CN103583320A - 灌溉控制方法及灌溉装置 - Google Patents

灌溉控制方法及灌溉装置 Download PDF

Info

Publication number
CN103583320A
CN103583320A CN201310547788.3A CN201310547788A CN103583320A CN 103583320 A CN103583320 A CN 103583320A CN 201310547788 A CN201310547788 A CN 201310547788A CN 103583320 A CN103583320 A CN 103583320A
Authority
CN
China
Prior art keywords
irrigation
time
control
valve
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310547788.3A
Other languages
English (en)
Other versions
CN103583320B (zh
Inventor
杨宝祝
田宏武
吴建伟
申长军
吴文彪
鲍锋
单飞飞
李文龙
梁居宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Great Achievement Development In Science And Technology Co Ltd Is Sent To Obtain In Beijing
Beijing Research Center of Intelligent Equipment for Agriculture
Original Assignee
Great Achievement Development In Science And Technology Co Ltd Is Sent To Obtain In Beijing
Beijing Research Center of Intelligent Equipment for Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Great Achievement Development In Science And Technology Co Ltd Is Sent To Obtain In Beijing, Beijing Research Center of Intelligent Equipment for Agriculture filed Critical Great Achievement Development In Science And Technology Co Ltd Is Sent To Obtain In Beijing
Priority to CN201310547788.3A priority Critical patent/CN103583320B/zh
Publication of CN103583320A publication Critical patent/CN103583320A/zh
Application granted granted Critical
Publication of CN103583320B publication Critical patent/CN103583320B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明提供一种灌溉控制方法及灌溉装置,涉及农业灌溉技术领域。该方法包含超限控制模式,在超限控制模式下:预设定的启动条件包括最大延时时间,在灌溉设备启动时,定时器对所述灌溉设备的运行时间进行计时,如果在最大延时时间内灌溉设备再次启动,则定时器复位重新开始倒计时;如果在最大延时时间内没有再次启动灌溉设备,则灌溉设备自动启动;预设定的启动条件包括日最大灌溉量/时间,对每日灌溉设备的灌溉用水量/时间进行统计,当所统计的灌溉用水量/时间达到日最大灌溉量/时间时,灌溉设备当天将被禁止再次启动。本发明有效减少由于传感器故障或参数设置不合理导致的“过灌”或“欠灌”的情况的发生,及可能由此造成的对农作物的破坏。

Description

灌溉控制方法及灌溉装置
技术领域
本发明涉及农业灌溉技术领域,具体涉及一种灌溉控制方法及灌溉装置。
背景技术
我国农田有效灌溉面积居世界首位,随着水资源短缺形势的日趋严峻和我国农业灌溉用水利用率低下问题的凸显,节水技术和灌溉自动控制技术得到了广泛的应用,并成为国家农业发展战略。
中国专利公告号为CN102037888A的专利文件中公开了一种分布式网络自动灌溉控制系统及其灌溉控制方法,通过比较土壤湿度测量值与设置阀值的控制灌溉管路的打开与关闭,实现自动灌溉控制并通过无线终端实现了自组网数据通讯网络。
基于土壤湿度传感测量值的控制方式被广泛的应用在实际灌溉控制系统中,其优点是可以在作物产生水分胁迫时快速响应及时补水,但其缺点也是显而易见的,首先采集点的位置选择是否合理成为影响灌溉合理与否的重要标准,不具备代表性的位置必然影响灌溉的合理性;其次,传感器故障或损坏将导致错误的灌溉决策,极端情况会造成严重的后果。中国专利公告号为CN102037888A的专利文件中通过土壤含水量测量值与阀值的直接比较控制阀门开闭,也存在相应的问题:当土壤含水量在阀值附近波动时导致的阀门频繁开闭,同时考虑传感器位置将直接影响灌溉效果,这将导致“过灌”或“欠灌”的情况出现。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供一种灌溉控制方法及灌溉装置,有效减少由于传感器故障或参数不合理导致的“过灌”或“欠灌”的情况的发生及可能由此造成的对农作物的破坏。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
一种灌溉控制方法,该方法包含超限控制模式,
在所述超限控制模式下:
预设定的启动条件包括最大延时时间,在灌溉设备启动时,定时器对所述灌溉设备的运行时间进行计时,如果在最大延时时间内灌溉设备再次启动,则定时器复位重新开始倒计时;如果在最大延时时间内没有再次启动灌溉设备,则灌溉设备自动强制启动,执行一次灌溉;
预设定的启动条件包括日最大灌溉量/时间,对每日灌溉设备的灌溉用水量/时间进行统计,当所统计的灌溉用水量/时间达到日最大灌溉量/时间时,灌溉设备当天将被禁止再次启动。
优选的,该方法进一步包含定时控制模式,
在所述定时控制模式下:
预设定的启动条件包括土壤含水量警戒下限,在所述定时模式下两次灌溉间隔,当土壤含水量低于警戒下限时,灌溉设备自动强制启动,进行补充灌溉;
预设定的启动条件进一步包括日最大灌溉量/时间参数,对补充灌溉设备当天的灌溉量/时间进行统计,当所统计的灌溉量/时间满足日最大灌溉量/时间时,灌溉设备当天将被禁止再次启动。
优选的,该方法进一步包括定量控制模式,所述定量控制模式通过外接双脉冲式远传水表对用水脉冲进行实时采集并对用水量精确控制。
优选的,该方法进一步包括手动控制模式时,在灌溉设备运行过程中,在不改变所述超限控制模式/定时控制模式/定量控制模式任何参数的情况下,用户通过手动控制强制可插入指定时长的灌溉,用于在灌溉设备运行过程中任意时刻启动强制灌溉或进行现场阀门的开关测试。
优选的,所述手动控制模式的工作流程为:用户手动设定强制状态阀门运行时长,手动启动阀门,阀门在运行所述强制状态阀门运行时长后自动停止,手动控制自动失效,系统恢复正常模式,继续按照原有控制模式运行。
优选的,该方法进一步包括自动测试模式,用户在现场可通过简单菜单选择对灌溉设备的通道采样电压/阀门开关/脉冲宽度/数据通讯/GPRS网络连接进行在线测试,实现了对设备硬件功能的现场检测和故障定位,并提供直观的故障提示信息。
本发明还提供了一种灌溉装置,包含以下部分:
传感器及状态采集模块,用于对连接的传感器信号及状态信号进行实时采集;
可控电源输出模块,配合传感器及状态采集模块,实现分时对不同通道连接的传感器供电并进行数据转换;
门闩型电磁阀控制模块,实现对特定阀门的打开/关闭操作功能;
外部时钟,用于为整个装置提供时钟基准;
数据存储模块,用于存储系统设置的参数和定时保存的传感器历史数据;
按键及液晶显示人机界面模块,用于设置不同的控制逻辑、系统参数和设备运行参数,并对实时数据进行显示和刷新;
主控微处理单元,实现对灌溉设备的实时运行状态和传感器测量值进行逻辑判断,进而实现对门闩型电磁阀的自动控制。
优选的,该装置还包括RS485通信模块,所述RS485通信模块实现短距离内数据的有线或无线数据交互。
优选的,该装置还包括GPRS通信模块,所述GPRS通信模块实现本地数据远程传输、跨区域远距离无线数据交互。
优选的,该装置还包括双脉信号冲检测模块,用于进行用水信息采集和用水量精确控制。
(三)有益效果
本发明通过提供一种灌溉控制方法及灌溉装置,
超限控制模式与定时控制模式中相应启动条件的引入,可以有效减少由于传感器故障或人为设置参数不合理导致的“过灌”、“欠灌”发生及可能由此造成的对作物的破坏,提高了设备的可靠性同时间减少了人工干预。
基于脉冲式水表的用水数据的精确计量以及不同类型历史记录为用户提供多角度数据分析参考,有利于提高灌溉计划设计的合理性。
基于优先级的手动控制模式和正常控制模式的松耦合设计,避免了对常规参数的频繁修改,降低了设备操作的复杂程度。
针对设备维护设计的自动测试模式,实现了普通用户对设备硬件功能的现场检测和故障定位,可提高设备的后期维护效率。
通过GPRS功能实现数据的网络交互,提高了设备的可扩展性,扩大了设备的实际应用范围,既可以本地使用也可以远程组网。
基于USB和蓝牙的数据导出功能为用户提供传感器数据和用水量详细信息,为后期数据分析处理提供了有效信息。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1、为本发明实施例的灌溉控制方法的流程示意图;
图2、为本发明实施例的灌溉装置的结构示意图;
图3、为本发明实施例的灌溉控制装置的外观结构示意图;
图4、为本发明实施例的灌溉控制装置的内部主板结构示意图;
图5、为本发明实施例的灌溉控制装置的内部扩展板结构示意图;
图6、为本发明实施例的灌溉控制方法的运行流程图;
图7、为本发明实施例的超限控制模式下欠灌含水量变化趋势图;
图8、为本发明实施例的超限控制模式下过灌含水量变化趋势图;
图9、为本发明实施例的定时控制模式运行周期示意图;
图10、为本发明实施例的定时控制模式下补灌含水量变化趋势;
图11、为本发明实施例灌溉装置的GPRS模块状态转换图;
其中,1-设备外壳,2-防水接头,3-按键面板,4-液晶面板,5-GSM天线、主板和扩展板,6-电源处理电路,7-主控微处理单元,8-复位电路,9-时钟电路,10-数据存储电路,11-电压/电流信号采集电路,12-开关量信号采集电路;13-GPRS模块及其接口电路;14-阀门驱动电路、15-阀门驱动电源输出控制电路、16-RS485通讯接口电路、17-板间连接插针,18-传感器电源保护电路、19-液晶接口、20-按键接口、21-模拟信号保护电路;22-接线端子。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1所示,一种灌溉控制方法,该方法包含超限控制模式,
在所述超限控制模式下:
预设定的启动条件包括最大延时时间,在灌溉设备启动时,定时器对所述灌溉设备的运行时间进行计时,如果在最大延时时间内灌溉设备再次启动,则定时器复位重新开始倒计时;如果在最大延时时间内没有再次启动灌溉设备,则自动启动灌溉设备;
预设定的启动条件包括日最大灌溉量/时间,对每日灌溉设备的灌溉用水量/时间进行统计,当所统计的灌溉用水量/时间满足日最大灌溉量/时间时,灌溉设备当天将被禁止启动。
本发明在超限控制模式中,针对传感器故障或测量错误(测量值偏高)导致的长时间不启动灌溉,发生作物缺水胁迫的情况引入了最大延时时间;针对传感器故障或测量错误(测量值偏低)导致的反复多次灌溉,引入了日最大灌溉量/时间。可以有效减少由于传感器故障或人为设置参数不合理导致的“过灌”、“欠灌”发生及可能由此造成的对作物的破坏,提高了设备的可靠性同时间减少了人工干预。
下面对本发明实施例进行详细的说明:
本发明实施例灌溉设备的具体过程如下:
如图6所示,灌溉设备运行前,依据预选控制模式(如超限控制模式)下预设定的启动条件(如最大延时时间)对灌溉设备的实时运行状态和传感器测量值进行逻辑判断,当所述实时运行状态和传感器测量值满足所述启动条件时,灌溉设备启动并置位设备启动标记;
设备运行阶段,实时检测所述灌溉设备启动标记,当检测到所述灌溉设备启动标记时,定时器启动,对所述灌溉设备的运行时间进行计时,当所述灌溉设备运行时间超出或等于预设时间时,所述灌溉设备停止运行并置位灌溉设备运行时间结束标记;
设备状态更新阶段,实时检测所述灌溉设备运行时间结束标记,当检测到所述灌溉设备运行时间结束标记时,灌溉设备的实时运行状态更新,并依据预设定的启动条件重新对更新后的所述灌溉设备的实时运行状态和传感器测量值进行逻辑判断,进而实现灌溉设备的循环灌溉。
在所述超限控制模式下,正常的控制过程为:按照设定的判断周期获取一次有效传感器数据,并将设定的参考传感器测量值与设定值进行比较,例如当前的测量值为13%,设定的参考值为15%,测量值低于参考值,判断当前阀门的状态,如果当前阀门处于打开状态,则保持当前状态;如果当前阀门处于关闭状态,则打开阀门,并对阀门运行时间开始计时,并在经过设定的阀门运行时长参数T后停止。在启动灌溉的过程中,正常情况下土壤含水量将逐渐上升,在回差值的作用下,当土壤含水量测量值在15%到18%(15%+3%)的范围内浮动时,系统均认为是正常状态,则停止灌溉;如果在完成一次固定灌溉时长后土壤含水量依然低于参考值,则将再次启动灌溉,直至将土壤含水量恢复到正常范围内。
基于土壤水分传感测量值的控制方式被广泛的应用在实际灌溉控制系统中,其优点是可以在作物产生水分胁迫时快速响应及时补水,但其缺点也是显而易见的,首先采集点的位置选择是否合理成为影响灌溉合理与否的重要标准,不具备代表性的位置必然影响灌溉的合理性;其次,传感器故障或损坏将导致错误的灌溉决策,极端情况会造成严重的后果。
基于上述问题,忽略传感器安装位置不合理因素的影响,重点研究由于外界因素导致的传感器测量故障,使测量值持续极大或者极小时,为灌溉控制建立合理的补灌、限灌机制,避免过灌和欠灌。根据使用经验分析可知,导致偏小的原因主要包括:(1)测量点选择不合理,(2)传感器被拔出,(3)传感器损坏或断开连接;导致测量值偏大原因主要包括:(1)测量点选择不合理;(2)传感器故障或错误连接。当出现上述两种情况时将产生如图7和图8所示的水量变化趋势。
为解决上述问题,超限控制设置参数设计如表1所示。其中,除了常用超限控制参数外,增加了“最大延时时间”和“日最大灌溉量”两个特殊参数,并具备比超限逻辑更高的优先级。
表1超限控制参数表
Figure BDA0000409673240000071
Figure BDA0000409673240000081
最大延时时间(MaxDelay):最小单位为小时,每次超限灌溉启动后,MaxDelay开始倒计时,如果在倒计时结束前超限灌溉再次启动,则倒计时复位重新启动一次计数,如果在MaxDelay时间内没有再次启动灌溉,则当MaxDelay结束时系统将自动启动一次灌溉。通过以上方式,既可避免控制逻辑不能启动灌溉的情况下超过一定时限后系统自动启动一次灌溉,从而避免由于传感器故障导致的含水量数据偏大但实际土壤又很干燥的条件下系统无法启动超限自动灌溉计划的情况。
日最大灌溉量:参考上述超限控制控制过程说明,对于传感器测量数据持续偏小且小于设定灌溉启动下限的情况,如果不加限制,由于含水量数据无法上升,超限灌溉将连续启动,导致过灌作物被淹的后果。加入日最大灌溉量选项可对每天灌溉水累计量进行上限控制,即当当天的灌溉时间或灌溉数量达到设定的日最大灌溉量时,系统当天将不再启动超限灌溉程序,从而避免过灌的发生,如果没有安装水表该参数可根据实际换做时间参数处理。
上述两个参数的引入,为故障状态下可能导致的过灌和欠灌加入了合理的“保护”,减少了极端情况对作物的破坏。
该方法进一步包含定时控制模式,在该模式下解决过灌”、“欠灌”的方式为:
预设定的启动条件包括土壤含水量警戒下限,在所述定时模式下两次灌溉过程中,当土壤含水量达到警戒下限时,自动启动灌溉设备,进行补充灌溉;
预设定的启动条件进一步包括日最大灌溉量/时间参数,对补充灌溉设备当天的灌溉量/时间进行统计,当所统计的灌溉量/时间满足日最大灌溉量/时间时,灌溉设备当天不再启动。
定时控制模式也是常用的自动控制灌溉方式之一,用户可根据实际经验和种植作物,提前设置有效的灌溉时间点,在指定日期的指定时刻,系统会自动启动灌溉阀门并按预先为每个阀门设定的灌溉时长完成一次灌溉。定时控制相关参数设置如下表2所示,其参数间相互关系如图9所示。
表2定时控制参数表
Figure BDA0000409673240000091
上述定时控制方式的优点在于不受测量数据影响,在不连接传感器的情况下,用户根据作物生长期和灌溉经验设定灌溉周期,为作物定期补水。存在的问题在于如果用户设定的定时灌溉周期较长,而在周期内出现连续干旱天气时,则会发长时间欠灌导致的作物严重缺水干枯死亡的严重后果,其含水量变化趋势如图所示。
针对上述问题在常规定时控制参数的基础上加入基于“土壤含水量警戒下限”的“补充灌溉”机制,保证在偶发极端干旱天气条件下为作物适当应急补水,从而避免或减少由此带来的损失;同样也对补充灌溉的“日最大灌溉量”做上限规定,避免由于传感器故障导致的“过灌”发生。
如图10所示,灌溉周期为4天,可以看到,在还未到指定灌溉时间时,含水量已经超过警戒值(第5天),将使得作物产生水分胁迫,如果在第5天(灌溉周期前一天)进行补灌后,将把土壤含水量维持在一个相对合理的区域;与之对应如果在第6天(即灌溉周期指定时间)再进行正常灌溉,将使得土壤含水量停留在警戒线左右,并很容易造成在后续时间里再次出现干旱缺水情况损坏作物。所以基于含水量警戒值的补充灌溉可减少或避免不良后果的发生。
在传感器超限控制和定时控制逻辑中,增加的参数选项和措施,可以起到“安全带”或“保险”的作用,在设定参数不尽合理和故障状态下起到一定的补救作用,同时在出现上述特殊状况后,系统将利用内部安装的GPRS模块向用户手机或远端服务器发送报警短信或提示信息。
该方法进一步包括定量控制模式,所述定量控制模式通过外接双脉冲式远传水表进行用水信息采集和用水量精确控制。
在实际灌溉中,除了对阀门进行自动控制外,随着水资源形势日益紧张和我国农业灌溉用水效率低下现状的凸显,对灌溉用水的计量将成为日后水资源管理的必要手段;同时,在大面积灌溉并且安装有水表的情况下,使用定量控制可以更加精确的对灌溉用水进行计量。定量控制的用水信息采集设采用双脉冲式水表,优点在于其具备两个独立的脉冲信号线,每使用最小单位水量将产生两个交替脉冲,如果在同一个脉冲信号线连续产生多个信号则可认为是干扰或抖动,在软件设计中可通过滤波算法剔除;同时利用主芯片的端口匹配和匹配电平翻转功能,可避免出现水表停转后软件被中断锁死的情况发生,通过这种方式可有效提高用水信息计量的准确性。
该方法进一步包括手动控制模式时,在灌溉设备运行过程中,在不改变所述超限控制模式/定时控制模式/定量控制模式任何参数的情况下,通过手动控制强制插入指定时长的灌溉,用于在灌溉设备运行过程中任意时刻启动强制灌溉或进行现场阀门开关测试。
该模式具有最高优先级,手动控制过程中常规控制参数将失效或被屏蔽。
所述手动控制模式的工作流程为:用户手动设定强制状态阀门运行时长,手动启动阀门,阀门在运行所述强制状态阀门运行时长后自动停止,手动失效,继续按照原有控制模式运行。
在灌溉系统实际运行中,阀门故障是常见的问题,此外,用户可能会在某些特殊状况下进行人为干预灌溉(比如补充灌溉),但又不希望修改原有的灌溉计划。手动控制为上述两种情况提供了有效的解决方案。手动控制被设计为一种“强制”灌溉手段,其具有最高优先级,当手动控制有效时,所有控制逻辑被屏蔽,直到手动控制结束。通过这种方式,可实现以下两个功能:
(1)在阀门故障的情况下可通过手动控制阀门打开一个较短时间,用户可以有足够的时间到阀门端观察运行状况从而定位故障;
(2)也可通过提前设定一个强制灌溉起点和灌溉时长,来实现在某个特定日期的特定时间增加灌溉,而在此状态下用户无需执行手动关阀操作,系统将在结束指定时间灌溉后自动关闭阀门,解除强制灌溉状态,恢复正常的灌溉逻辑,两者互不影响。
通过对手动控制和正常控制逻辑的独立设计和基于优先级控制的运行模式,可以提高系统灌溉方式的完备性和灵活性。
该方法进一步包括自动测试模式,
考虑目标用户的群体和知识水平,结合类似设备在日常使用中的常见问题如传感器连接错误、传感器测量数据异常、阀门无法打开、数据通信故障等,而在出现类似故障后,多数情况下用户无法清楚地描述故障现象,同时也无法在技术人员远程指导的情况下快速定位和解决问题,将大大提高设备维护成本。
针对上述问题,在设备的菜单选项中加入了“测试模式”选项,内容包括通道采样测试、通道电源输出测试、阀门驱动测试、通讯测试和GPRS网络连接测试。
通道采样测试:
如,进入采样测试界面后按下“设置”键,系统自动进行传感器输出信号电压检测,循环显示4个通道采集到的信号电压值,单位毫伏。按“返回”键在完成完整的一轮采样停止测试。
S1:0000mV S2:3025mV S3:0000mV S4:0000mV......
通过上述测试,用户可直接读取每个通道的测量值,通过读数判断连接传感器输出信号的合理性。
电压输出测试:
如,进入电压测试界面后按下“设置”键,系统按顺序在4个电源输出通道输出DC12V电压,用户可用数字式电压表进行测量,按“返回”键在完成完整的一轮采样停止测试。
V1:开->V1:关V2:开->V2:关V3:开->V3:关V4:开->V4:关......
通过上述测试可确定每个为传感器供电的通道输出电源是否正常。
阀门测试:
如,进入电压测试界面后按下“设置”键,系统按顺序在4个阀门驱动通道输出驱动脉冲,用户可以在输出端口连接门闩型电磁阀,观察能否正常驱动打开关闭(吸合释放响声)电磁阀,帮助用户判断区别阀门故障还是电压输出故障,按“返回”键在完成完整的一轮采样停止测试。
V1:开->V1:关V2:开->V2:关V3:开->V3:关V4:开->V4:关......
脉宽测试:
由于设备驱动阀门类型为直流电磁阀,其驱动方式为通过向阀门控制线发送正负脉冲实现阀门的开闭,且具备自保持功能。但不同厂家电磁阀可靠启动需要的脉冲宽度不尽相同,脉宽测试提供给用户关于脉宽系数的选择,用户通过调整脉宽系数配合阀门驱动测试可方便地找到合适控制系数,同时在后续使用中也可随时调整。
通讯测试:
该功能主要用于设备使用RS485硬件接口时,判断设备端数据发送功能是否正常,开始测试后设备将根据默认设置自动重复发送固定字符串到接口,用户可连接RS232-485转换器,观察是否有数据发往PC的串口调试终端,从而初步判断串口通讯功能是否正常。
GPRS网络连接测试:
为满足数据远传需要,终端内置了GPRS模块,支持SMS和GPRS分组业务,由于使用中模块需要以客户端身份通过定时发送心跳包的方式来保持与服务器的在线连接,而且模块启动电流消耗大,当系统进行基于无线网络数据通讯时,由于在实际使用中存在信号覆盖不到、网络不稳定、设备或模块自身故障、远端服务器连接中断等问题,而作为Client端设备,既要保证设备与服务器保持心跳连接,同时又要考虑设备功耗控制发包频率,避免反复连接造成电源耗尽的状况,因此,在程序设计中需对上述状况进行判断,并通过自动重连机制控制故障响应措施,同时控制功耗。表3为GPRS模块运行期间网络连接功能状态转换表,如图11所示为GPRS模块状态转移图。
表3GPRS模块运行状态转换表
Figure BDA0000409673240000131
其中,X表示无效状态。
在该测试模式下,系统将利用软件按步骤逐一测试GPRS模块,包括GPRS启动、GPRS模块初始化、TCP/IP网络连接状态,每一步均会配合LCD显示提示信息,特备的在故障状态下提示用户可能的故障原因,使得用户在现场可以根据现象描述模块状况,辅助维护人员快速定位故障;同时用户可以通过自己的手机拨打与GPRS模块连接使用的SIM号码,通过提示信息获取SIM卡的登陆状况和费用情况。
本发明实施例,还进一步包含对历史数据浏览和下载功能:
灌溉系统在运行过程中,将对两类数据进行记录存储,包括传感器测量数据、阀门水量累计。传感器测量数据采用定时存储的方式,即每经过一定的时间间隔(可通过菜单设定)对4通道传感器数据进行一次记录;阀门水量累计信息记录采用定时记录和定量记录结合的方式,即一方面和传感器定时存储类似经过固定的时间间隔对4通道阀门用水量累计量进行一次存储,另一方面,以用水量阶段累计值为单位,在阀门的用水量到达一定的累积量即触发一次水量累计记录。采用两种用水量记录方式的目的在于后期将历史数据定期发送或下载后,可绘制曲线分析,可以从固定时间间隔用水密度和固定水量间隔时间密度两个方面对灌溉用水的使用深入分析,同时结合传感器数据变化了解整个灌溉过程,以便作为参考或及时调整灌溉计划,可进一步提高系统的实用性,也有利于提高灌溉计划设计的合理性。
数据下载功能为用户提供USB接口连接U盘和无线蓝牙接口。用户可方便地实现本地数据基于有连接和无连接的导出功能。
实施例2:
如图2所示,本发明实施例还提供了一种灌溉装置:
包含以下部分:
传感器及状态采集模块,用于对连接的传感器信号及灌溉设备运行状态信号进行实时采集;
可控电源输出模块,配合传感器及状态采集模块,实现分时对不同通道连接的传感器进行数据转换;
门闩型电磁阀控制模块,实现对特定阀门的打开/关闭操作功能;
外部时钟,用于为整个装置提供时钟基准;
数据存储模块,用于存储系统设置的参数和定时保存的传感器历史数据;
按键及液晶显示人机界面模块,用于设置不同的控制逻辑、系统参数和设备运行参数,并对实时数据进行显示和刷新;
主控微处理单元,实现对灌溉设备的实时运行状态和传感器测量值进行逻辑判断,进而实现对门闩型电磁阀模块的自动控制。
该装置还包括RS485通信模块和GPRS通信模块,所述RS485通信模块实现数据的有线或无线数据交互,所述GPRS通信模块实现本地数据远程传输、跨区域远距离无线数据交互。
本装置还可以基于USB和蓝牙的数据导出功能为用户提供传感器数据和用水量详细信息,为后期数据分析处理提供了有效信息。
该装置还包括双脉冲检测模块,进行用水信息采集和用水量精确控制。
其中,接线端子22包括电源出入接口、通讯接口、电磁阀控制输出接口、传感器模拟信号采集接口和脉冲信号采集接口。外部直流电源通过电源接口输入,经过扩展板上电源保护电路18后,通过主板和扩展板5连接双排插针连接件输入到主板电源处理电路;电源通过开关电源和线性电源处理后产生DC3.0V电压供主板微处理器和其他扩展芯片使用;复位电路8提供上电时微处理器复位,微处理器通过主板电源控制部分对连接的模拟信号传感器通道进行分时独立采样,并将采样信号输入给微处理器进行AD转换;开关量信号采集电路通过阻容方式对外部输入脉冲信号进行采样;时钟电路9为整个系统提供时钟基准,数据存储电路主要实现对系统设置参数及定时测量的传感器数据的保存和更新;GPRS模块及其接口电路13实现微处理器与GPRS模块的数据交互;阀门驱动电源控制电路15和阀门驱动电路14共同实现对特定阀门的打开关闭操作功能;主控微处理单元7是整个控制系统的核心,完成与其连接的各部分电路的协调工作,通过扩展的按键驱动电路读取按键值并配合液晶显示电路完成用户的参数设置、查询、修改、保存等功能;RS485接口电路16用来实现有线或无线模式下多点组网数据通讯。
其中,设备外壳1和防水接头2构成设备的外部封装;按键面板3、液晶面板4为系统的人机交互接口;多位接线端子22提供系统的对外的传感器、控制输出以及数据通讯的连接接口。
其中,输入电源处理电路6采用开关电源芯片MAX1627和线性稳压芯片TPS79730,外接电源通过MAX1627先降压为4.2V左右,在经过TPS79730线性稳压降压至系统需要的DC3.0V,两芯片具有极低的静态功耗。
其中,主控微处理单元7采用Silicon的超低功耗C8051F964芯片,60K存储空间,256字节RAM和8K字节XRAM,实现系统数据采集、数据处理、逻辑判断以及输出控制等功能,其休眠最低功耗可达2uA(微安)。
其中,复位电路8采用标准阻容上电复位模式,主控微处理单元7为低电平复位,故在上电后对微处理器进行一次可靠复位。
其中,时钟电路9采用PCF8563芯片及32.768K晶振,主控单元通过IIC接口与时钟芯片连接,通过对PCF8574内部寄存器的修改调整系统时间及日期,后备DC3.0V电池为时钟提供后备电源维持其在系统掉电期间正常运行,系统运行期间读取其实时时间并将作为整个系统的时钟基准。
其中,数据存储电路10采用低功耗FM24V10铁电存储器,存储容量为1Mbit,通过IIC(Inter IC串行总线)总线与主控芯片连接,主控芯片将系统设置参数及传感器历史数据保存在存储器中,系统掉电数据不丢失。
其中,电压/电流信号采集电路11直接采用前端电阻分压加自恢复保险过流保护的方式接入到微处理器AD转换端口。
其中,开关量输入电路12采用阻容组合采样滤波和电阻限流的方式,将外部信号的上升沿或下降沿输入给微处理器的状态采样端口进行状态采样。
其中,GPRS模块接口电路13采用SIM900A作为核心芯片,采用可控电源MIC29302WT作为其电源,并扩展SIM卡接口,微处理器利用串行接口与SIM900A进行通讯,SIM900A通过连接的SIM卡信息实现数据交互过程中的身份识别。
其中,阀门驱动电路14采用MIC29302WT开关电源芯片和芯片L9110S,微处理器控制开关电源芯片输出使能端实现电源的通断,输出的电源供给电机驱动芯片L9110S,微处理器通过在电源接通时间发送正负脉冲的方式通过L9110S间接驱动直流电磁阀的打开和关闭。
其中,RS485通讯接口电路16采用MAX3483芯片,具备关断功能,微处理器通过自身串行接口连接MAX3483,实现通讯电平转换。
其中,传感器电源控制及保护电路18采用三极管S8050和CEM9435A实现,微处理器通过控制三极管导通和截止间接控制CEM9435A场效应管通道的打开和关断,从而实现传感器供电电源的打开和关断。
其中,显示电路采用OCM12232点阵式无字库液晶模块与微处理器连接,通过微处理器通过对模块进行数据读写来实现字符在液晶模块上的显示。
其中,按键电路采用阻容检测方式,微处理器通过检测按键产生的中断信号和自身固有的端口匹配功能,确定键值并触发正确的响应进程。
综上可知,本发明实施例通过提供一种灌溉控制方法及灌溉装置,
超限控制模式与定时控制模式中相应启动条件的引入,可以有效减少由于传感器故障或人为设置参数不合理导致的“过灌”、“欠灌”发生及可能由此造成的对作物的破坏,提高了设备的可靠性同时减少了人工干预。
基于脉冲式水表的用水数据的精确计量以及不同类型历史记录为用户提供多角度数据分析参考,有利于提高灌溉计划设计的合理性。
基于优先级的手动控制模式和正常控制模式的松耦合设计,避免了对常规参数的频繁修改,降低了设备操作的复杂程度。
针对设备维护设计的自动测试模式,实现了普通用户对设备硬件功能的现场检测和故障定位,可提高设备的后期维护效率。
通过GPRS功能实现数据的网络交互,提高了设备的可扩展性,扩大了设备的实际应用范围,既可以本地使用也可以远程组网。
基于USB和蓝牙的数据导出功能为用户提供传感器数据和用水量详细信息,为后期数据分析处理提供了有效信息。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种灌溉控制方法,其特征在于,该方法包含超限控制模式,
在所述超限控制模式下:
预设定的启动条件包括最大延时时间,在灌溉设备启动时,定时器对所述灌溉设备的运行时间进行计时,如果在最大延时时间内灌溉设备再次启动,则定时器复位重新开始倒计时;如果在最大延时时间内没有再次启动灌溉设备,则灌溉设备自动强制启动,执行一次灌溉;
预设定的启动条件包括日最大灌溉量/时间,对每日灌溉设备的灌溉用水量/时间进行统计,当所统计的灌溉用水量/时间达到日最大灌溉量/时间时,灌溉设备当天将被禁止再次启动。
2.如权利要求1所述的灌溉控制方法,其特征在于,该方法进一步包含定时控制模式,
在所述定时控制模式下:
预设定的启动条件包括土壤含水量警戒下限,在所述定时模式下两次灌溉间隔,当土壤含水量低于警戒下限时,灌溉设备自动强制启动,进行补充灌溉;
预设定的启动条件进一步包括日最大灌溉量/时间参数,对补充灌溉设备当天的灌溉量/时间进行统计,当所统计的灌溉量/时间满足日最大灌溉量/时间时,灌溉设备当天将被禁止再次启动。
3.如权利要求2所述的灌溉控制方法,其特征在于,该方法进一步包括定量控制模式,所述定量控制模式通过外接双脉冲式远传水表对用水脉冲进行实时采集并对用水量精确控制。
4.如权利要求3所述的灌溉控制方法,其特征在于,该方法进一步包括手动控制模式时,在灌溉设备运行过程中,在不改变所述超限控制模式/定时控制模式/定量控制模式任何参数的情况下,用户通过手动控制强制可插入指定时长的灌溉,用于在灌溉设备运行过程中任意时刻启动强制灌溉或进行现场阀门的开关测试。
5.如权利要求4所述的灌溉控制方法,其特征在于,所述手动控制模式的工作流程为:用户手动设定强制状态阀门运行时长,手动启动阀门,阀门在运行所述强制状态阀门运行时长后自动停止,手动控制自动失效,系统恢复正常模式,继续按照原有控制模式运行。
6.如权利要求1所述的灌溉控制方法,其特征在于,该方法进一步包括自动测试模式,用户在现场可通过简单菜单选择对灌溉设备的通道采样电压/阀门开关/脉冲宽度/数据通讯/GPRS网络连接进行在线测试,实现了对设备硬件功能的现场检测和故障定位,并提供直观的故障提示信息。
7.一种灌溉装置,其特征在于,包含以下部分:
传感器及状态采集模块,用于对连接的传感器信号及状态信号进行实时采集;
可控电源输出模块,配合传感器及状态采集模块,实现分时对不同通道连接的传感器供电并进行数据转换;
门闩型电磁阀控制模块,实现对特定阀门的打开/关闭操作功能;
外部时钟,用于为整个装置提供时钟基准;
数据存储模块,用于存储系统设置的参数和定时保存的传感器历史数据;
按键及液晶显示人机界面模块,用于设置不同的控制逻辑、系统参数和设备运行参数,并对实时数据进行显示和刷新;
主控微处理单元,实现对灌溉设备的实时运行状态和传感器测量值进行逻辑判断,进而实现对门闩型电磁阀的自动控制。
8.如权利要求1所述的灌溉装置,其特征在于,该装置还包括RS485通信模块,所述RS485通信模块实现短距离内数据的有线或无线数据交互。
9.如权利要求1所述的灌溉装置,其特征在于,该装置还包括GPRS通信模块,所述GPRS通信模块实现本地数据远程传输、跨区域远距离无线数据交互。
10.如权利要求1所述的灌溉装置,其特征在于,该装置还包括双脉信号冲检测模块,用于进行用水信息采集和用水量精确控制。
CN201310547788.3A 2013-11-07 2013-11-07 灌溉控制方法及灌溉装置 Active CN103583320B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310547788.3A CN103583320B (zh) 2013-11-07 2013-11-07 灌溉控制方法及灌溉装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310547788.3A CN103583320B (zh) 2013-11-07 2013-11-07 灌溉控制方法及灌溉装置

Publications (2)

Publication Number Publication Date
CN103583320A true CN103583320A (zh) 2014-02-19
CN103583320B CN103583320B (zh) 2015-08-12

Family

ID=50073811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310547788.3A Active CN103583320B (zh) 2013-11-07 2013-11-07 灌溉控制方法及灌溉装置

Country Status (1)

Country Link
CN (1) CN103583320B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105284558A (zh) * 2015-11-13 2016-02-03 江苏大学 一种中心支轴喷灌机旋转时间比率的控制方法
CN105532379A (zh) * 2015-12-01 2016-05-04 天津优爱创科技有限公司 一种智能浇灌系统
CN106286940A (zh) * 2016-09-27 2017-01-04 北京农业智能装备技术研究中心 一种无线阀门控制系统及控制方法
CN106567826A (zh) * 2016-11-11 2017-04-19 安徽士华机电设备科技有限公司 一种智能化计量灌溉水泵和水泵的定量控制方法
CN106941973A (zh) * 2017-03-28 2017-07-14 深圳前海弘稼科技有限公司 一种温室植物的灌溉方法及灌溉装置
CN106952097A (zh) * 2017-03-17 2017-07-14 崔俊新 智能取水方法及系统
CN107168423A (zh) * 2017-06-01 2017-09-15 沃圃生(北京)农业科技有限公司 一种种植系统控制方法及装置
CN108901761A (zh) * 2018-06-26 2018-11-30 扬州大学 一种管道灌溉标准化菜单式选型设计方法
CN108901758A (zh) * 2018-06-14 2018-11-30 鄂尔多斯市斯创网络科技有限责任公司 一种灌溉服务器、终端、系统及方法
CN109392675A (zh) * 2018-10-22 2019-03-01 宁波亿林节水科技股份有限公司 一种滴灌控制器及其使用方法
CN111357625A (zh) * 2020-04-22 2020-07-03 雪川农业发展股份有限公司 一种农业灌溉系统灌溉水量自动化控制装置
CN112753542A (zh) * 2021-01-07 2021-05-07 南昌易融邦企业服务有限公司 一种基于物联网的植物自动浇水系统
CN113016450A (zh) * 2021-03-22 2021-06-25 北京农业智能装备技术研究中心 一种温室作物灌溉方法及系统
CN114942611A (zh) * 2022-07-26 2022-08-26 北京市农林科学院智能装备技术研究中心 一种农业灌溉远传水表及水表控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272620A (en) * 1991-07-17 1993-12-21 The Toro Company Irrigation controller with rain delay feature
US6507775B1 (en) * 1999-11-17 2003-01-14 Tim Simon, Inc. Irrigation timer and clock initialization method
CN1413444A (zh) * 2002-11-22 2003-04-30 西安理工大学 多功能网络式自动灌溉方法及其装置
CN1430876A (zh) * 2003-02-21 2003-07-23 天津市水利科学研究所 温室滴灌施肥智能化控制系统
US20040015270A1 (en) * 2002-03-21 2004-01-22 Addink John W. Interactive irrigation system
CN1539261A (zh) * 2003-04-22 2004-10-27 楼信用 一种自动间歇轮流灌溉控制方法及其装置
CN202310773U (zh) * 2011-12-02 2012-07-11 上海艾美克电子有限公司 基于时间和湿度控制的自动灌溉系统
CN102805025A (zh) * 2012-08-17 2012-12-05 宁夏农林科学院 滴灌水量自动控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272620A (en) * 1991-07-17 1993-12-21 The Toro Company Irrigation controller with rain delay feature
US6507775B1 (en) * 1999-11-17 2003-01-14 Tim Simon, Inc. Irrigation timer and clock initialization method
US20040015270A1 (en) * 2002-03-21 2004-01-22 Addink John W. Interactive irrigation system
CN1413444A (zh) * 2002-11-22 2003-04-30 西安理工大学 多功能网络式自动灌溉方法及其装置
CN1430876A (zh) * 2003-02-21 2003-07-23 天津市水利科学研究所 温室滴灌施肥智能化控制系统
CN1539261A (zh) * 2003-04-22 2004-10-27 楼信用 一种自动间歇轮流灌溉控制方法及其装置
CN202310773U (zh) * 2011-12-02 2012-07-11 上海艾美克电子有限公司 基于时间和湿度控制的自动灌溉系统
CN102805025A (zh) * 2012-08-17 2012-12-05 宁夏农林科学院 滴灌水量自动控制装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105284558B (zh) * 2015-11-13 2018-11-20 江苏大学 一种中心支轴喷灌机旋转时间比率的控制方法
CN105284558A (zh) * 2015-11-13 2016-02-03 江苏大学 一种中心支轴喷灌机旋转时间比率的控制方法
CN105532379A (zh) * 2015-12-01 2016-05-04 天津优爱创科技有限公司 一种智能浇灌系统
CN105532379B (zh) * 2015-12-01 2019-04-16 天津优爱创科技有限公司 一种智能浇灌系统
CN106286940A (zh) * 2016-09-27 2017-01-04 北京农业智能装备技术研究中心 一种无线阀门控制系统及控制方法
CN106286940B (zh) * 2016-09-27 2018-09-11 北京农业智能装备技术研究中心 一种无线阀门控制系统及控制方法
CN106567826A (zh) * 2016-11-11 2017-04-19 安徽士华机电设备科技有限公司 一种智能化计量灌溉水泵和水泵的定量控制方法
CN106567826B (zh) * 2016-11-11 2018-01-23 安徽士华机电设备科技有限公司 一种智能化计量灌溉水泵和水泵的定量控制方法
CN106952097A (zh) * 2017-03-17 2017-07-14 崔俊新 智能取水方法及系统
CN106941973A (zh) * 2017-03-28 2017-07-14 深圳前海弘稼科技有限公司 一种温室植物的灌溉方法及灌溉装置
CN107168423A (zh) * 2017-06-01 2017-09-15 沃圃生(北京)农业科技有限公司 一种种植系统控制方法及装置
CN108901758A (zh) * 2018-06-14 2018-11-30 鄂尔多斯市斯创网络科技有限责任公司 一种灌溉服务器、终端、系统及方法
CN108901761A (zh) * 2018-06-26 2018-11-30 扬州大学 一种管道灌溉标准化菜单式选型设计方法
CN109392675A (zh) * 2018-10-22 2019-03-01 宁波亿林节水科技股份有限公司 一种滴灌控制器及其使用方法
CN111357625A (zh) * 2020-04-22 2020-07-03 雪川农业发展股份有限公司 一种农业灌溉系统灌溉水量自动化控制装置
CN112753542A (zh) * 2021-01-07 2021-05-07 南昌易融邦企业服务有限公司 一种基于物联网的植物自动浇水系统
CN113016450A (zh) * 2021-03-22 2021-06-25 北京农业智能装备技术研究中心 一种温室作物灌溉方法及系统
CN114942611A (zh) * 2022-07-26 2022-08-26 北京市农林科学院智能装备技术研究中心 一种农业灌溉远传水表及水表控制方法
CN114942611B (zh) * 2022-07-26 2022-10-04 北京市农林科学院智能装备技术研究中心 一种农业灌溉远传水表及水表控制方法

Also Published As

Publication number Publication date
CN103583320B (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
CN103583320A (zh) 灌溉控制方法及灌溉装置
US8565927B1 (en) Irrigation interrupter
US20080058995A1 (en) Method and apparatus for controlling irrigation
CN105468127A (zh) 一种实时数据采集系统及其掉电数据保存电路、方法
CN202603315U (zh) 果园太阳能供电式滴灌自动控制装置
CN207333898U (zh) 一种智能灌溉的物联网专用阀门控制系统
CN102204502A (zh) 阵列式土壤湿度自动反馈滴灌控制装置及其控制方法
CN205692368U (zh) 一种无线多环境参数记录式变送器
CN107886702A (zh) 基于载波通讯的远程通讯电能表及其工作流程
CN211205414U (zh) 一种远程升级的nb-iot物联网燃气表
CN108548549A (zh) 一种超低功耗的温湿度智能记录仪
CN100570389C (zh) 一种用于小电量备用电池的功能测试装置及方法
CN206876240U (zh) 带有NB‑IoT通讯模块的智能计量仪表
CN202404153U (zh) 单相锰铜分流器采样式预付费宽量程电能表
CN201540267U (zh) 墙体热阻现场测量仪
CN202404154U (zh) 单相内置磁保持继电器式预付费宽量程电能表
CN105807645A (zh) 一种供电控制方法和电子设备
CN201218914Y (zh) 农田信息自动采集与灌溉智能控制装置
CN114942611B (zh) 一种农业灌溉远传水表及水表控制方法
CN205120170U (zh) 物联网信息化管理安全燃气表
CN203302089U (zh) 气象站式灌溉控制装置
CN205507046U (zh) 一种锂离子电池电量监测系统
CN202404155U (zh) 单相外置继电器预付费宽量程电能表
CN205422662U (zh) 基于天然气井采气的智能控制器
CN205216130U (zh) 基于物联网技术的群体长跑管理智能终端

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant