CN103569959B - 石英尖劈-聚合物复合纤维阵列的制备方法 - Google Patents
石英尖劈-聚合物复合纤维阵列的制备方法 Download PDFInfo
- Publication number
- CN103569959B CN103569959B CN201310562967.4A CN201310562967A CN103569959B CN 103569959 B CN103569959 B CN 103569959B CN 201310562967 A CN201310562967 A CN 201310562967A CN 103569959 B CN103569959 B CN 103569959B
- Authority
- CN
- China
- Prior art keywords
- array
- polymer
- quartzy
- wedge
- composite construction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明公开了一种石英尖劈-聚合物复合纤维阵列及其制备方法。石英尖劈-聚合物复合纤维阵列是指组成复合纤维阵列的单根纤维由石英尖劈和聚合物串联构成,这种纤维紧密排列形成阵列结构。其制备方法为,根据专利ZL200710134575.2的方法获得松香填充石英纤维空隙的复合结构,将这种复合结构置于HF酸溶液中腐蚀,形成石英尖劈和中空微管复合结构阵列;然后在上述复合结构阵列中填充聚二甲基硅氧烷、环氧树脂、聚氨酯;最后去除松香,获得石英尖劈-聚合物复合纤维阵列。本发明的结构及制备方法新颖,在光电、信息、传感、生物等领域具有重要的应用价值。
Description
技术领域
本发明涉及一种亚微米和微米微结构材料的制备方法,特别是一种石英尖劈-聚合物复合纤维阵列及其制备技术。
背景技术
石英尖劈-聚合物复合纤维阵列是一种新型的微阵列结构。石英尖劈独特的几何形状使得在其中传播的光被调制,聚合物纤维材料多样的光响应特性(如荧光、生物响应等)使其具有重要应用。将这两者组合起来,将产生更丰富的物理和化学性能,并将在光电、信息、传感、生物等领域具有重要的应用。
发明内容
本发明的目的是提供一种石英尖劈-聚合物复合纤维阵列,以及一种低成本制备该阵列的方法。
为了实现上述发明目的,本发明采用的技术方案如下:
石英尖劈-聚合物复合纤维阵列,组成复合纤维阵列的单根纤维由石英尖劈和聚二甲基硅氧烷、环氧树脂、聚氨酯等高分子聚合物串联构成,这种纤维紧密排列形成阵列结构。
上述石英尖劈-聚合物复合纤维阵列的制备方法,包括以下步骤:
(1)通过自组装技术组装微米、亚微米石英纤维,获得排列规整的石英纤维束,将所述石英纤维束通过物理或者化学方法填充松香,获得松香填充石英纤维空隙的复合结构,其中石英纤维束与复合结构的体积比为0.1—0.6;
(2)将上述复合结构置于HF酸溶液中腐蚀,形成石英尖劈和中空微管复合结构阵列;
(3)在上述复合结构阵列中填充聚二甲基硅氧烷、环氧树脂、聚氨酯等高分子聚合物;
(4)去除松香,获得石英尖劈-聚合物复合纤维阵列。
本发明与现有技术相比,其显著优点是成本低廉,无需大型仪器,工艺简单可靠。本发明的结构及制备方法新颖,在光电、信息、传感、生物等领域具有重要的应用价值。
附图说明
图1是石英尖劈-聚合物复合纤维阵列的制备方法的示意图。其中,步骤(A)为将松香填充石英纤维空隙的复合结构置于HF酸溶液中腐蚀,形成石英尖劈和中空微管复合结构阵列;步骤(B)为在中空微管结构阵列中部分填充聚合物;步骤(C)为去除松香,获得石英尖劈-聚合物复合纤维阵列。
具体实施方式
下面对本发明作进一步详细的描述。
实施例中聚合物填充石英纤维空隙的复合结构根据专利ZL200710134575.2的方法获得:通过自组装技术组装微米、亚微米石英纤维,获得排列规整的石英纤维束,将所述石英纤维束通过物理或者化学方法填充松香,从而获得松香填充石英纤维空隙的复合结构,其中石英纤维束与复合结构的体积比为0.1—0.6。
实施例1:将松香填充石英纤维空隙的复合结构置于HF酸溶液中腐蚀,形成石英尖劈和中空微管复合结构阵列;然后在上述复合结构阵列中填充聚二甲基硅氧烷,固化后用乙醇去除松香,获得石英尖劈-聚二甲基硅氧烷复合纤维阵列。
实施例2:将松香填充石英纤维空隙的复合结构置于HF酸溶液中腐蚀,形成石英尖劈和中空微管复合结构阵列;然后在上述复合结构阵列中填充环氧树脂,固化后用乙醇去除松香,获得石英尖劈-环氧树脂复合纤维阵列。
实施例3:将松香填充石英纤维空隙的复合结构置于HF酸溶液中腐蚀,形成石英尖劈和中空微管复合结构阵列;然后在上述复合结构阵列中填充聚氨酯,固化后用乙醇除松香,获得石英尖劈-聚氨酯复合纤维阵列。
Claims (2)
1.石英尖劈-聚合物复合纤维阵列的制备方法,其特征是,所述方法包括以下步骤:
(1)通过自组装技术组装微米、亚微米石英纤维,获得排列规整的石英纤维束,将所述石英纤维束通过物理或者化学方法填充松香,获得松香填充石英纤维空隙的复合结构,其中石英纤维束与复合结构的体积比为0.1—0.6;
(2)将上述复合结构置于HF酸溶液中腐蚀,形成石英尖劈和中空微管复合结构阵列;
(3)在上述复合结构阵列中填充聚合物;
(4)去除松香,获得石英尖劈-聚合物复合纤维阵列;
组成所述复合纤维阵列的单根纤维由石英尖劈和聚合物串联构成,这种纤维紧密排列形成阵列结构。
2.根据权利要求1所述的制备方法,其特征在于,所述聚合物为聚二甲基硅氧烷、环氧树脂或者聚氨酯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310562967.4A CN103569959B (zh) | 2013-11-12 | 2013-11-12 | 石英尖劈-聚合物复合纤维阵列的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310562967.4A CN103569959B (zh) | 2013-11-12 | 2013-11-12 | 石英尖劈-聚合物复合纤维阵列的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103569959A CN103569959A (zh) | 2014-02-12 |
CN103569959B true CN103569959B (zh) | 2016-05-25 |
Family
ID=50042773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310562967.4A Expired - Fee Related CN103569959B (zh) | 2013-11-12 | 2013-11-12 | 石英尖劈-聚合物复合纤维阵列的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103569959B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101143705A (zh) * | 2007-11-01 | 2008-03-19 | 南京大学 | 微米和亚微米针阵列的制备方法 |
CN102374972A (zh) * | 2011-10-13 | 2012-03-14 | 浙江大学 | 单根量子点掺杂聚合物纳米线的湿度传感器及其制备方法 |
CN102502474A (zh) * | 2011-11-10 | 2012-06-20 | 无锡英普林纳米科技有限公司 | 非平面微米和亚微米微针阵列及其制备方法 |
CN102838078A (zh) * | 2012-09-17 | 2012-12-26 | 无锡英普林纳米科技有限公司 | 一种悬空圆盘阵列微结构及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08110429A (ja) * | 1994-10-11 | 1996-04-30 | Hitachi Cable Ltd | 光導波路素子用ファイバアレイ |
-
2013
- 2013-11-12 CN CN201310562967.4A patent/CN103569959B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101143705A (zh) * | 2007-11-01 | 2008-03-19 | 南京大学 | 微米和亚微米针阵列的制备方法 |
CN102374972A (zh) * | 2011-10-13 | 2012-03-14 | 浙江大学 | 单根量子点掺杂聚合物纳米线的湿度传感器及其制备方法 |
CN102502474A (zh) * | 2011-11-10 | 2012-06-20 | 无锡英普林纳米科技有限公司 | 非平面微米和亚微米微针阵列及其制备方法 |
CN102838078A (zh) * | 2012-09-17 | 2012-12-26 | 无锡英普林纳米科技有限公司 | 一种悬空圆盘阵列微结构及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103569959A (zh) | 2014-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101143705B (zh) | 微米和亚微米针阵列的制备方法 | |
Wu et al. | Effects of surface modification on the mechanical properties of flax/β-polypropylene composites | |
Chu et al. | Optically tunable chiral plasmonic guest–host cellulose films weaved with long-range ordered silver nanowires | |
Hamidi et al. | Silk as a natural reinforcement: processing and properties of silk/epoxy composite laminates | |
Ferdous et al. | Tensile fatigue behavior of polyester and vinyl ester based GFRP laminates—A comparative evaluation | |
Sharma et al. | Electrospun composite liquid crystal elastomer fibers | |
Bai et al. | Unconfined compressive properties of composite sand stabilized with organic polymers and natural fibers | |
ATE457374T1 (de) | Verfahren zur herstellung von nanofasern | |
Lu et al. | Effect of lignin content on properties of flexible transparent poplar veneer fabricated by impregnation with epoxy resin | |
CN105887235A (zh) | 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法 | |
Miyagi et al. | Construction of functional materials in various material forms from cellulosic cholesteric liquid crystals | |
CN103569959B (zh) | 石英尖劈-聚合物复合纤维阵列的制备方法 | |
Shu et al. | The properties of different healing agents considering the micro-self-healing process of asphalt with encapsulations | |
Gao et al. | Smart Self-Nourishing and Self-Healing Artificial Skin Composite Using Bionic Microvascular Containing Liquid Agent | |
Agbo et al. | Bio-oil-based epoxy resins from thermochemical processing of sustainable resources: A short review | |
Liu et al. | Properties of basalt fiber core rods and their application in composite cross arms of a power distribution network | |
Hashim et al. | The effect of stacking sequence on fatigue behaviour of hybrid pineapple leaf fibre/carbon-fibre-reinforced epoxy composites | |
Sekula et al. | Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation | |
Haider et al. | Silica-fiber-reinforced composites for microelectronic applications: effects of curing routes | |
Zhang et al. | Water-tree resistant characteristics of crosslinker-modified-SiO2/XLPE nanocomposites | |
Zhao et al. | The influence of DMDBS on crystallization behavior and crystalline morphology of weakly-phase-separated olefin block copolymer | |
Zhuo et al. | Bulk polymerization of thermoplastic shape memory epoxy polymer for recycling applications | |
Balanuca et al. | Investigating the synthesis and characteristics of UV-cured bio-based epoxy vegetable oil-lignin composites mediated by structure-directing agents | |
CN103569955B (zh) | 胶体微球柱阵列的制备方法 | |
Blanco | Silicon-containing polymeric materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160525 Termination date: 20161112 |