CN103592208A - Electromagnetic type oil metal particle monitoring sensor resistant to environmental magnetic field interference - Google Patents
Electromagnetic type oil metal particle monitoring sensor resistant to environmental magnetic field interference Download PDFInfo
- Publication number
- CN103592208A CN103592208A CN201310569838.8A CN201310569838A CN103592208A CN 103592208 A CN103592208 A CN 103592208A CN 201310569838 A CN201310569838 A CN 201310569838A CN 103592208 A CN103592208 A CN 103592208A
- Authority
- CN
- China
- Prior art keywords
- signal
- metallic particles
- metal particle
- magnetic field
- sensing unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 33
- 238000012544 monitoring process Methods 0.000 title claims abstract description 14
- 239000002923 metal particle Substances 0.000 title abstract description 78
- 230000007613 environmental effect Effects 0.000 title abstract description 10
- 230000005284 excitation Effects 0.000 claims abstract description 31
- 238000012545 processing Methods 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 3
- 230000006698 induction Effects 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 4
- 239000013528 metallic particle Substances 0.000 claims 13
- 230000001939 inductive effect Effects 0.000 claims 2
- 238000005086 pumping Methods 0.000 claims 2
- 239000000696 magnetic material Substances 0.000 claims 1
- 230000035699 permeability Effects 0.000 claims 1
- 239000003921 oil Substances 0.000 abstract description 17
- 239000002184 metal Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000010687 lubricating oil Substances 0.000 abstract description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005358 geomagnetic field Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
本发明公开了一种抗环境磁场干扰的电磁式油液金属颗粒监测传感器,包括:金属颗粒敏感单元,用以感应产生金属颗粒通过传感器时的感应电压;智能变送器,用以产生金属颗粒敏感单元必须的激励信号,并将激励信号送给金属颗粒敏感单元,接收金属颗粒敏感单元输出的感应电压信号,消除外部环境磁场干扰和激励磁场的影响,获得因金属颗粒通过传感器所感应的有用信号,对该信号进行模数转换与信号处理,进一步消除电路噪声,并对金属颗粒识别和计数,将其信息上传网络。本发明可以提高抗干扰能力和对微小金属颗粒的识别能力,为润滑油金属磨粒的在线监测提供了一种高性能的监测器。
The invention discloses an electromagnetic oil metal particle monitoring sensor that is resistant to environmental magnetic field interference, comprising: a metal particle sensitive unit for inductively generating an induced voltage when the metal particle passes through the sensor; an intelligent transmitter for generating the metal particle The excitation signal necessary for the sensitive unit, and sends the excitation signal to the metal particle sensitive unit, receives the induced voltage signal output by the metal particle sensitive unit, eliminates the influence of the external environmental magnetic field interference and the excitation magnetic field, and obtains the useful information induced by the metal particle passing through the sensor Signal, analog-to-digital conversion and signal processing are performed on the signal to further eliminate circuit noise, identify and count metal particles, and upload the information to the network. The invention can improve the anti-interference ability and the ability to identify tiny metal particles, and provides a high-performance monitor for on-line monitoring of lubricating oil metal abrasive particles.
Description
技术领域 technical field
本发明属于在线油液分析领域,具体涉及一种抗环境磁场干扰的电磁式油液金属颗粒监测传感器。 The invention belongs to the field of on-line oil analysis, and in particular relates to an electromagnetic oil metal particle monitoring sensor resistant to environmental magnetic field interference.
背景技术 Background technique
大型机械设备在工作时,由于机械磨损产生金属磨粒,一旦机械发生异常磨损有可能引发重大机械故障,造成巨大经济损失和人员伤亡。电磁式金属颗粒监测传感器用于对机械润滑油液中金属颗粒数量、大小等的监测,一旦发现润滑油液中存在异常磨损所产生的金属颗粒,维护人员可及时对设备进行维修,实现机械异常磨损的早期预警,防止重大机械事故的发生。 When large-scale mechanical equipment is working, metal abrasive particles are produced due to mechanical wear. Once the machine is abnormally worn, it may cause major mechanical failures, resulting in huge economic losses and casualties. The electromagnetic metal particle monitoring sensor is used to monitor the number and size of metal particles in the mechanical lubricating oil. Once the metal particles produced by abnormal wear are found in the lubricating oil, the maintenance personnel can repair the equipment in time to realize mechanical abnormality. Early warning of wear and tear to prevent major mechanical accidents.
当设备发生异常磨损时,磨损颗粒随油液穿过传感器时,由于金属颗粒的体积很小,感应线圈感应得到的电信号非常微弱,往往为外界环境磁场(如地磁场)所产生的干扰所淹没,从而使得微小金属颗粒难以检测。因而如何排除地磁场等外部环境磁场的干扰,提高微小金属磨粒的识别能力,一直是困扰提高电磁式油液金属颗粒监测传感器检测性能与可靠性的难点。几十年来,研究者围绕着如何排除外界磁场干扰提出了许多技术方案。 When the equipment wears abnormally, when the wear particles pass through the sensor with the oil, the electrical signal induced by the induction coil is very weak due to the small size of the metal particles, which is often caused by the interference generated by the external environmental magnetic field (such as the earth's magnetic field). Submerged, making tiny metal particles difficult to detect. Therefore, how to eliminate the interference of external environmental magnetic fields such as the earth's magnetic field and improve the recognition ability of tiny metal abrasive particles has always been a difficulty in improving the detection performance and reliability of electromagnetic oil metal particle monitoring sensors. For decades, researchers have proposed many technical solutions around how to eliminate external magnetic field interference.
1978年Peter Donald Baker和Derek Ernest Marsh 在专利GB2004374A中提出了采用缠绕在油管上的两个串联的线圈测量流经油管的液体中金属颗粒方法(参见图1),该方法将测量线圈1′、2′缠绕在流体管路3′上,振荡器4′加载一个100kHz的交流信号在测量线圈1′、2′和地磁补偿线圈12′、13′上,将测量线圈1′、2′和地磁补偿线圈12′、13′的中间抽头接入放大器6′,调整四个线圈的平衡,使两个中间抽头的电压同幅、同相(排除激励信号)。在没有金属颗粒通过时放大器的输出为零,当有金属颗粒通过时,这一平衡被打破,两个中间抽头间出现与金属颗粒相对应的信号变化,该信号经过低通滤波器8′、检波器9′和脉冲计数器10′获得金属颗粒的信息,该方法的缺点是要对地磁干扰设置专门的补偿电路,而且该专利可检测的最小金属颗粒是否能满足工业设备使用要求未得到证实,也未看到相关的产品报道。 In 1978, Peter Donald Baker and Derek Ernest Marsh proposed in the patent GB2004374A that two series-connected coils wound on the oil pipe are used to measure the metal particles in the liquid flowing through the oil pipe (see Figure 1). This method will measure the coil 1′, 2' is wound on the fluid pipeline 3', the oscillator 4' loads a 100kHz AC signal on the measuring coils 1', 2' and the geomagnetic compensation coils 12', 13', and the measuring coils 1', 2' and the geomagnetic The center taps of the compensation coils 12', 13' are connected to the amplifier 6', and the balance of the four coils is adjusted so that the voltages of the two center taps have the same amplitude and phase (excluding the excitation signal). When no metal particle passes, the output of the amplifier is zero. When a metal particle passes, this balance is broken, and a signal change corresponding to the metal particle occurs between the two middle taps, and the signal passes through the low-pass filter 8', The detector 9' and the pulse counter 10' obtain the information of the metal particles. The disadvantage of this method is that a special compensation circuit needs to be set for geomagnetic interference, and whether the smallest metal particles detectable in this patent can meet the requirements of industrial equipment has not been confirmed. There is no related product report.
中国宁波的蒋伟平在专利CN 102331390 A中提出在油管上安装三个线圈,两边两个线圈在外界激励信号驱动下产生两个方向相反的交变磁场,并使中间线圈出的交变磁场为零(排除激励信号)。当油管中存在金属颗粒时,这个平衡被打破,中间线圈输出不为零的信号,通过对该信号的检测,获知油管中金属颗粒的存在。该技术同样存在地磁补偿问题,而且为了实现两个电磁场的对称,需要设置两个线圈相对于中间线圈的调整机构,且调整难度很大。 Jiang Weiping of Ningbo, China proposed in the patent CN 102331390 A to install three coils on the oil pipe, and the two coils on both sides are driven by external excitation signals to generate two alternating magnetic fields in opposite directions, and make the alternating magnetic field from the middle coil zero (excluding the stimulus signal). When there are metal particles in the oil pipe, this balance is broken, and the middle coil outputs a non-zero signal, and the existence of metal particles in the oil pipe is known by detecting the signal. This technology also has the problem of geomagnetic compensation, and in order to realize the symmetry of the two electromagnetic fields, it is necessary to set up an adjustment mechanism for the two coils relative to the middle coil, and the adjustment is very difficult.
综上所述,如何消除外界环境磁场对电磁式金属颗粒监测传感器的干扰,同时增强传感器微弱感应输出信号的检测能力,是提高传感器检测性能的关键。 To sum up, how to eliminate the interference of the external environmental magnetic field on the electromagnetic metal particle monitoring sensor and at the same time enhance the detection ability of the sensor's weak induction output signal is the key to improving the detection performance of the sensor.
发明内容 Contents of the invention
本发明的目的是,针对现有技术的问题,提供一种抗环境磁场干扰的电磁式油液金属颗粒监测传感器,以提高抗干扰能力和对微小金属颗粒的识别能力。 The purpose of the present invention is to provide an electromagnetic oil metal particle monitoring sensor that is resistant to environmental magnetic field interference, so as to improve the anti-interference ability and the ability to identify tiny metal particles.
本发明提供的抗环境磁场干扰的电磁式油液金属颗粒监测传感器,包括: The electromagnetic oil metal particle monitoring sensor for anti-environmental magnetic field interference provided by the present invention includes:
金属颗粒敏感单元,用以感应产生金属颗粒在通过金属颗粒敏感单元时的感应电压; The metal particle sensing unit is used to induce the induced voltage when the metal particles pass through the metal particle sensing unit;
智能变送器,用以产生金属颗粒敏感单元必须的激励信号,并将激励信号送给金属颗粒敏感单元,接收金属颗粒敏感单元输出的感应电压信号,消除外部环境磁场干扰和激励磁场的影响,获得因金属颗粒通过金属颗粒敏感单元所感应的有用信号,对该信号进行模数转换与数据处理,进一步消除电路噪声,并对金属颗粒进行识别和计数,最后将颗粒信息上传网络。 The intelligent transmitter is used to generate the excitation signal necessary for the metal particle sensitive unit, send the excitation signal to the metal particle sensitive unit, receive the induced voltage signal output by the metal particle sensitive unit, and eliminate the influence of the external environmental magnetic field interference and the excitation magnetic field. Obtain the useful signal induced by the metal particles passing through the metal particle sensitive unit, perform analog-to-digital conversion and data processing on the signal, further eliminate circuit noise, identify and count the metal particles, and finally upload the particle information to the network.
所述金属颗粒敏感单元包括导磁材料外壳,外壳内设有激励线圈和位于激励线圈两侧的第一、第二感应线圈。 The metal particle sensitive unit includes a shell made of magnetically permeable material, and an exciting coil and first and second induction coils located on both sides of the exciting coil are arranged inside the shell.
所述智能变送器包括:与激励线圈连接的激励信号源;分别与第一、第二感应线圈连接的第一、第二前置放大器;分别与第一和第二前置放大器连接的第一、第二调相器;与第一、第二调相器连接的差分放大器;与差分放大器连接的解调器;与解调器连接的多级放大器和滤波器;与放大器连接的微处理器;与微处理器连接的通讯接口;通讯接口与主控计算机连接。 The intelligent transmitter includes: an excitation signal source connected to the excitation coil; first and second preamplifiers respectively connected to the first and second induction coils; a first preamplifier connected to the first and second preamplifiers respectively 1. The second phase modulator; the differential amplifier connected to the first and second phase modulators; the demodulator connected to the differential amplifier; the multi-stage amplifier and filter connected to the demodulator; the microprocessor connected to the amplifier The device; the communication interface connected with the microprocessor; the communication interface connected with the main control computer.
使用时,将本发明中的金属颗粒敏感单元串联在油液管路上,激励信号源产生交变激励电压送入激励线圈,激励线圈在油液管路的测量区间产生交变磁场,感应线圈在交变磁场作用下产生感应电压,当有金属颗粒流经敏感单元时,感应电压会发生变化,而感应电压的变化包含了反映金属颗粒的大小、是否是铁磁性颗粒等信息;智能变送器处理由金属颗粒敏感单元感应线圈输出的感应电压信号,并实现外部环境磁场干扰和激励磁场的影响的消除,得到获得反映金属颗粒信息的微小有用信号;微处理器采集该信号,并内嵌有微弱信号处理算法对该输出信号进行进一步处理,增强信噪比,提高对微小金属磨粒的识别能力,完成对金属颗粒的计数与尺寸统计;微处理器同时通过通信接口完成与主控计算机之间的数据传输。 When in use, the metal particle sensitive unit in the present invention is connected in series on the oil pipeline, the excitation signal source generates an alternating excitation voltage and sends it to the excitation coil, and the excitation coil generates an alternating magnetic field in the measurement interval of the oil pipeline, and the induction coil is The induced voltage is generated under the action of the alternating magnetic field. When metal particles flow through the sensitive unit, the induced voltage will change, and the change of the induced voltage includes information such as reflecting the size of the metal particle and whether it is a ferromagnetic particle; the intelligent transmitter Process the induced voltage signal output by the induction coil of the metal particle sensitive unit, and realize the elimination of the influence of the external environmental magnetic field interference and the excitation magnetic field, and obtain a small useful signal reflecting the information of the metal particle; the microprocessor collects the signal, and has a built-in The weak signal processing algorithm further processes the output signal, enhances the signal-to-noise ratio, improves the ability to identify tiny metal abrasive particles, and completes the counting and size statistics of metal particles; at the same time, the microprocessor completes the communication with the main control computer through the communication interface data transfer between.
本发明根据电磁感应原理,利用金属颗粒通过交变磁场时,对磁场的扰动,从而在感应线圈中产生电压信号来检测金属颗粒的大小与性质。 According to the principle of electromagnetic induction, the invention uses the disturbance of the magnetic field when the metal particles pass through the alternating magnetic field, so as to generate a voltage signal in the induction coil to detect the size and properties of the metal particles.
本发明的特点在于:在于利用两个感应线圈同时敏感外界磁场所引入的干扰,然后通过前置放大电路与调相电路的处理,使得外界磁场干扰所引起的两个感应线圈的输出非常相似,再通过调幅调相电路使两个感应线圈输出的信号完全一致,把两个完全一致的信号送入差分电路处理后,实现干扰信号的自动消除,提高了抗干扰能力,并且对于传感器感应线圈的结构、尺寸的对称性要求大大降低;同时在微处理器中嵌入微弱信号处理算法,增强传感器对微小金属颗粒的识别能力。 The present invention is characterized in that: it uses two induction coils to simultaneously be sensitive to the interference introduced by the external magnetic field, and then through the processing of the preamplifier circuit and the phase modulation circuit, the output of the two induction coils caused by the external magnetic field interference is very similar, Then through the amplitude modulation and phase modulation circuit, the signals output by the two induction coils are completely consistent, and after the two completely consistent signals are sent to the differential circuit for processing, the automatic elimination of the interference signal is realized, and the anti-interference ability is improved. The symmetry requirements of the structure and size are greatly reduced; at the same time, weak signal processing algorithms are embedded in the microprocessor to enhance the sensor's ability to identify tiny metal particles.
下面结合附图进一步说明本发明的实施方案。 Embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
附图说明 Description of drawings
图1是现有技术的原理图。 Fig. 1 is a schematic diagram of the prior art.
图2是本发明中金属颗粒敏感单元的结构示意图。 Fig. 2 is a schematic structural diagram of the metal particle sensitive unit in the present invention.
图3是本发明的结构组成框图。 Fig. 3 is a structural composition block diagram of the present invention.
图4是直径为96μm的铁磁性金属颗粒图。 Fig. 4 is a diagram of a ferromagnetic metal particle with a diameter of 96 μm.
图5是采集得到的铁磁性金属颗粒通过金属颗粒敏感单元时的特征信号图。 Fig. 5 is a characteristic signal diagram of collected ferromagnetic metal particles passing through the metal particle sensing unit.
图6是图5所示信号经微弱信号处理后的输出波形图。 Fig. 6 is an output waveform diagram of the signal shown in Fig. 5 after weak signal processing.
具体实施方式 Detailed ways
见图2、图3,本发明包括金属颗粒敏感单元、智能变送器两个部分,其中:金属颗粒敏感单元(参见图2),包括环形导磁材料外壳(外壳也可是其它形状)1,外壳1内设有激励线圈3和位于激励线圈3两侧的第一、第二感应线圈2、4;智能变送器(参见图3),包括:与激励线圈3连接的激励信号源7;分别与第一、第二感应线圈2、4连接的第一、第二前置放大器8、9;分别与第一和第二前置放大器8、9连接的第一、第二调相器10、11;与第一、第二调相器10、11连接的差分放大器12;与差分放大器12、激励线圈3、激励信号源7连接的解调器13;顺序连接的解调器13、带通滤波器14,分级放大器15、低通滤波器16、分级放大器17、低通滤波器18、分级放大器19、低通滤波器20;微处理器21和与微处理器21连接的通信接口22,微处理器21与低通滤波器16、18、20连接,所述通信接口22与主控计算机23连接。 See Fig. 2 and Fig. 3, the present invention includes metal particle sensitive unit and intelligent transmitter in two parts, wherein: metal particle sensitive unit (see Fig. 2), including ring-shaped magnetically permeable material casing (the casing can also be of other shapes) 1, The casing 1 is provided with an excitation coil 3 and first and second induction coils 2 and 4 located on both sides of the excitation coil 3; an intelligent transmitter (see FIG. 3 ), including: an excitation signal source 7 connected to the excitation coil 3; The first and second preamplifiers 8 and 9 connected to the first and second induction coils 2 and 4 respectively; the first and second phase modulators 10 connected to the first and second preamplifiers 8 and 9 respectively , 11; the differential amplifier 12 connected with the first and second phase modulators 10, 11; the demodulator 13 connected with the differential amplifier 12, the excitation coil 3, the excitation signal source 7; the demodulator 13 connected in sequence, with Pass filter 14, graded amplifier 15, low-pass filter 16, graded amplifier 17, low-pass filter 18, graded amplifier 19, low-pass filter 20; Microprocessor 21 and the communication interface 22 that is connected with microprocessor 21 , the microprocessor 21 is connected with the low-pass filters 16 , 18 , 20 , and the communication interface 22 is connected with the main control computer 23 .
由智能变送器中的激励信号源7产生的交变激励电压送入激励线圈3,激励线圈3在油液管路的测量区间产生交变磁场,感应线圈2、4在交变磁场作用下产生感应电压,地磁场在感应线圈2、4中产生的干扰是同相干扰信号,该干扰信号将和激励信号一起在后续信号处理中自动抵消;当金属颗粒6穿过线圈时将引起感应线圈2、4的感应电压变化,而感应电压的变化包含了反映金属颗粒的大小、是否是铁磁性颗粒等信息。感应线圈2、4的感应电压分别送入智能变送器进行处理以获得表征金属颗粒尺寸的信号;导磁材料1将激励线圈3产生的交变磁场控制在一定区域,减少由金属外壳产生的铁损,同时还可以减少外界磁场对传感器的影响。 The alternating excitation voltage generated by the excitation signal source 7 in the intelligent transmitter is sent to the excitation coil 3, and the excitation coil 3 generates an alternating magnetic field in the measurement interval of the oil pipeline, and the induction coils 2 and 4 are under the action of the alternating magnetic field The induced voltage is generated, and the interference generated by the geomagnetic field in the induction coils 2 and 4 is an in-phase interference signal, which will be automatically canceled together with the excitation signal in the subsequent signal processing; when the metal particle 6 passes through the coil, it will cause the induction coil 2 , 4, the induced voltage changes, and the induced voltage changes include the information reflecting the size of the metal particles, whether they are ferromagnetic particles, etc. The induced voltages of the induction coils 2 and 4 are respectively sent to the intelligent transmitter for processing to obtain the signal representing the size of the metal particles; the magnetically permeable material 1 controls the alternating magnetic field generated by the excitation coil 3 in a certain area, and reduces the vibration generated by the metal shell. Iron loss, but also can reduce the influence of the external magnetic field on the sensor.
金属颗粒敏感单元的感应线圈2、4产生的信号分别送入第一和第二前置放大器8、9,经第一和第二前置放大器8、9处理获得相同幅值的信号送入第一和第二调相器10、11调相,经调相后的两路输出信号,送入差分放大器12,经差分放大器12处理后,形成一个消除了绝大部分激励信号和地磁信号的信号,再将该信号送入解调器13,经解调器13解调、带通滤波器14滤波,消除激励信号,获得反映金属颗粒信息的有用信号,这一有用信号经过放大器15放大和低通滤波器16滤波后输入微处理器21进行信号采集与处理,利用此信号可以识别并统计直径300微米及以上尺寸的铁磁性金属颗粒;低通滤波器16的输出信号同时送入下一级放大器17作进一步放大,放大器17输出经低通滤波器18滤波后也输入微处理器21进行采集与处理,利用此信号可以识别统计直径150微米至300微米范围内的铁磁性金属颗粒;低通滤波器18的输出信号同时送入下一级放大器19作进一步放大,放大器19输出经低通滤波器20滤波后输入微处理器21进行采集与处理,利用此采集的信号可以识别并统计直径100微米至150微米范围内的铁磁性金属颗粒。这种由若干级放大器和低通滤波器组成的放大电路,可以实现对金属颗粒信号的分级采集,以便获得精确的金属颗粒尺寸信息。
The signals generated by the induction coils 2 and 4 of the metal particle sensitive unit are sent to the first and second preamplifiers 8 and 9 respectively, and the signals obtained by the processing of the first and second preamplifiers 8 and 9 are sent to the first The first and second phase modulators 10 and 11 are phase-modulated, and the two output signals after phase modulation are sent to the differential amplifier 12. After being processed by the differential amplifier 12, a signal that eliminates most of the excitation signal and the geomagnetic signal is formed. , then the signal is sent to the demodulator 13, demodulated by the demodulator 13, filtered by the band-pass filter 14, the excitation signal is eliminated, and a useful signal reflecting the information of the metal particles is obtained. This useful signal is amplified by the amplifier 15 and lowered Pass filter 16 filters and input microprocessor 21 to carry out signal acquisition and processing, utilize this signal to identify and count ferromagnetic metal particles with a diameter of 300 microns and above; the output signal of low pass filter 16 is sent to the next stage at the same time Amplifier 17 is further amplified, and the output of amplifier 17 is filtered by low-pass filter 18 and then input to microprocessor 21 for collection and processing. This signal can be used to identify and count ferromagnetic metal particles within the range of 150 microns to 300 microns in diameter; The output signal of the filter 18 is sent to the next-stage amplifier 19 for further amplification at the same time, and the output of the amplifier 19 is filtered by the low-pass filter 20 and then input to the microprocessor 21 for collection and processing. The collected signal can be used to identify and count
在进行数据采集的同时,微处理器21内嵌的微弱信号处理算法,采用数字平滑滤波与最小均方误差自适应滤波相结合的信号处理算法,可以进一步增强所采集信号的信噪比、提高对微小金属颗粒的识别能力。微处理器21识别得到一定时间段内经过传感器的金属颗粒数量、大小等数据信息,这一信息经通信接口22与主控计算机23进行通信,同时微处理器21还具有产品编码设置、网络地址设置、激励频率和信号处理关键参数设置、量值标定与校验、金属颗粒识别统计、数据上传、多传感器组网运行等功能。 While performing data collection, the weak signal processing algorithm embedded in the microprocessor 21 adopts a signal processing algorithm combining digital smoothing filtering and minimum mean square error adaptive filtering, which can further enhance the signal-to-noise ratio of the collected signal, improve The ability to identify tiny metal particles. Microprocessor 21 identifies and obtains data information such as the number and size of metal particles passing through the sensor within a certain period of time. This information communicates with the main control computer 23 through communication interface 22. At the same time, microprocessor 21 also has product code settings, network address Setting, excitation frequency and signal processing key parameter setting, value calibration and verification, metal particle identification and statistics, data upload, multi-sensor network operation and other functions.
下面用一个具体实例来说明本发明的有益效果: The beneficial effects of the present invention are illustrated below with a specific example:
实例中,首先将微小铁磁性金属颗粒粘在塑料带上,制作成试验样本,其中铁磁性金属颗粒通过显微镜测得直径为96μm,如图4所示。 In the example, firstly, tiny ferromagnetic metal particles were glued on a plastic tape to make a test sample, in which the diameter of the ferromagnetic metal particles measured by a microscope was 96 μm , as shown in Figure 4.
将试验样本以手动方式穿过传感器,图5所示为微处理器采集得到得到的金属颗粒通过传感器的信号,由于传感器已经通过电路对外界干扰信号进行了消噪处理,因此从图5所示波形可以明显看出该信号中存在一个上下脉冲的波形,而这正是金属颗粒通过电磁式传感器时的特征信号。但由于金属颗粒尺寸较小,直径只有96μm,尽管经过电路对外界干扰进行了消除处理,但是信号中仍有不少噪声,影响了对金属颗粒的准确识别。图6为图5信号经微弱信号处理算法处理后得到的信号波形,由图可知,经过微弱信号处理以后,信号信噪比得到增强,更易于识别金属颗粒的特征,提高了传感器对微小金属颗粒的识别能力。 Pass the test sample through the sensor manually. Figure 5 shows the signal of the metal particles passing through the sensor collected by the microprocessor. It can be clearly seen from the waveform that there is an up and down pulse waveform in the signal, which is the characteristic signal when metal particles pass through the electromagnetic sensor. However, due to the small size of the metal particles, the diameter is only 96 μm . Although the external interference has been eliminated by the circuit, there is still a lot of noise in the signal, which affects the accurate identification of the metal particles. Figure 6 is the signal waveform obtained after the signal in Figure 5 is processed by the weak signal processing algorithm. It can be seen from the figure that after the weak signal processing, the signal-to-noise ratio is enhanced, and it is easier to identify the characteristics of metal particles, which improves the sensor's detection of tiny metal particles. recognition ability.
以上结果说明本发明所提供的电磁式油液金属颗粒监测传感器能够敏感检测最小直径不大于100μm的铁磁性金属颗粒,智能变送器能够实现外界干扰信号的自动消除,嵌入微处理器的微弱信号处理算法能够进一步提高输出信号的信噪比,利用本发明能够提高在线油液金属颗粒的监测能力。 The above results show that the electromagnetic oil metal particle monitoring sensor provided by the present invention can sensitively detect ferromagnetic metal particles with a minimum diameter of not more than 100 μm , the intelligent transmitter can automatically eliminate external interference signals, and the weak sensor embedded in the microprocessor The signal processing algorithm can further improve the signal-to-noise ratio of the output signal, and the monitoring ability of online oil metal particles can be improved by using the invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310569838.8A CN103592208A (en) | 2013-11-13 | 2013-11-13 | Electromagnetic type oil metal particle monitoring sensor resistant to environmental magnetic field interference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310569838.8A CN103592208A (en) | 2013-11-13 | 2013-11-13 | Electromagnetic type oil metal particle monitoring sensor resistant to environmental magnetic field interference |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103592208A true CN103592208A (en) | 2014-02-19 |
Family
ID=50082435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310569838.8A Pending CN103592208A (en) | 2013-11-13 | 2013-11-13 | Electromagnetic type oil metal particle monitoring sensor resistant to environmental magnetic field interference |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103592208A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105424569A (en) * | 2015-12-11 | 2016-03-23 | 天津成科传动机电技术股份有限公司 | Oil product particle detection device with light source fluctuating correction function |
CN105758782A (en) * | 2014-12-19 | 2016-07-13 | 江苏卓微生物科技有限公司 | Portable rapid particle detection apparatus and working method thereof |
CN107589171A (en) * | 2017-11-08 | 2018-01-16 | 湖南挚新科技发展有限公司 | Contained metal detection system in fluid pipeline |
CN107907455A (en) * | 2017-12-05 | 2018-04-13 | 西人马(厦门)科技有限公司 | A kind of magnetic induction grain testing apparatus and concentration detection method |
CN108415089A (en) * | 2018-03-08 | 2018-08-17 | 安徽容知日新科技股份有限公司 | A kind of fluid metallic particles detection device |
CN109283102A (en) * | 2018-08-22 | 2019-01-29 | 四川新川航空仪器有限责任公司 | A kind of real-time monitoring system of movable machinery component wear state |
CN109813761A (en) * | 2019-03-12 | 2019-05-28 | 大连海事大学 | An inductive magnetic plug type oil on-line monitoring device |
WO2019109872A1 (en) * | 2017-12-05 | 2019-06-13 | 西人马联合测控(泉州)科技有限公司 | Detection system and method for concentration fluid nonmetal particles |
CN110470822A (en) * | 2019-08-21 | 2019-11-19 | 岭澳核电有限公司 | A kind of nuclear power station equipment wearing monitoring system and method |
CN111505726A (en) * | 2020-04-09 | 2020-08-07 | 中北大学 | Device and method for detecting pipeline liquid magnetic different medium based on symmetrical magnetic excitation structure |
CN112484771A (en) * | 2019-09-12 | 2021-03-12 | 中国石油天然气股份有限公司 | Monitoring method of pipe cleaner |
CN112557264A (en) * | 2020-11-23 | 2021-03-26 | 中国电子科技集团公司第四十九研究所 | Sensitive core of high-temperature metal chip sensor and preparation method thereof |
CN112578467A (en) * | 2020-11-24 | 2021-03-30 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Magnetic metal detection device of silage harvester and detection method thereof |
CN113031083A (en) * | 2021-03-10 | 2021-06-25 | 远景能源有限公司 | Signal processing device and method for detecting metal particles in working solution |
WO2022021527A1 (en) * | 2020-07-29 | 2022-02-03 | 西人马联合测控(泉州)科技有限公司 | Monitoring sensor noise reduction method, apparatus and device, and computer storage medium |
CN115372209A (en) * | 2022-07-11 | 2022-11-22 | 苏州仁正智探科技有限公司 | High-sensitivity oil abrasive particle online monitoring system and monitoring method |
CN115597871A (en) * | 2022-10-24 | 2023-01-13 | 中国人民解放军93208部队(Cn) | Airborne health diagnosis device for mechanical system of military turbofan engine |
CN117470948A (en) * | 2023-10-18 | 2024-01-30 | 苏州仁正智探科技有限公司 | An inductive oil chip signal monitoring and identification system and method |
CN117929217A (en) * | 2024-03-22 | 2024-04-26 | 宁德时代新能源科技股份有限公司 | Magnetic particle content detection system and detection method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5315243A (en) * | 1992-04-06 | 1994-05-24 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Detection and discrimination between ferromagnetic and non-ferromagnetic conductive particles in a fluid |
CN101963570A (en) * | 2010-05-17 | 2011-02-02 | 深圳市亚泰光电技术有限公司 | Device for rapidly detecting ferromagnetic grain in lubricating oil, detection method and signal processing circuit |
CN102331389A (en) * | 2010-11-30 | 2012-01-25 | 蒋伟平 | High-sensitivity oil abrasive grain on-line monitoring sensor |
CN103217365A (en) * | 2013-03-29 | 2013-07-24 | 电子科技大学 | Online oil way abrasive particle monitoring device |
CN103344535A (en) * | 2013-06-09 | 2013-10-09 | 桂林电子科技大学 | Oil metal abrasive particles online monitoring system |
-
2013
- 2013-11-13 CN CN201310569838.8A patent/CN103592208A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5315243A (en) * | 1992-04-06 | 1994-05-24 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Detection and discrimination between ferromagnetic and non-ferromagnetic conductive particles in a fluid |
CN101963570A (en) * | 2010-05-17 | 2011-02-02 | 深圳市亚泰光电技术有限公司 | Device for rapidly detecting ferromagnetic grain in lubricating oil, detection method and signal processing circuit |
CN102331389A (en) * | 2010-11-30 | 2012-01-25 | 蒋伟平 | High-sensitivity oil abrasive grain on-line monitoring sensor |
CN103217365A (en) * | 2013-03-29 | 2013-07-24 | 电子科技大学 | Online oil way abrasive particle monitoring device |
CN103344535A (en) * | 2013-06-09 | 2013-10-09 | 桂林电子科技大学 | Oil metal abrasive particles online monitoring system |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105758782A (en) * | 2014-12-19 | 2016-07-13 | 江苏卓微生物科技有限公司 | Portable rapid particle detection apparatus and working method thereof |
CN105424569A (en) * | 2015-12-11 | 2016-03-23 | 天津成科传动机电技术股份有限公司 | Oil product particle detection device with light source fluctuating correction function |
CN107589171A (en) * | 2017-11-08 | 2018-01-16 | 湖南挚新科技发展有限公司 | Contained metal detection system in fluid pipeline |
WO2019109870A1 (en) * | 2017-12-05 | 2019-06-13 | 西人马联合(泉州)科技有限公司 | Magnetic induction particle detection device and concentration detection method |
WO2019109872A1 (en) * | 2017-12-05 | 2019-06-13 | 西人马联合测控(泉州)科技有限公司 | Detection system and method for concentration fluid nonmetal particles |
CN107907455A (en) * | 2017-12-05 | 2018-04-13 | 西人马(厦门)科技有限公司 | A kind of magnetic induction grain testing apparatus and concentration detection method |
US11099113B2 (en) | 2017-12-05 | 2021-08-24 | Fatri United Testing & Control (Quanzhou) Technologies Co., Ltd. | Detection system and method for concentration fluid nonmetal particles |
CN108415089A (en) * | 2018-03-08 | 2018-08-17 | 安徽容知日新科技股份有限公司 | A kind of fluid metallic particles detection device |
CN109283102A (en) * | 2018-08-22 | 2019-01-29 | 四川新川航空仪器有限责任公司 | A kind of real-time monitoring system of movable machinery component wear state |
CN109813761A (en) * | 2019-03-12 | 2019-05-28 | 大连海事大学 | An inductive magnetic plug type oil on-line monitoring device |
CN109813761B (en) * | 2019-03-12 | 2022-02-08 | 大连海事大学 | Inductance magnetic plug type oil liquid on-line monitoring device |
CN110470822A (en) * | 2019-08-21 | 2019-11-19 | 岭澳核电有限公司 | A kind of nuclear power station equipment wearing monitoring system and method |
CN112484771A (en) * | 2019-09-12 | 2021-03-12 | 中国石油天然气股份有限公司 | Monitoring method of pipe cleaner |
CN111505726A (en) * | 2020-04-09 | 2020-08-07 | 中北大学 | Device and method for detecting pipeline liquid magnetic different medium based on symmetrical magnetic excitation structure |
CN111505726B (en) * | 2020-04-09 | 2023-03-10 | 中北大学 | Pipeline liquid magnetic heterogeneous medium detection device and method based on symmetrical magnetic excitation structure |
WO2022021527A1 (en) * | 2020-07-29 | 2022-02-03 | 西人马联合测控(泉州)科技有限公司 | Monitoring sensor noise reduction method, apparatus and device, and computer storage medium |
CN112557264A (en) * | 2020-11-23 | 2021-03-26 | 中国电子科技集团公司第四十九研究所 | Sensitive core of high-temperature metal chip sensor and preparation method thereof |
CN112578467A (en) * | 2020-11-24 | 2021-03-30 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Magnetic metal detection device of silage harvester and detection method thereof |
CN112578467B (en) * | 2020-11-24 | 2023-03-14 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Magnetic metal detection device of silage harvester and detection method thereof |
CN113031083A (en) * | 2021-03-10 | 2021-06-25 | 远景能源有限公司 | Signal processing device and method for detecting metal particles in working solution |
CN115372209A (en) * | 2022-07-11 | 2022-11-22 | 苏州仁正智探科技有限公司 | High-sensitivity oil abrasive particle online monitoring system and monitoring method |
CN115372209B (en) * | 2022-07-11 | 2023-12-22 | 苏州仁正智探科技有限公司 | High-sensitivity oil abrasive particle online monitoring system and monitoring method |
CN115597871A (en) * | 2022-10-24 | 2023-01-13 | 中国人民解放军93208部队(Cn) | Airborne health diagnosis device for mechanical system of military turbofan engine |
CN115597871B (en) * | 2022-10-24 | 2023-10-31 | 中国人民解放军93208部队 | Onboard health diagnosis device for mechanical system of military turbofan engine |
CN117470948A (en) * | 2023-10-18 | 2024-01-30 | 苏州仁正智探科技有限公司 | An inductive oil chip signal monitoring and identification system and method |
CN117470948B (en) * | 2023-10-18 | 2024-06-07 | 苏州仁正智探科技有限公司 | Induction type oil dust signal monitoring and identifying system and method |
CN117929217A (en) * | 2024-03-22 | 2024-04-26 | 宁德时代新能源科技股份有限公司 | Magnetic particle content detection system and detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103592208A (en) | Electromagnetic type oil metal particle monitoring sensor resistant to environmental magnetic field interference | |
CN104697905B (en) | A kind of method for designing and oil liquid abrasive grain detection means of oil liquid abrasive grain detection sensor | |
CN102305755B (en) | Radial magnetic field-based online abrasive grain monitoring sensor and monitoring method | |
CN103558127B (en) | A kind of differential type oil liquid abrasive grain on-line sensor test macro | |
WO2019109870A1 (en) | Magnetic induction particle detection device and concentration detection method | |
CN103760222A (en) | Mining steel wire rope online detection device and method based on giant magnetoresistance sensor array | |
CN204461949U (en) | A kind of oil liquid abrasive grain pick-up unit | |
CN107589171B (en) | Contained metal detection system in oil liquid pipeline | |
CN108152361B (en) | Online engine oil metal abrasive particle and temperature integrated monitoring device and method | |
CN108051348A (en) | A kind of detecting system and method for fluid non-metallic particle concentration | |
CN203365280U (en) | On-line monitoring system for metal grains in oil liquid | |
CN111043946A (en) | Magnetic field interference noise test system for eddy current displacement sensor | |
CN103245819A (en) | Method for measuring direct current or direct voltage by adopting magnetic excitation resonant piezoresistive cantilever beam | |
CN108152362A (en) | A kind of method of the magnetostriction detection steel construction defect based on pseudo-random sequence | |
Xie et al. | A bridge-type inductance sensor with a two-stage filter circuit for high-precision detection of metal debris in the oil | |
CN111024591A (en) | Online detection device for improving sensitivity of metal ferromagnetic particles in oil | |
CN107941660B (en) | A kind of the error extracting method and device of magnetic particle detection system | |
CN107121489A (en) | A kind of alternating current field measurement instrument | |
Li et al. | Online symmetric magnetic excitation monitoring sensor for metal wear debris | |
CN115165684A (en) | An electromagnetic on-line monitoring device for oil and abrasive particles | |
CN201477423U (en) | Intelligent vibration monitoring and protecting apparatus | |
CN115639116B (en) | A signal processing system and method for an inductive oil wear particle sensor | |
CN112986077B (en) | Novel bridge oil liquid measuring device for mechanical equipment health monitoring | |
CN206638287U (en) | A kind of variable frequency excitation mode two-wire system electromagnetic flowmeter | |
CN112345624A (en) | A high-sensitivity metal wear particle detection sensor based on giant magnetoresistance effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140219 |