
Authority
CN
China
Prior art keywords
microparticle material
less
microparticle
particle
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280028811.1A
Other languages
English (en)
Other versions
CN103608290A (zh
Inventor
M·特
D·O·耶纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Ceramics and Plastics Inc
Original Assignee
Saint Gobain Industrial Ceramics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Industrial Ceramics Inc filed Critical Saint Gobain Industrial Ceramics Inc
Publication of CN103608290A publication Critical patent/CN103608290A/zh
Application granted granted Critical
Publication of CN103608290B publication Critical patent/CN103608290B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/284Porous sorbents based on alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • B01J35/19
    • B01J35/30
    • B01J35/393
    • B01J35/40
    • B01J35/50
    • B01J35/51
    • B01J35/615
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/025Granulation or agglomeration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/447Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes
    • C01F7/448Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes using superatmospheric pressure, e.g. hydrothermal conversion of gibbsite into boehmite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2971Impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种微粒材料,其包括含铝材料和二氧化硅掺杂剂。所述微粒材料包括微晶粒径小于约10nm的微晶粒子。微晶粒子堆叠在一起以形成初级粒径小于约500nm的初级粒子。初级粒子聚集在一起以形成次级粒径大于约1μm的次级粒子。所述微粒材料的平均孔径为不小于8nm。

Description

二氧化硅掺杂的含铝微粒材料
技术领域
本公开一般涉及微粒材料及其形成方法。更具体地,本发明涉及包括含铝材料和二氧化硅掺杂剂的微粒材料。
背景技术
含铝微粒材料特别可用作用于形成含铝产品例如具有高性能特征的氧化铝磨料颗粒的理想原料。除了磨料应用外,特别需要产生不同形态的含铝微粒材料。因为微粒形态可以对材料的应用产生深远的影响,所以本领域中对于产生除磨料外的应用的新材料的需求不断增加,包括用于专用涂料产品和各种聚合物产品的填料以及用于形成高孔隙率支承材料以和催化剂使用。其他应用包括其中含铝微粒材料就以其形成时的状态而不是作为进料使用的那些。除了对产生新材料感兴趣外,能够形成这种材料的处理技术也必需加以开发。就此而言,这种处理技术要有令人满意的投入产出、可相对直截了当地加以控制、并且提供高产率。
概要
在一个具体实施方案中,公开了包括含铝材料和二氧化硅掺杂剂的微粒材料。所述微粒材料包括微晶粒径小于约10nm的微晶粒子。微晶粒子堆叠在一起以形成初级粒径小于约500nm的初级粒子。初级粒子聚集在一起以形成次级粒径大于约1μm的次级粒子。所述微粒材料的平均孔径为不小于8nm。
在另一个实施方案中,公开了包括含铝材料和二氧化硅掺杂剂的微粒材料。所述微粒材料通过包括在悬浮液中提供前体材料、晶种和二氧化硅掺杂剂以及包括水热处理悬浮液的方法来形成。所述微粒材料包括微晶粒径小于约10nm的微晶粒子。微晶粒子堆叠在一起以形成初级粒径小于约500nm的初级粒子。初级粒子聚集在一起以形成次级粒径大于约1μm的次级粒子。所述微粒材料的平均孔径为不小于8nm。
在另一个实施方案中,公开了包括在悬浮液中提供前体材料、晶种和二氧化硅掺杂剂的方法。所述方法包括热处理悬浮液以形成包括含铝材料和二氧化硅掺杂剂的微粒材料。所述微粒材料包括微晶粒径小于约10nm的微晶粒子。微晶粒子堆叠在一起以形成初级粒径小于约500nm的初级粒子。初级粒子聚集在一起以形成次级粒径大于约1μm的次级粒子。所述微粒材料的平均孔径为不小于8nm。
附图简要说明
通过参考附图,将更好地理解本公开,其多个目的、特征和优点对于本领域技术人员将显而易见。
图1是示出了具有球形颗粒的粒子的SEM显微照片。
图2a是示出了具有球形颗粒的粒子的高分辨率TEM显微照片。
图2b是图2a的TEM显微照片的一部分的更高分辨率的TEM显微照片,示出了聚集在一起的棒状粒子。
图2c是图2b的TEM显微照片的一部分的更高分辨率的TEM显微照片,示出了聚集在一起的棒状粒子。
图3是示出了根据本文所描述的一个实施方案的二氧化硅掺杂剂百分比对比表面积(SSA)和孔体积(PV)的影响的图。
图4是示出了根据本文所描述的一个实施方案的二氧化硅掺杂剂百分比对孔体积分布的影响的图。
详细说明
申请人已经发现,将二氧化硅掺杂剂添加进胶体的一水合氧化铝(CAM)的方法导致所得材料的改进的性能。例如,添加二氧化硅掺杂剂导致具有增加的比表面积(SSA)、孔体积(PV)、孔径(PS)和中孔(例如,在10nm至50nm范围内的孔)以及其他改进性能的微粒材料。
如本文所用,粒子是指诸如在SEM显微照片中可以单独识别的材料的单个单元。单个单元通常表示材料的最小子集。在一个实施方案中,所述粒子可以组合以形成聚集体材料。如本文所用,聚集体是指彼此粘附的粒子团。在某些形式诸如生聚集体中,粒子可以诸如通过粉碎分离。在其他形式中,诸如在烧结聚集体材料后,聚集体材料的粒子可以不容易分离,但在聚集体材料内可以保持可单独识别,诸如在SEM显微照片中。
根据一个实施方案,公开了包括含铝材料和二氧化硅掺杂剂的微粒材料(即,“二氧化硅掺杂的含铝微粒材料”)。在一个实施方案中,含铝材料包括水合氧化铝,诸如勃姆石。在另一个实施方案中,含铝材料包括非水合氧化铝,如γ氧化铝。在一个实施方案中,含铝材料与二氧化硅掺杂剂的比率为按重量计大于约75:25,诸如按重量计大于约85:15,按重量计大于约90:10,按重量计大于约91:9,按重量计大于约92:8,或者按重量计大于约93:7。根据一个实施方案,二氧化硅掺杂剂的平均粒径为小于约20nm,诸如小于约12nm,小于约10nm,小于约8nm,或者小于约6nm(即“纳米”二氧化硅)。在一个实施方案中,二氧化硅掺杂剂均匀地分布在含铝材料中。
所述微粒材料包括微晶粒径小于约10nm的微晶粒子。微晶粒子堆叠在一起以形成初级粒径小于约500nm的初级粒子。初级粒子聚集在一起以形成次级粒径大于约1μm的次级粒子。所述微粒材料的平均孔径为不小于8nm。
可以理解的是,当本文提及“粒径”时,这些是使用粒径分析仪测量的体积平均粒径,所述粒径分析仪采用激光散射技术来测量尺寸。当在“通过百分比”模式运行粒径分析仪时,通常根据给定水平以下的体积百分比来方便地描述粒径分布。
根据一个实施方案,初级粒径为约100nm至约500nm,诸如约100nm至约400nm,约150nm至约300nm,或者约150nm至约250nm。根据一个实施方案,初级粒子包括棒状粒子。在一个实施方案中,初级棒状粒子聚集在一起以形成次级粒子,所述次级粒子形成球形颗粒。在一个实施方案中,球形颗粒的平均直径为约1.5μm至约8μm,诸如约2μm至约7μm,约2μm至约6μm,约2.5μm至约5.5μm,或者约3μm至约5μm。
根据本文的实施方案,次级粒子可以具有相对窄的粒径分布。在一个实施方案中,至少80%的次级粒子的次级粒径为约1.5μm至约8μm,诸如约1.6μm至约7μm,约1.7μm至约6μm,约1.8μm至约5μm,或者约1.9μm至约4.6μm。在一个实施方案中,至少40%的次级粒子的次级粒径为约1.5μm至约5μm,诸如约1.6μm至约4.5μm,约1.7μm至约4μm,约1.8μm至约3.5μm,或者约1.9μm至约3.4μm。在一个实施方案中,至少40%的次级粒子的次级粒径为约2μm至约8μm,诸如约2.4μm至约7μm,约2.5μm至约6μm,约2.6μm至约5μm,或者约2.7μm至约4.6μm。
参照图1,SEM显微照片示出了包括形成球形颗粒的次级粒子的微粒材料的示例性实施方案。在图1所示的实施方案中,球形颗粒包括基本上均匀的球形颗粒,其中值粒径为约3μm至约5μm。具有3.0342μm的中值粒径的示例性粒径分布示于表1中。
表1
直径的百分比
5.0% 1.77μm
10.0% 2.00μm
20.0% 2.28μm
30.0% 2.54μm
40.0% 2.78μm
60.0% 3.30μm
70.0% 3.59μm
80.0% 3.89μm
90.0% 4.49μm
95.0% 5.08m
申请人已经发现,基本上均匀的球形颗粒(例如,中值粒径为约3至5μm)表现出强的机械完整性。例如,即使在例如Ross Mixer中的高剪切处理下颗粒也不破碎。除了高表面积和高孔体积的性能,这种特殊的形态可以使得本公开的微粒材料在各种应用中有用。
图2a是示出了具有如上所述的球形颗粒的粒子(即,“次级粒子”)的高分辨率TEM显微照片。图2b是图2a的TEM显微照片的一部分的更高分辨率的TEM显微照片,其示出了聚集在一起以形成具有球形颗粒的粒子的棒状粒子(即,“初级粒子”)。根据一个实施方案,棒状粒子的初级长宽比可以为大于约2:1。在一个实施方案中,棒状粒子的次级长宽比为小于约2:1,诸如约1:1。
图2c是图2b的TEM显微照片的一部分的更高分辨率的TEM显微照片,其示出了聚集在一起以形成具有球形颗粒的粒子的棒状粒子。图2c的高分辨率TEM照片示出了棒状勃姆石晶体的无规堆叠,其可能与本文所描述的实施方案中的改进的表面积和孔体积有关联。
在一个示例性实施方案中,本公开的微粒材料可以通过如本文所描述的方法来形成。所述方法包括在悬浮液中提供前体材料、晶种和二氧化硅掺杂剂以及形成包括含铝材料和二氧化硅掺杂剂的微粒材料。形成微粒材料包括水热处理悬浮液。
根据一个实施方案,悬浮液包括水溶液,诸如包括去离子水和硝酸的混合物的酸性溶液。在一个实施方案中,将二氧化硅掺杂剂添加至酸性溶液。在一个实施方案中,在添加二氧化硅掺杂剂之后,可以将晶种(例如,勃姆石)添加至酸性溶液。在一个实施方案中,在高压釜中在大于约120℃、诸如大于约125℃、大于约130℃、或者大于约150℃的温度下水热处理悬浮液。所述温度可以小于约300℃,诸如小于约250℃。在一个实施方案中,热处理悬浮液大于1小时、诸如大于2小时、或者大于3小时的时间段。所述时间段可以小于24小时。在一个实施方案中,在自发产生的压力下热处理悬浮液。
在一个实施方案中,形成微粒材料还包括在水热处理悬浮液之后干燥悬浮液以形成干凝胶,以及粉碎干凝胶。作为一个说明性实施例,悬浮液可以在95℃下盘式干燥过夜。在一个示例性实施方案中,在约550℃的温度下煅烧微粒材料3小时以便确定表面积、孔体积和孔径。
在一个示例性实施方案中,在煅烧后,二氧化硅掺杂的含铝微粒材料的比表面积为不小于150m2/g,诸如不小于200m2/g,不小于210m2/g,不小于220m2/g,不小于230m2/g,或者不小于240m2/g。在一个实施方案中,二氧化硅掺杂的含铝微粒材料的总孔体积为不小于0.5mL/g,诸如不小于1.0mL/g,不小于1.5mL/g,不小于1.8mL/g,或者不小于2.0mL/g。在一个实施方案中,二氧化硅掺杂的含铝微粒材料的平均孔径为不小于9nm,诸如不小于10nm,不小于11nm,不小于12nm,不小于13nm,不小于14nm,或者不小于15nm。在一个实施方案中,平均孔径为小于50nm,诸如小于30nm。在一个实施方案中,具有10nm至50nm孔径的孔提供微粒材料的总孔体积的至少90%。
实施例
实施例1
使用前体、晶种和二氧化硅掺杂剂来制备微粒材料。干燥和煅烧所述微粒材料。测试样品的SSA、孔体积和孔径,结果示于表2中。
例如,如下制备样品1(二氧化硅掺杂的含铝微粒材料)。由勃姆石晶种(CatapalB,得自SASOL)、纳米二氧化硅(SiO2)掺杂剂粒子(Nalco2326,得自Nalco Chemical Co.)和氢氧化铝(ATH)(Hydral710,得自Almatis)形成浆料。在192℃下水热处理浆料1小时。浆料在95℃下盘式干燥过夜并在550℃下煅烧3小时。
如样品1制备样品2,除了纳米二氧化硅掺杂剂粒子为得自Nyacol的NexSil20A。
表2
当将具有20nm粒径的酸性胶体二氧化硅(Nexsil20A)掺杂至CAM时,表面积和孔体积的适度增加得以实现,但是不如Nalco2326(5nm胶体二氧化硅)的情况下显著,表明胶体粒子的尺寸及其pH可以发挥作用,这将在下面的部分中进一步讨论。
实施例2
当采用具有不同粒径的胶体二氧化硅作为CAM合成中的添加剂时,发现二氧化硅掺杂的CAM的表面积和孔体积与二氧化硅粒径线性相关。具有较小粒径的胶体二氧化硅导致较高的表面积和较大的孔体积。
使用前体、晶种和二氧化硅掺杂剂来制备微粒材料。干燥和煅烧所述微粒材料。测试样品的SSA、孔体积和孔径,结果示于表3中。
例如,如下制备样品2(二氧化硅掺杂的含铝微粒材料)。由勃姆石晶种(CatapalB,得自SASOL)、纳米二氧化硅(SiO2)掺杂剂粒子(NexSil5,得自Nyacol)和氢氧化铝(ATH)(Hydral710,得自Almatis)形成浆料。在192℃下水热处理浆料1小时。浆料在95℃下盘式干燥过夜并在550℃下煅烧3小时。
如样品1制备样品2,除了纳米二氧化硅掺杂剂粒子为得自Nyacol的NexSil8。
如样品1制备样品3,除了纳米二氧化硅掺杂剂粒子为得自Nyacol的NexSil12。
如样品1制备样品4,除了纳米二氧化硅掺杂剂粒子为得自Nyacol的NexSil20。
表3
实施例3
基于以上给出的实验数据,选择Nalco2326用于进一步的测试。为了确定最佳的二氧化硅掺杂水平,通过将二氧化硅掺杂剂的百分比从1.5%改变至10%,设计并进行了一系列的实验。
如图3所示,观察到表面积和孔体积与高达6%的二氧化硅载量的线性相关,但是在更高的二氧化硅载量下依赖于二氧化硅载量的表面积和孔体积趋于平稳。此外,二氧化硅掺杂的水平也对它们的孔径分布产生影响。如图4所示,随着二氧化硅载量增加,孔径分布变宽并且转移至较大的孔。
作为说明性的非限制性实例中,本发明的微粒材料可以包括于催化剂载体、高压液相色谱(HPLC)柱或聚合物填料以及其他选择中。高表面积、高孔体积勃姆石的另一种可能的应用是在喷墨纸顶层的涂料中作为吸收剂的填料。
在HPLC柱的应用中,热和水热抗性可以使HPLC柱介质更耐用。HPLC柱通常使用二氧化硅(例如,5微米二氧化硅)或聚合物微球作为固定相,所述固定相作为介质以分开(分离)混合物(所谓的色谱法)。高表面积、高孔体积和大孔径对于介质来说是高度期望的性能以高效地分开混合物。此外,在HPLC柱中使用的球必须坚固以承受高压。因此,具有球形粒子形状和尺寸、高表面积、高孔体积和孔径以及强度的本公开的微粒材料在HPLC柱的应用中可以是有用的。
在催化剂载体的应用中,催化剂可能暴露于高温、水热和酸性环境。勃姆石被广泛用作原料以形成用于各种催化剂的成形的氧化铝载体,诸如氢化处理(精制)、费-托反应等。本公开的微粒材料可以提供高表面积和高孔体积至形成的载体。这些性能可以帮助增加活性相负载和它们在催化剂上的分布,并且大孔改进反应物和产物在催化剂上的传质效率。本公开的微粒材料的热和水热稳定性以及耐酸性对于暴露于高温、水热和酸性环境的催化剂的催化剂载体来说是高度期望的性能,以便防止催化剂失活并且延长催化剂的寿命。
在聚合物填料的应用中,本公开的微粒材料的初级粒子的高长宽比可以提高聚合物或轮胎材料的机械强度。为此目的可以通过研磨将微粒材料的次级粒子粉碎至其初级粒子。然而,次级粒径和形状可以被直接用作填料,因为高表面积、孔体积和大孔径将允许聚合物和橡胶渗透进次级粒子中以将粒子结合进聚合物/橡胶。在该应用中,未经煅烧而使用微粒材料,并且勃姆石也可以用作阻燃剂,因为当它暴露于火时它将脱水并且吸收热。
根据一个实施方案,在约650℃的温度下煅烧本公开的微粒材料3小时以便评估水热稳定性。在一个实施方案中,本公开的微粒材料的水热稳定性指数(HydrothermalStability Index)为不超过25%,诸如不超过20%,或者不超过15%。在这种情况下,水热稳定性指数表示在约220℃的温度下进行水热加热处理16小时的时间段后,微粒材料的比表面积的变化。根据另一个实施方案,微粒材料的水热稳定性指数为不超过5%,诸如不超过2%,或者不超过1.5%。在这种情况下,水热稳定性指数表示在约220℃的温度下进行水热加热处理16小时的时间段后,微粒材料的孔体积的变化。根据另一个实施方案,微粒材料的水热稳定性指数为不超过5%,诸如不超过2%,或者不超过1.5%。在这种情况下,水热稳定性指数表示在约220℃的温度下进行水热加热处理16小时的时间段后,平均孔径的变化。
根据一个实施方案,在约650℃的温度下煅烧本公开的微粒材料3小时以评估耐酸性。在一个实施方案中,微粒材料的耐酸性指数(Acid Resistance Index)为小于15ppm/m2。在这种情况下,耐酸性指数可以表示在pH约2下对所述微粒材料进行酸处理25小时后溶解的氧化铝。根据另一个实施方案,所述微粒材料的耐酸性指数为小于0.5ppm/m2。在这种情况下,耐酸性指数表示在pH约2下对所述微粒材料进行酸处理25小时后溶解的二氧化硅。
虽然已经在具体实施方案中描述和阐释了本发明,但其意图不是将本发明限制在所示细节上,因为可以进行许多变化和替代,而不会以任何方式背离本发明的范围。例如,可以提供额外的或等价的替代物,可以采用额外的或等价的制备步骤。因此,本领域的技术人员只需常规实验即可发现本文所述本发明的其他变化和等价形式,据信所有这些变化和等价形式均在以下权利要求所界定的本发明范围内。

Claims (61)

1.一种微粒材料,包括:
含铝材料;以及
基于所述微粒材料总重量的量为1.5wt%至10wt%的二氧化硅掺杂剂,
其中所述微粒材料包括微晶粒径小于10nm的微晶粒子,其中所述微晶粒子堆叠在一起以形成初级粒径小于500nm的初级粒子,其中所述初级粒子聚集在一起以形成次级粒子且至少80%的所述次级粒子的次级粒径为1.5μm至8μm,并且其中所述微粒材料的平均孔径为不小于8nm。
2.根据权利要求1所述的微粒材料,其中所述初级粒子包括棒状粒子。
3.根据权利要求中1或2所述的微粒材料,其中所述次级粒子形成球形颗粒。
4.根据权利要求3所述的微粒材料,其中所述球形颗粒的中值粒径为1.5μm至8μm。
5.根据权利要求2所述的微粒材料,其中所述棒状粒子的初级长宽比为大于2:1。
6.根据权利要求2所述的微粒材料,其中所述棒状粒子的次级长宽比为小于2:1。
7.根据权利要求6所述的微粒材料,其中所述次级长宽比为1:1。
8.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述平均孔径为不小于9nm。
9.根据权利要求8所述的微粒材料,其中所述平均孔径为小于50nm。
10.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述含铝材料包括水合氧化铝。
11.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述含铝材料包括非水合氧化铝。
12.根据权利要求1-2和5-7中任一项所述的微粒材料,其中具有10nm至50nm孔径的孔提供所述微粒材料的总孔体积的至少90%。
13.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述微粒材料的比表面积为不小于150m2/g。
14.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述微粒材料的总孔体积为不小于0.5mL/g。
15.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述初级粒径为100nm至400nm。
16.根据权利要求1-2和5-7中任一项所述的微粒材料,其中至少80%的所述次级粒子的次级粒径为1.6μm至7μm。
17.根据权利要求16所述的微粒材料,其中至少40%的所述次级粒子的次级粒径为1.5μm至5μm。
18.根据权利要求16所述的微粒材料,其中至少40%的所述次级粒子的次级粒径为2μm至8μm。
19.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述二氧化硅掺杂剂的平均粒径为小于20nm。
20.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述含铝材料与所述二氧化硅掺杂剂的比率为按重量计大于75:25。
21.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述二氧化硅掺杂剂均匀地分布在所述含铝材料中。
22.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述微粒材料的水热稳定性指数为不超过25%,其中所述水热稳定性指数表示在650℃的温度下煅烧3小时的时间段以及在220℃的温度下进行水热加热处理16小时的时间段后,所述微粒材料的比表面积的变化。
23.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述微粒材料的水热稳定性指数为不超过5%,其中所述水热稳定性指数表示在650℃的温度下煅烧3小时的时间段以及在220℃的温度下进行水热加热处理16小时的时间段后,所述微粒材料的孔体积的变化。
24.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述微粒材料的水热稳定性指数为不超过25%,其中所述水热稳定性指数表示在650℃的温度下煅烧3小时的时间段以及在220℃的温度下进行水热加热处理16小时的时间段后,所述平均孔径的变化。
25.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述微粒材料的耐酸性指数为小于15ppm/m2,其中所述耐酸性指数表示在650℃的温度下煅烧3小时的时间段以及在pH为2的条件下对所述微粒材料进行酸处理25小时后溶解的氧化铝。
26.根据权利要求1-2和5-7中任一项所述的微粒材料,其中所述微粒材料的耐酸性指数为小于0.5ppm/m2,其中所述耐酸性指数表示在650℃的温度下煅烧3小时的时间段以及在pH为2的条件下对所述微粒材料进行酸处理25小时后溶解的二氧化硅。
27.一种包括根据权利要求1-26中任一项所述的微粒材料的催化剂载体。
28.一种包括根据权利要求1-26中任一项所述的微粒材料的高压液相色谱柱。
29.一种包括根据权利要求1-26中任一项所述的微粒材料的聚合物填料。
30.一种形成微粒材料的方法,包括:
在悬浮液中提供前体材料、晶种和二氧化硅掺杂剂;以及
形成包括含铝材料和基于所述微粒材料总重量的量为1.5wt%至10wt%的所述二氧化硅掺杂剂的微粒材料,其中形成所述微粒材料包括水热处理所述悬浮液,
其中所述微粒材料包括微晶粒径小于10nm的微晶粒子,其中所述微晶粒子堆叠在一起以形成初级粒径小于500nm的初级粒子,并且其中所述初级粒子聚集在一起以形成次级粒子且至少80%的所述次级粒子的次级粒径为1.5μm至8μm,并且其中所述微粒材料的平均孔径为不小于8nm。
31.根据权利要求30所述的方法,其中形成所述微粒材料还包括:
在水热处理所述悬浮液之后干燥所述悬浮液以形成干凝胶;以及
粉碎所述干凝胶。
32.根据权利要求30-31中任一项所述的方法,其中所述悬浮液包括水溶液。
33.根据权利要求32所述的方法,其中所述水溶液是酸性溶液。
34.根据权利要求33所述的方法,其中所述酸性溶液包括去离子水和硝酸的混合物。
35.根据权利要求33所述的方法,其中将所述二氧化硅掺杂剂添加至所述酸性溶液。
36.根据权利要求35所述的方法,其中在添加所述二氧化硅掺杂剂之后将所述晶种添加至所述酸性溶液。
37.根据权利要求36所述的方法,其中所述晶种包括勃姆石。
38.根据权利要求30-31中任一项所述的方法,其中在高压釜中在大于120℃的温度下水热处理所述悬浮液。
39.根据权利要求38所述的方法,其中所述温度小于300℃。
40.根据权利要求38所述的方法,其中水热处理所述悬浮液大于1小时的时间段。
41.根据权利要求40所述的方法,其中所述时间段小于24小时。
42.根据权利要求38所述的方法,其中在自发产生的压力下水热处理所述悬浮液。
43.根据权利要求30-31中任一项所述的方法,其中所述初级粒子包括棒状粒子。
44.根据权利要求30-31中任一项所述的方法,其中所述次级粒子形成球形颗粒。
45.根据权利要求44所述的方法,其中所述球形颗粒的中值粒径为1.5μm至8μm。
46.根据权利要求43所述的方法,其中所述棒状粒子的初级长宽比为大于2:1。
47.根据权利要求43所述的方法,其中所述棒状粒子的次级长宽比为小于2:1。
48.根据权利要求47所述的方法,其中所述次级长宽比为1:1。
49.根据权利要求30-31中任一项所述的方法,其中所述平均孔径为不小于9nm。
50.根据权利要求49所述的方法,其中所述平均孔径为小于50nm。
51.根据权利要求30-31中任一项所述的方法,其中所述含铝材料包括水合氧化铝。
52.根据权利要求30-31中任一项所述的方法,其中所述含铝材料包括非水合氧化铝。
53.根据权利要求30-31中任一项所述的方法,其中具有10nm至50nm孔径的孔提供所述微粒材料的总孔体积的至少90%。
54.根据权利要求30-31中任一项所述的方法,其中所述微粒材料的比表面积为不小于150m2/g。
55.根据权利要求30-31中任一项所述的方法,其中所述微粒材料的总孔体积为不小于0.5mL/g。
56.根据权利要求30-31中任一项所述的方法,其中所述初级粒径为100nm至400nm。
57.根据权利要求30-31中任一项所述的方法,其中至少80%的所述次级粒子的次级粒径为1.5μm至8μm。
58.根据权利要求57所述的方法,其中至少40%的所述次级粒子的次级粒径为1.5μm至5μm。
59.根据权利要求57所述的方法,其中至少40%的所述次级粒子的次级粒径为2μm至8μm。
60.根据权利要求30-31中任一项所述的方法,其中所述二氧化硅掺杂剂的平均粒径为小于20nm。
61.根据权利要求30-31中任一项所述的方法,其中所述含铝材料与所述二氧化硅掺杂剂的比率为按重量计大于75:25。
CN201280028811.1A 2011-06-29 2012-06-28 二氧化硅掺杂的含铝微粒材料 Expired - Fee Related CN103608290B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161502667P 2011-06-29 2011-06-29
US61/502667 2011-06-29
PCT/US2012/044699 WO2013003623A2 (en) 2011-06-29 2012-06-28 Silica doped aluminous particulate materials

Publications (2)

Publication Number Publication Date
CN103608290A CN103608290A (zh) 2014-02-26
CN103608290B true CN103608290B (zh) 2016-08-24

Family

ID=47424801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280028811.1A Expired - Fee Related CN103608290B (zh) 2011-06-29 2012-06-28 二氧化硅掺杂的含铝微粒材料

Country Status (5)

Country Link
US (1) US9017811B2 (zh)
EP (1) EP2726415A4 (zh)
JP (1) JP5786093B2 (zh)
CN (1) CN103608290B (zh)
WO (1) WO2013003623A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210394158A1 (en) * 2018-11-21 2021-12-23 Sasol (Usa) Corporation Silica Alumina Composition with Improved Stability and Method for Making Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061068A (zh) * 2004-11-18 2007-10-24 圣戈本陶瓷及塑料股份有限公司 具有受控形态的过渡氧化铝微粒材料及其形成方法
CN101456569A (zh) * 2008-07-22 2009-06-17 绍兴纳诺气凝胶新材料研发中心有限公司 一种水热合成低成本快速制备气凝胶的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244648A (en) * 1980-12-23 1993-09-14 Rhone-Poulenc Industries Process for the preparation of alumina agglomerates
FR2528721B1 (fr) * 1982-06-17 1986-02-28 Pro Catalyse Ste Fse Prod Cata Catalyseur supporte presentant une resistance accrue aux poisons et son utilisation en particulier pour l'hydrotraitement de fractions petrolieres contenant des metaux
DE3650541T2 (de) 1985-12-09 1997-03-06 Mizusawa Industrial Chem Tonerde-Kieselerde-Kunststoffadditiv
FR2642414B1 (fr) * 1989-02-01 1991-04-26 Rhone Poulenc Chimie Procede de fabrication d'agglomeres d'alumine active, agglomeres obtenus par le procede et dispositif pour sa mise en oeuvre
AU650382B2 (en) * 1992-02-05 1994-06-16 Norton Company Nano-sized alpha alumina particles
US5728184A (en) * 1996-06-26 1998-03-17 Minnesota Mining And Manufacturing Company Method for making ceramic materials from boehmite
FR2787041B1 (fr) * 1998-12-10 2001-01-19 Inst Francais Du Petrole Catalyseur d'hydrotraitement de charges hydrocarbonees dans un reacteur a lit fixe
US7208446B2 (en) 1999-08-11 2007-04-24 Albemarle Netherlands B. V. Quasi-crystalline boehmites containing additives
US6403526B1 (en) * 1999-12-21 2002-06-11 W. R. Grace & Co.-Conn. Alumina trihydrate derived high pore volume, high surface area aluminum oxide composites and methods of their preparation and use
US7422730B2 (en) * 2003-04-02 2008-09-09 Saint-Gobain Ceramics & Plastics, Inc. Nanoporous ultrafine α-alumina powders and sol-gel process of preparing same
US7244689B2 (en) 2003-11-17 2007-07-17 Corning Incorporated Method of producing alumina-silica catalyst supports
JP5242588B2 (ja) * 2006-12-06 2013-07-24 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 処理されたアルミナ水和物材料およびその用途
JP5530672B2 (ja) * 2008-08-18 2014-06-25 株式会社フジミインコーポレーテッド ベーマイト粒子の製造方法及びアルミナ粒子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061068A (zh) * 2004-11-18 2007-10-24 圣戈本陶瓷及塑料股份有限公司 具有受控形态的过渡氧化铝微粒材料及其形成方法
CN101456569A (zh) * 2008-07-22 2009-06-17 绍兴纳诺气凝胶新材料研发中心有限公司 一种水热合成低成本快速制备气凝胶的方法

Also Published As

Publication number Publication date
EP2726415A4 (en) 2015-07-29
JP5786093B2 (ja) 2015-09-30
WO2013003623A3 (en) 2013-03-14
CN103608290A (zh) 2014-02-26
US20130011678A1 (en) 2013-01-10
JP2014520064A (ja) 2014-08-21
EP2726415A2 (en) 2014-05-07
US9017811B2 (en) 2015-04-28
WO2013003623A2 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
Qi et al. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave‐hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption
Liu et al. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers
Xie et al. The effect of novel synthetic methods and parameters control on morphology of nano-alumina particles
Ren et al. Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres
Wang et al. Alkali activation of halloysite for adsorption and release of ofloxacin
Song et al. Multi-shelled ZnO decorated with nitrogen and phosphorus co-doped carbon quantum dots: synthesis and enhanced photodegradation activity of methylene blue in aqueous solutions
Boccalon et al. Layered double hydroxides are still out in the bloom: Syntheses, applications and advantages of three-dimensional flower-like structures
Shahmirzaee et al. In situ crystallization of ZnAl 2 O 4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater
CN104828828B (zh) 具有小粒径、超高比表面积的纳米氧化硅
Wang et al. Preparation of pseudoboehmite with a large pore volume and a large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO2 and a NaAlO2 solution
Zhang et al. Preparation of microspherical α-zirconium phosphate catalysts for conversion of fatty acid methyl esters to monoethanolamides
Oh et al. Synthesis of core–shell nanoparticles with a Pt nanoparticle core and a silica shell
Pilarska et al. The influence of spray drying on the dispersive and physicochemical properties of magnesium oxide
Varisli et al. Synthesizing hydrogen from ammonia over Ru incorporated SiO2 type nanocomposite catalysts
Xie et al. Kinetics-controlled synthesis of hierarchically porous materials with tunable properties from diverse building blocks
Zagaynov et al. Formation of mesoporous nanocrystalline ceria from cerium nitrate, acetate or acetylacetonate
Meng et al. Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites
CN102951687B (zh) 一种氧化铁介孔微球及其制备方法
CN103608290B (zh) 二氧化硅掺杂的含铝微粒材料
Du et al. Carrier effect in the synthesis of rattle-type Au@ hollow silica nanospheres by impregnation and thermal decomposition method
Srinivasan et al. Facile synthesis of mesoporous nanocrystalline ZnO bipyramids and spheres: characterization, and photocatalytic activity
Lu et al. Optimization of solvent-free mechanochemical synthesis of Co/Al 2 O 3 catalysts using low-and high-energy processes
Kowalik et al. Structure and morphology transformation of ZnO by carbonation and thermal treatment
Cong et al. Synthesis of anisotropic TiO 2 hollow microspheres using cave particles as templates and application in water treatment
Li et al. Renewable lignosulfonate-assisted synthesis of hierarchical nanoflake-array-flower ZnO nanomaterials in mixed solvents and their photocatalytic performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20170628