CN103579637B - 一种复合导电透气疏水催化剂载体的制备方法 - Google Patents

一种复合导电透气疏水催化剂载体的制备方法 Download PDF

Info

Publication number
CN103579637B
CN103579637B CN201310470240.3A CN201310470240A CN103579637B CN 103579637 B CN103579637 B CN 103579637B CN 201310470240 A CN201310470240 A CN 201310470240A CN 103579637 B CN103579637 B CN 103579637B
Authority
CN
China
Prior art keywords
parts
catalyst carrier
permeable
composite conducting
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310470240.3A
Other languages
English (en)
Other versions
CN103579637A (zh
Inventor
孙晨
刘欢
王晓颖
朱新坚
王纪忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JS Power Inc.
Original Assignee
JIANGSU CHAOJIE GREEN ENERGY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU CHAOJIE GREEN ENERGY TECHNOLOGY Co Ltd filed Critical JIANGSU CHAOJIE GREEN ENERGY TECHNOLOGY Co Ltd
Priority to CN201310470240.3A priority Critical patent/CN103579637B/zh
Publication of CN103579637A publication Critical patent/CN103579637A/zh
Application granted granted Critical
Publication of CN103579637B publication Critical patent/CN103579637B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种复合导电透气疏水催化剂载体的制备方法,包括以下步骤:a、按质量比,选取35~60份有机高分子树脂、5~8份高比表面积化合物、5~10份盐分别倒入3~5份增稠剂中,加热至75℃~80℃,在转速2000rpm~2500rpm下搅拌一小时,然后将转速降至800rpm加入20~30份金属粉、7~10份有机导电材料,再将转速调整至2000rpm~2500rpm,温度保持在75℃~85℃下搅拌八小时;b、将步骤a中得到的物料在温度为100~120℃下保温5分钟后固化即可。本发明的催化剂载体将空气电极的防水、透气、导电集于一体,工艺简单、质量稳定性高、使用寿命长。

Description

一种复合导电透气疏水催化剂载体的制备方法
技术领域
本发明属于电化学技术和电池制造技术领域,特别涉及一种金属空气电极的材料的制备方法。
背景技术
空气电池具有电化学当量高、成本低、安全、无污染等优点,应用前景广阔。影响空点电池进行工业化生产的关键技术是空气电极的制备问题。
空气电极的电化学反应发生在气、液、固三相界面上,即反应必须在活性剂(氧气)、电解质和催化剂之间同时形成的三个界面上。制备空气电极的关键要使空气中的氧气连续不断的通过防水透气层进入三相界面。因此气体扩散的难易是造成空气电极极化大的关键因素。而氧气扩散的难易与防水透气膜密切相关,它取决于透气层的空滤,孔长及曲折度,即取决于透气层的物料配比和工艺条件。
当前制备空气电极分为催化层、集流层、防水透气层及镍网在高温下合压起来。该方法制备工艺繁琐、每层的厚度很难控制导致最终批次产品电性效果差异大。
发明内容
本发明的目的是提供一种复合导电透气疏水催化剂载体的制备方法,能够立体的担载催化剂,促使反应在立体的固、液、气三相界面上。
为实现上述目的,本发明采用以下技术方案:
一种复合导电透气疏水催化剂载体的制备方法,其特征在于:包括以下步骤:
a、按质量比,选取35~60份有机高分子树脂、5~8份高比表面积化合物、5~10份盐分别倒入3~5份增稠剂中,加热至75℃~80℃,在转速2000rpm~2500rpm下搅拌一小时,然后将转速降至800rpm加入20~30份金属粉、7~10份有机导电材料,再将转速调整至2000rpm~2500rpm,温度保持在75℃~85℃下搅拌八小时;
b、将步骤a中得到的物料在温度为100~120℃下保温5分钟后固化即可得到复合导电透气疏水催化剂载体。
所述有机高分子树脂为环氧双酚A、环氧双酚F、酚醛树脂、聚氨酯树脂、聚偏氟乙烯、聚四氟乙烯中的一种或多种。
所述有机导电材料为聚吡咯、聚噻吩中的一种。
所述高表面积化合物为乙炔黑、石墨烯、二氧化硅中的一种。
所述金属粉为铜粉、铁粉、镍粉中的一种。
所述增稠剂为羧甲基纤维素、田菁胶、淀粉磷酸酯钠、羟丙基淀粉中的一种。
所述盐为元明粉、氯化钠中的一种。
本发明的有益效果是:
本发明的催化剂载体将空气电极的防水、透气、导电集于一体,工艺简单、质量稳定性高、使用寿命长;是一种能够立体的担载催化剂,促使反应在立体的固、液、气三相界面上,为催化化学提供新型的防水、透气、导电的担载材料。本发明的工艺简单,多批次生产证明产品质量稳定,且导电性能好;立体担载催化剂量高,单位面积产能比高。
附图说明
图1是由本发明的方法制备的复合导电透气疏水催化剂载体制备的单层空气电极的结构图。
具体实施方式
下面结合具体实施例对本发明做进一步说明。
实施例 1
步骤1、按质量比,选取35份环氧双酚A、6份乙炔黑、10份元明粉分别倒入4份羧甲基纤维素中,加热至75℃,在转速2000rpm下搅拌一小时,然后将转速降至800rpm加入30份铜粉、9份聚吡咯,再将转速调整至2000rpm,温度保持在80℃下搅拌八小时;
步骤2、将步骤1中得到的物料在温度为120℃下保温5分钟后固化即可。
实施例 2
步骤1、按质量比,选取45份环氧双酚F、5份石墨烯、7份氯化钠分别倒入3份田菁胶中,加热至78℃,在转速2500rpm下搅拌一小时,然后将转速降至800rpm加入20份铁粉、7份聚噻吩,再将转速调整至2500rpm,温度保持在75℃下搅拌八小时;
步骤2、将步骤1中得到的物料在温度为110℃下保温5分钟后固化即可。
实施例 3
步骤1、按质量比,选取60份酚醛树脂、8份二氧化硅、5份氯化钠分别倒入5份淀粉磷酸酯钠中,加热至80℃,在转速2200rpm下搅拌一小时,然后将转速降至800rpm加入25份镍粉、10份聚噻吩,再将转速调整至2200rpm,温度保持在85℃下搅拌八小时;
步骤2、将步骤1中得到的物料在温度为100℃下保温5分钟后固化即可。
实施例 4
步骤1、按质量比,选取50份聚偏氟乙烯、6份石墨烯、5份元明粉分别倒入5份羟丙基淀粉中,加热至80℃,在转速2300rpm下搅拌一小时,然后将转速降至800rpm加入20份镍粉、8份聚吡咯,再将转速调整至2300rpm,温度保持在80℃下搅拌八小时;
步骤2、将步骤1中得到的物料在温度为100℃下保温5分钟后固化即可。
实施例 5
步骤1、按质量比,选取60份聚氨酯树脂、5份乙炔黑、8份氯化钠分别倒入3份羧甲基纤维素中,加热至75℃,在转速2500rpm下搅拌一小时,然后将转速降至800rpm加入30份铁粉、7份聚吡咯,再将转速调整至2500rpm,温度保持在85℃下搅拌八小时;
步骤2、将步骤1中得到的物料在温度为120℃下保温5分钟后固化即可。
实施例 6
步骤1、按质量比,选取40份聚四氟乙烯、6份石墨烯、5份元明粉分别倒入4份田菁胶中,加热至77℃,在转速2000rpm下搅拌一小时,然后将转速降至800rpm加入25份铁粉、10份聚吡咯,再将转速调整至2000rpm,温度保持在75℃下搅拌八小时;
步骤2、将步骤1中得到的物料在温度为110℃下保温5分钟后固化即可。
实施例 7
将实施例1的步骤1中的环氧双酚A替换为环氧双酚A、环氧双酚F的混合物,其它不变。
实施例 8
将实施例2的步骤1中的环氧双酚F替换为酚醛树脂、聚氨酯树脂、聚偏氟乙烯的混合物,其它不变。
如图1所示,1为载体担载着催化剂,2为镍网,通过本发明的复合导电透气疏水催化剂载体担载着催化剂,符合形成立体的固、液、气三相界面,担载着催化剂引发电化学反应,并直接将产生的电流引至镍网。
部分实施例的产品的质量的检验结果如表1、2所示,
表1
检测项目 电阻Ω/cm 厚度mm 电流密度mA/cm2
实施例1 8.1 0.71 126.2
实施例2 8.1 0.73 126.3
实施例3 8.1 0.70 126.2
实施例4 8.1 0.71 126.2
实施例5 8.1 0.71 126.2
表2
检测项目 电流/A(恒压0.8V) 功率/W 单位功率W/cm2
实施例1 10.1 8.1 0.1
实施例2 10.3 8.2 0.1
实施例3 10.1 8.1 0.1
实施例4 10.1 8.1 0.1
实施例5 10.1 8.1 0.1
从上表可以看出,本发明的产品具有质量稳定、导电性能好;立体担载催化剂量高,单位面积产能比高的优点。

Claims (3)

1.一种复合导电透气疏水催化剂载体的制备方法,其特征在于:包括以下步骤:
a、按质量比,选取35~60份有机高分子树脂,5~8份乙炔黑、石墨烯、二氧化硅中的一种、5~10份盐分别倒入3~5份增稠剂中,加热至75℃~80℃,在转速2000rpm~2500rpm下搅拌一小时,然后将转速降至800rpm加入20~30份金属粉、7~10份有机导电材料,再将转速调整至2000rpm~2500rpm,温度保持在75℃~85℃下搅拌八小时;
b、将步骤a中得到的物料在温度为100~120℃下保温5分钟后固化即可得到复合导电透气疏水催化剂载体;
步骤a中,所述有机高分子树脂为环氧双酚A、环氧双酚F、酚醛树脂、聚氨酯树脂、聚偏氟乙烯、聚四氟乙烯中的一种或多种;
步骤a中,所述金属粉为铜粉、铁粉、镍粉中的一种;
步骤a中,所述盐为元明粉、氯化钠中的一种。
2.如权利要求1所述的复合导电透气疏水催化剂载体的制备方法,其特征在于:所述有机导电材料为聚吡咯、聚噻吩中的一种。
3.如权利要求1所述的复合导电透气疏水催化剂载体的制备方法,其特征在于:所述增稠剂为羧甲基纤维素、田菁胶、淀粉磷酸酯钠、羟丙基淀粉中的一种。
CN201310470240.3A 2013-10-11 2013-10-11 一种复合导电透气疏水催化剂载体的制备方法 Expired - Fee Related CN103579637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310470240.3A CN103579637B (zh) 2013-10-11 2013-10-11 一种复合导电透气疏水催化剂载体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310470240.3A CN103579637B (zh) 2013-10-11 2013-10-11 一种复合导电透气疏水催化剂载体的制备方法

Publications (2)

Publication Number Publication Date
CN103579637A CN103579637A (zh) 2014-02-12
CN103579637B true CN103579637B (zh) 2016-08-17

Family

ID=50050945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310470240.3A Expired - Fee Related CN103579637B (zh) 2013-10-11 2013-10-11 一种复合导电透气疏水催化剂载体的制备方法

Country Status (1)

Country Link
CN (1) CN103579637B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478235A (zh) * 2016-01-08 2016-04-13 福建紫荆环境工程技术有限公司 一种湿式电除尘器以及其疏水导电电极
CN109980237A (zh) * 2019-04-29 2019-07-05 宁波石墨烯创新中心有限公司 一种空气阴极、其制备方法及电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462076A (zh) * 2009-01-06 2009-06-24 上海汽车工业(集团)总公司 疏水剂/导电碳材料复合体的新用途
CN102544520A (zh) * 2011-12-27 2012-07-04 上海尧豫实业有限公司 锌空电池气体扩散电极及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122046A (ja) * 1982-01-18 1983-07-20 Hitachi Ltd 気・液反応方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462076A (zh) * 2009-01-06 2009-06-24 上海汽车工业(集团)总公司 疏水剂/导电碳材料复合体的新用途
CN102544520A (zh) * 2011-12-27 2012-07-04 上海尧豫实业有限公司 锌空电池气体扩散电极及其制备方法

Also Published As

Publication number Publication date
CN103579637A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
Zhang et al. Single Fe atom on hierarchically porous S, N‐codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn‐air batteries
Bai et al. Co9S8@ MoS2 core–shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn–air batteries
Tian et al. Engineering crystallinity and oxygen vacancies of Co (II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries
Yu et al. Ru–Ru2PΦNPC and NPC@ RuO2 synthesized via environment‐friendly and solid‐phase phosphating process by Saccharomycetes as N/P sources and carbon template for overall water splitting in acid electrolyte
Chen et al. 3D nitrogen‐anion‐decorated nickel sulfides for highly efficient overall water splitting
Yan et al. Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction
Ding et al. Mesoporous nickel selenide N-doped carbon as a robust electrocatalyst for overall water splitting
Zhao et al. Metal–organic framework-derived Co 9 S 8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst
Tian et al. KOH activated N-doped novel carbon aerogel as efficient metal-free oxygen reduction catalyst for microbial fuel cells
Jin et al. ZIF-8/LiFePO 4 derived Fe-NP Co-doped carbon nanotube encapsulated Fe 2 P nanoparticles for efficient oxygen reduction and Zn-air batteries
Zhou et al. Engineering In‐Plane Nickel Phosphide Heterointerfaces with Interfacial sp H P Hybridization for Highly Efficient and Durable Hydrogen Evolution at 2 A cm− 2
Zhang et al. Pomelo peel-derived, N-doped biochar microspheres as an efficient and durable metal-free ORR catalyst in microbial fuel cells
Qiao et al. Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts
Tong et al. Ni3S2 nanosheets in situ epitaxially grown on nanorods as high active and stable homojunction electrocatalyst for hydrogen evolution reaction
Sun et al. Round-the-clock bifunctional honeycomb-like nitrogen-doped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency
Yuan et al. In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts
Mohite et al. Spatial compartmentalization of cobalt phosphide in P-doped dual carbon shells for efficient alkaline overall water splitting
Yu et al. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction
Boppella et al. Hierarchically structured bifunctional electrocatalysts of stacked core–shell CoS1− xPx heterostructure nanosheets for overall water splitting
Liu et al. Hollow-structured CoP nanotubes wrapped by N-doped carbon layer with interfacial charges polarization for efficiently boosting oxygen reduction/evolution reactions
Li et al. Well-controlled 3D flower-like CoP3/CeO2/C heterostructures as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
CN105854911A (zh) 一种用于析氢/析氧双功能的微米磷化镍电催化材料及其制备方法
Wu et al. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery
Zhu et al. P-doped cobalt carbonate hydroxide@ NiMoO4 double-shelled hierarchical nanoarrays anchored on nickel foam as a bi-functional electrode for energy storage and conversion
Wang et al. Scalable synthesis of multi-shelled hollow N-doped carbon nanosheet arrays with confined Co/CoP heterostructures from MOFs for pH-universal hydrogen evolution reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20170109

Address after: 212143 Zhenjiang City, Jiangsu province Dantu District hi tech Park No. 88 Leng Yu Lu

Patentee after: JS Power Inc.

Address before: Leng Yu Lu Dantu high tech Industrial Park in Jiangsu Province, Zhenjiang City, No. 88, 212143

Patentee before: Jiangsu Chaojie Green Energy Technology Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20191011

CF01 Termination of patent right due to non-payment of annual fee