CN103594799B - 低杂波天线相位补偿方法 - Google Patents

低杂波天线相位补偿方法 Download PDF

Info

Publication number
CN103594799B
CN103594799B CN201310554640.2A CN201310554640A CN103594799B CN 103594799 B CN103594799 B CN 103594799B CN 201310554640 A CN201310554640 A CN 201310554640A CN 103594799 B CN103594799 B CN 103594799B
Authority
CN
China
Prior art keywords
waveguide
phase shifter
antenna
wavelet
jayrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310554640.2A
Other languages
English (en)
Other versions
CN103594799A (zh
Inventor
贾华
刘亮
程敏
赵连敏
刘甫坤
单家方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plasma Physics of CAS
Original Assignee
Institute of Plasma Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plasma Physics of CAS filed Critical Institute of Plasma Physics of CAS
Priority to CN201310554640.2A priority Critical patent/CN103594799B/zh
Publication of CN103594799A publication Critical patent/CN103594799A/zh
Application granted granted Critical
Publication of CN103594799B publication Critical patent/CN103594799B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

本发明公开了一种低杂波天线相位补偿方法,天线单元的三行主波导,分别包括一段窄边逐渐变宽的线性过渡波导,并通过第一移相段的E面分支波导,把主波导分为N/2个子波导,然后在第二移相段中,再把主波导分为N个子波导,其中N为偶数;分别通过两种方法设置移相器,可以消除模式变换器中间行输出端口带来的180度相差和天线端口弧形切口导致波导长度不一致带来的相位差。本发明可以应用于核聚变实验装置托卡马克低杂波多结波导天线和有源无源交错多结波导PAM天线的设计中,用来消除天线本身固有的各种相位差,提高天线与等离子体的耦合性能和电流驱动效率。

Description

低杂波天线相位补偿方法
技术领域
本发明涉及磁约束聚变研究领域,尤其是涉及到托卡马克装置低杂波天线相位补偿方法。
背景技术
托卡马克装置是一种磁约束聚变研究实验装置。低杂波是托卡马克上进行电流驱动和辅助加热的重要手段之一,其原理是利用大功率的微波能量来加热等离子体。低杂波电流驱动技术上采用的手段是通过波导阵列天线,把微波能量发送到托卡马克的等离子体中去。波导阵列天线是由多个矩形子波导按照行和列排列组成的矩形阵列构成,每一个矩形子波导均是一个辐射单元。低杂波天线阵发射的功率谱关系到波的可近性和功率沉积等,它需要满足一定的条件,微波才能有效地耦合进等离子体并驱动电流。而天线阵的功率谱,是由天线阵列中各个相邻子波导辐射单元间的相位差决定的。在环向上,也就是等离子体电流的方向,通常要求相邻子波导之间相位差为90度或270度,在极向上,也就是垂直电流的方向,一般要求相邻子波导之间的相位差为0度。
低杂波系统单个波源的输出功率较大,为避免在波导内打火,天线需要利用各种功率分配器,把同一个波源输出的功率平均分配到各个子波导内去。在极向上,一般使用TE10-TE30模式变换器来进行功率分配,模式变换器的3个输出端口在极向上分别给天线单元的三个主波导馈电。在环向上,每个主波导再使用多个E面分支波导进行功率分配,把主波导在环向上分成多个子波导,同时子波导的内部插入阶梯移相器,使天线端口相邻子波导之间的环向相位差为90度。
现有低杂波天线技术中,这三行主波导内部环向上的功率分配结构和移相器布置均是相同的。而在模式变换器的3个输出端口中,中间波导相位与上下两端输出波导有180度的相位差。因此,当模式变换器的能量馈入天线单元的三个主波导,并发射到等离子体时,中间波导和上下两行存在一定的相差。另外,为了使天线与等离子体的表面相吻合以提高耦合效率,低杂波天线端口在环向和极向上都会被切成弧形,切口后由于波导长度不一致,这就导致了天线弧形切口带来的相位差。当微波天线的结构一旦建立,模式变换器和弧形切口导致的相位差均是固定的,不能随意改变。在常规波导阵天线中,每个子波导都是单独馈电,不存在功分器,天线弧形切口相差可以由微波前级的低功率电路移相器来调整抵消。对于目前最常用的多结波导天线(MJ天线)和有源-无源交错式多结波导天线(PAM天线),同一个波源经常利用模式变换器作为功分器,并且天线单元内每个主波导的环向功分结构和移相器布置是相同的,在现有技术中,无法通过控制前级低功率移相器消除这两种相位差。
发明内容
为了消除上述两种相位差,本发明提供一种低杂波天线相位补偿方法,利用天线中间波导行π移相器的交错放置和内置补偿移相器,使天线在极向上的相位差补偿为0。
本发明采用的技术方案是:
低杂波天线相位补偿方法,其特征在于包括有以下步骤:
(1)天线单元的三行主波导,分别包括一段窄边逐渐变宽的线性过渡波导,并通过第一移相段的E面分支波导,把主波导分为N/2个子波导,然后在第二移相段中,再把主波导分为N个子波导,其中N为偶数;
(2)天线单元上行主波导和下行主波导中,在第一移相段,环向上的N/2个子波导内,沿着等离子体电流Ip的方向,序号为奇数的子波导内放置移相器为0,偶数序号的子波导内放置的移相器为π,也就是说,沿着Ip方向,第一移相段的移相器顺序为0-π-0-π-…;而在中间一行主波导的第一移相段内,移相器放置顺序与上下两行正好相反,序号为奇数的子波导内放置移相器为π,偶数的子波导内放置的移相器为0,也就是说,沿着Ip方向,第一移相段的移相器顺序为π-0-π-0-…;通过此种方法设置移相器,可以消除模式变换器中间行输出端口带来的180度相差;
(3)天线单元上行主波导和中间行的主波导中,在第二移相段,环向上的N个有源子波导内,不计无源波导,沿着等离子体电流Ip的方向,序号为奇数的有源子波导内放置补偿移相器,移相弧度为对于多结波导MJ天线,偶数序号的有源子波导内放置的移相器为对于有源无源多结波导PAM天线,偶数序号的有源子波导内放置的移相器为天线单元最下行的主波导中,在第二移相段环向上的N个有源子波导内,沿着等离子体电流Ip的方向,序号为奇数的有源子波导为空波导,不放置移相器,即移相度数为0,对于MJ天线,偶数序号的有源子波导内放置的移相器为π/2,对于PAM天线,偶数序号的有源子波导内放置的移相器则为3π/2;通过此种方法设置移相器,可以消除天线端口弧形切口导致波导长度不一致带来的相位差;
(4)在每行波导内,上述内置补偿移相器的移相度数是根据弧形切口后这一行波导长度与最底部行的长度差L确定的,其中,L=L1或者L=L2,L为每一行的波导长度与最底部波导的长度差,λg为波导波长,λ0为所用低杂波频率的真空波长,a为天线端口子波导的宽边尺寸;托卡马克等离子体为非圆截面,但天线切口为圆弧形,半径为R,每行波导天线发射端口中心与水平线的夹角为θ;因此,长度差为L=R-Rcosθ,在结构上,上述移相器通过两级台阶减小波导宽边的尺寸来实现。
所述的低杂波天线相位补偿方法,其特征在于:不同天线单元之间的环向或极向上弧形切口相位差可以通过调整微波前级低功率移相器来抵消。
所述的低杂波天线相位补偿方法,其特征在于:如果天线在极向上采用TE10-TE50模式变换器,那么同一个速调管的微波输出被分配到5行波导内,则天线单元包括5行主波导,从上往下,奇数行(1、3、5行)的主波导内第一移相段的移相器沿着Ip方向顺序为0-π-0-π-…,偶数行(2、4行)第一移相段的移相器沿着Ip方向顺序为π-0-π-0-…;在1-4行的第二移相段,序号为奇数的有源子波导内放置补偿移相器,移相度数为偶数序号的有源子波导内放置的移相器在MJ天线内为而在PAM天线内则为最底部第5行中的第二移相段,沿着Ip的方向,序号为奇数的有源子波导为空波导,不放置移相器,偶数序号的子波导内放置的移相器在MJ天线内为π/2,而在PAM天线内则为3π/2。
本发明的原理是:
本发明中,天线单元包括三行波导,由同一个速调管馈电,实际的波导阵列天线是多个类似的单元排成一行或多行组成。微波通过TE10-TE30模式变换器在极向上分为三个波导输出,然后分别连接图1中天线单元的三行波导。这三行波导中,目前常用的天线内部环向功分结构和移相器位置是相同的,但是,由于中间一行波导微波的输入相位与上下两行有180度的相差,这会造成微波发射到等离子体时,中间波导和上下两行存在一定的相差。另外,由于天线端口一般被切成弧形,造成上部和中部的波导长度比下部长度长,带来了天线弧形切口相位差。中间行波导相位差和弧形切口相差属于天线结构带来的固定相位差,在多结波导天线(MJ天线)和有源无源交错式多结波导天线(PAM天线)中,目前的技术很难消除这两种相位差。本发明的主要原理就是利用低杂波天线单元各行波导内π移相器的交错放置和内置补偿移相器的配置,来抵消这两种固定相位差,从而在天线的设计过程中消除这两种相位差。
本发明的有益效果在于:
本发明可以应用于核聚变实验装置托卡马克低杂波多结波导天线和有源无源交错多结波导天线(PAM)的设计中,用来消除天线本身固有的各种相位差,提高天线与等离子体的耦合性能和电流驱动效率。
附图说明
图1为本发明的天线单元结构示意图。
图2为本发明天线单元三行波导的俯视剖面图。
图3为本发明天线单元的侧视图。
具体实施方式
本发明的天线单元结构示意图如图1所示,天线单元包括三行波导,由同一个速调管馈电。本实施例为EAST托卡马克装置的4.6GHz低杂波多结波导天线,实际的低杂波波导阵列天线是由24个相似的天线单元排成4行6列组成。每个速调管的微波能量通过TE10-TE30模式变换器在极向上分为三个波导输出,然后分别连接图1中天线单元的三行波导。本发明采用如下方法消除多结波导天线(MJ天线)中的固定相位差:
1、天线单元的三行主波导,如图1所示,分别包括一段窄边逐渐变宽的线性过渡波导,并通过第一移相段的E面分支波导,把主波导分为4个子波导,然后在第二移相段中,再把主波导分为8个子波导。
2、如图2所示,在天线单元上行和下行主波导第一移相段环向的4个子波导内,沿着等离子体电流Ip的方向,第1、第3个子波导内不放置移相器,第2、第4子波导内放置的移相器为π移相器1,即沿着Ip方向,第一移相段的移相器顺序为0-π-0-π。而在中间行主波导的第一移相段内,第1、第3子波导内放置移相器为π移相器1,第2、第4子波导内不放置移相器,即沿着Ip方向,中间行第一移相段的移相器顺序为π-0-π-0。通过此方法设置移相器,消除模式变换器中间行输出端口带来的180度相差。
3、天线单元上行和中间行主波导的第二移相段,环向上的8个有源子波导内,第1、3、5有源子波导内放置移相弧度为的补偿移相器2,第2、4、6有源子波导内放置移相器3,本实施例为EAST4.6GHz低杂波天线,天线端口子波导的宽边尺寸a=50mm,L1=4.3mm,L2=12.2mm,因此,中间行波导为18度,上行波导为51度。天线单元最下行主波导第二移相段的8个有源子波导内,第1、3、5有源子波导为空波导,不放置移相器,第2、4、6有源子波导内放置π/2的移相器4。通过此方法,以消除天线端口弧形切口导致波导长度不一致带来的相位差。
此外,如图3所示,本发明实施例所用移相器类型均为阶梯移相器5,通过采用两级台阶减小波导内部宽边的尺寸来实现,每个移相器包括宽边的上下部分共8个阶梯。所有移相器的阶梯高度均相同,在结构上根据所需要的移相器度数来确定每个移相器的长度。
不同天线单元之间的环向或极向弧形切口相位差可以通过调整速调管前端的低功率移相器来抵消。另外,由于天线在环向上也存在圆弧形切口,但托卡马克大环半径比较大,因此,对于同一个天线单元内部环向上相邻子波导之间的弧形切口相差较小,可以忽略。
本发明实施例已经采用矢量网络分析仪进行微波相位测试,结果良好并满足要求,验证了本发明方法的正确性和可实施行。

Claims (3)

1.低杂波天线相位补偿方法,其特征在于包括有以下步骤:
(1)天线单元的三行主波导,分别包括一段窄边逐渐变宽的线性过渡波导,并通过第一移相段的E面分支波导,把主波导分为N/2个子波导,然后在第二移相段中,再把主波导分为N个子波导,其中N为偶数;
(2)天线单元上行主波导和下行主波导中,在第一移相段,环向上的N/2个子波导内,沿着等离子体电流Ip的方向,序号为奇数的子波导内放置移相器为0,偶数序号的子波导内放置的移相器为π,也就是说,沿着Ip方向,第一移相段的移相器顺序为0-π-0-π-…;而在中间一行主波导的第一移相段内,移相器放置顺序与上下两行正好相反,序号为奇数的子波导内放置移相器为π,偶数的子波导内放置的移相器为0,也就是说,沿着Ip方向,第一移相段的移相器顺序为π-0-π-0-…;通过此种方法设置移相器,可以消除模式变换器中间行输出端口带来的180度相差;
(3)天线单元上行主波导和中间行的主波导中,在第二移相段,环向上的N个有源子波导内,不计无源波导,沿着等离子体电流Ip的方向,序号为奇数的有源子波导内放置补偿移相器,移相弧度为φ,对于多结波导MJ天线,偶数序号的有源子波导内放置的移相器为φ+π/2,对于有源无源多结波导PAM天线,偶数序号的有源子波导内放置的移相器为φ+3π/2;天线单元最下行的主波导中,在第二移相段环向上的N个有源子波导内,沿着等离子体电流Ip的方向,序号为奇数的有源子波导为空波导,不放置移相器,即移相度数为0,对于MJ天线,偶数序号的有源子波导内放置的移相器为π/2,对于PAM天线,偶数序号的有源子波导内放置的移相器则为3π/2;通过此种方法设置移相器,可以消除天线端口弧形切口导致波导长度不一致带来的相位差;
(4)在每行波导内,上述波导内放置移相器的移相度数φ是根据弧形切口后这一行波导长度与最底部行的长度差L确定的,                                               ,其中,L=L1或者L=L2,L为每一行的波导长度与最底部波导的长度差,为波导波长,为所用低杂波频率的真空波长,为天线端口子波导的宽边尺寸;托卡马克等离子体为非圆截面,但天线切口为圆弧形,半径为R,每行波导天线发射端口中心与水平线的夹角为θ;因此,长度差为,在结构上,上述移相器通过两级台阶减小波导宽边的尺寸来实现。
2.根据权利要求1所述的低杂波天线相位补偿方法,其特征在于:不同天线单元之间的环向或极向上弧形切口相位差可以通过调整微波前级低功率移相器来抵消。
3.根据权利要求1所述的低杂波天线相位补偿方法,其特征在于:如果天线在极向上采用TE10-TE50模式变换器,那么同一个速调管的微波输出被分配到5行波导内,则天线单元包括5行主波导,从上往下,奇数行的主波导内第一移相段的移相器沿着Ip方向顺序为0-π-0-π-…,偶数行第一移相段的移相器沿着Ip方向顺序为π-0-π-0-…;在1-4行的第二移相段,序号为奇数的有源子波导内放置补偿移相器,移相度数为φ,偶数序号的有源子波导内放置的移相器在MJ天线内为φ+π/2,而在PAM天线内则为φ+3π/2;最底部第5行中的第二移相段,沿着Ip的方向,序号为奇数的有源子波导为空波导,不放置移相器,偶数序号的子波导内放置的移相器在MJ天线内为π/2,而在PAM天线内则为3π/2。
CN201310554640.2A 2013-11-08 2013-11-08 低杂波天线相位补偿方法 Expired - Fee Related CN103594799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310554640.2A CN103594799B (zh) 2013-11-08 2013-11-08 低杂波天线相位补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310554640.2A CN103594799B (zh) 2013-11-08 2013-11-08 低杂波天线相位补偿方法

Publications (2)

Publication Number Publication Date
CN103594799A CN103594799A (zh) 2014-02-19
CN103594799B true CN103594799B (zh) 2015-09-09

Family

ID=50084841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310554640.2A Expired - Fee Related CN103594799B (zh) 2013-11-08 2013-11-08 低杂波天线相位补偿方法

Country Status (1)

Country Link
CN (1) CN103594799B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985942B (zh) * 2014-05-15 2016-03-30 南京航空航天大学 一种矩形波导到多米诺等离子波导转换器
CN104105330B (zh) * 2014-06-17 2016-07-06 合肥聚能电物理高技术开发有限公司 一种高精度高强度低混杂波天线结构和制作工艺
CN104078724B (zh) * 2014-07-04 2016-08-24 芜湖航飞科技股份有限公司 一种等离子体数字移相器
CN105281001A (zh) * 2014-11-04 2016-01-27 西北核技术研究所 一种高功率微波的功率分配器
CN105356015B (zh) * 2015-08-11 2019-07-19 西北核技术研究所 一种用于x波段的铁氧体移相器
CN108601190A (zh) * 2017-12-20 2018-09-28 中国科学院合肥物质科学研究院 高耦合低杂质的双环型离子回旋天线
CN113038801B (zh) * 2021-03-17 2023-05-30 中国科学院合肥物质科学研究院 一种稳态高功率天线位移补偿器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227979A (zh) * 1997-12-02 1999-09-08 日本电气株式会社 波导相控阵天线装置
JP2007251589A (ja) * 2006-03-16 2007-09-27 Murata Mfg Co Ltd アレイアンテナ装置及びrfidシステム
CN101252227A (zh) * 2007-11-21 2008-08-27 北京理工大学 毫米波一体化多通道有源发射天线及其相位补偿方法
KR101075983B1 (ko) * 2011-05-26 2011-10-21 주식회사 선우커뮤니케이션 안테나 위상 변위기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227979A (zh) * 1997-12-02 1999-09-08 日本电气株式会社 波导相控阵天线装置
JP2007251589A (ja) * 2006-03-16 2007-09-27 Murata Mfg Co Ltd アレイアンテナ装置及びrfidシステム
CN101252227A (zh) * 2007-11-21 2008-08-27 北京理工大学 毫米波一体化多通道有源发射天线及其相位补偿方法
KR101075983B1 (ko) * 2011-05-26 2011-10-21 주식회사 선우커뮤니케이션 안테나 위상 변위기

Also Published As

Publication number Publication date
CN103594799A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN103594799B (zh) 低杂波天线相位补偿方法
CN107978869B (zh) 一种宽带多极化重构缝隙天线及其极化方法
KR102302466B1 (ko) 도파관 슬롯 어레이 안테나
US9398681B2 (en) Distributed coupling high efficiency linear accelerator
EP2698864B1 (en) Reconfigurable switching element for operation as a circulator or power divider
CN104103875B (zh) 移相器及包含移相器的移相组件、移相馈电网络
CN104953256A (zh) 宽带圆极化平板阵列天线
CN103050764A (zh) 等相差分波束形成装置
CN101888737B (zh) 双模式超导型光阴极注入器主体结构
CN103151620A (zh) 高功率微波径向线缝隙阵列天线
CN208045699U (zh) 一种宽带多极化重构缝隙天线
CN103222108B (zh) 天线装置
CN102570031A (zh) 一种双极化电调定向基站天线及通信基站
US9559397B2 (en) Circular dielectric polarizer having a dielectric slab sandwiched by dielectric core portions having air cutouts therein
CN106356622A (zh) 高增益双频双圆极化共口径平面阵列天线
US10158176B2 (en) Patch antenna having programmable frequency and polarization
KR102007837B1 (ko) 칩 인덕터가 구비된 이중 대역 원형 편파 안테나
EP3261179A1 (en) Leaky wave antenna
US8648757B2 (en) End-loaded topology for D-plane polarization improvement
CN107645052A (zh) 高功率微波连续横向枝节缝隙径向线天线
Jia et al. Design and test of an antenna module mock-up for the EAST 4.6 GHz LHCD launcher
CN107645058A (zh) 高功率微波径向线模式转换缝隙天线
JPWO2013114507A1 (ja) 電磁波伝達シート、及び、電磁波伝送装置
CN104716420A (zh) 基于双横向pin二极管的频率可重构波导缝隙天线
US9876284B2 (en) Multibeam source

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150909

Termination date: 20181108