CN103557955A - Passive wireless temperature sensor - Google Patents

Passive wireless temperature sensor Download PDF

Info

Publication number
CN103557955A
CN103557955A CN201310490432.0A CN201310490432A CN103557955A CN 103557955 A CN103557955 A CN 103557955A CN 201310490432 A CN201310490432 A CN 201310490432A CN 103557955 A CN103557955 A CN 103557955A
Authority
CN
China
Prior art keywords
sensor
temperature
temperature sensor
interdigital transducer
passive wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310490432.0A
Other languages
Chinese (zh)
Inventor
王凯武
郑为民
田海林
荆晓东
姚宸
周春红
靳键云
席忠华
闫永芳
乔涛
李海洋
赵群
李江浩
闫俊杰
王秋云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Linfen Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Linfen Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Linfen Power Supply Co of State Grid Shanxi Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201310490432.0A priority Critical patent/CN103557955A/en
Publication of CN103557955A publication Critical patent/CN103557955A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The invention discloses a passive wireless temperature sensor, and belongs to the technical field of temperature monitoring devices of substation equipment. The passive wireless temperature sensor facilitates contact temperature monitoring of the substation equipment. According to the technical scheme, the passive wireless temperature sensor comprises an interdigital transducer, a reflecting grating, a piezoelectric substrate and a sensor antenna, wherein the interdigital transducer and the reflecting grating are arranged on the piezoelectric substrate, the sensor antenna is electrically connected with the interdigital transducer, and the interdigital transducer, the reflecting grating, the piezoelectric substrate and the sensor antenna are packaged in a sensor shell. The passive wireless temperature sensor is applicable to the electric power department.

Description

Passive wireless temperature sensor
Technical field
Passive wireless temperature sensor of the present invention, belongs to substation equipment device for detecting temperature technical field.
Background technology
Power grid security is produced and is not only a huge and complicated systems engineering, and be Utilities Electric Co. and even whole society's reform, the basis of development and stabilization, it is the most important thing of following China and even the development of whole world intelligent grid, State Council issued in a series of vital documents such as the < < Green Development white paper > > of State Grid Corporation of China in < < National Program for Medium-to Long-term Scientific and Technological Development > > and the national grid of in February, 2006 issue April 19, intelligent grid safety guarantee has been included the great theme of first developing and setting about implementing of country in.
Each equipment in transformer station is in During Process of Long-term Operation, the positions such as the contact of switch and bus connection are because of aging or contact resistance is excessive generates heat, and the temperature of these heating positions cannot be monitored, finally cause thus accident to occur, power equipment safety reliability is the important step that ultra-large power transmission and distribution and power grid security ensure, in lasting expansion power supply, bring a series of safety problem to electrical network electric equipment simultaneously, for avoiding as much as possible all kinds of electric power accidents, the task of power equipment safety operation monitoring is in real time extremely urgent.
An important hidden danger of the contact in grid equipment and the power grid security of joint, existing statistics shows, it mainly occurs in fault as upper/lower positions: one, dynamic and static contact fault in switch cubicle, switch cubicle is as a kind of power equipment of extensive utilization, switch cubicle is the visual plant in electrical power trans mission/distribution system, is bearing the vital role of cut-offfing and closing power circuit, line fault protection, monitoring operation electric quantity data; Switchgear is bad because of the dynamic and static contact of primary cut-out, adds that the factors such as long-term large electric current, contact are aging easily cause its contact resistance and increase, thereby causes long-time heating, the too high high-voltage board that even finally occurs of contact temperature rise to burn fault; Two, cable splice fault, along with loosening, the insulation ag(e)ing of the prolongation of working time, crimp head and shelf depreciation, high-pressure leakage etc., the rising of heating and temperature will be caused, the rising of temperature will make these situations further worsen, this will impel temperature further to promote, the result of this vicious cycle just causes short circuit blows out, even fire.
For solving this difficult problem, from temperature-measurement principle, conventionally there are several modes, from transmission of angle, comprise wired and Wireless Data Transmission mode.
One, conventional thermometric mode: the shortcoming of the thermometric modes such as conventional thermopair, thermal resistance, semiconductor temperature sensor is cannot wireless and passive, need plain conductor signal transmission, cannot independent wireless work, insulating property can not guarantee, even employing wireless sending module, under magnetic field, electric field and the thermal field complex situations of electrical network, antijamming capability is weak and cannot work.
Two, optical fiber temperature-measurement: fibre optic temperature sensor adopts fiber optic transmission temperature signal, light transmitting fiber has excellent insulating property, high pressure in can isolating switch cabinet, therefore fibre optic temperature sensor can directly be installed on the high-voltage contact in switch cubicle, the running temperature of Measurement accuracy high-voltage contact, realize the on-line monitoring of switch cubicle contact running temperature, yet, optical fiber has easy to break, easily broken, the characteristics such as non-refractory, thereby after accumulation dust, easily cause optical fiber creeping discharge that insulativity is reduced, optical fiber belongs to wired mode, can destroy existing equipment framework, affected by switch cabinet structure, the difficulty that connects up in cabinet is larger, in addition, the cost of optical fiber temperature-measurement is also relatively high.
Three, infrared measurement of temperature: infrared measurement of temperature is contactless temperature-measuring, in the temperature monitoring of the equipment such as transformer station's sleeve pipe, lightning arrester, bus, apply more, but because high-tension switch cabinet inner structure is complicated, element blocks mutually more, by infared spectrum, indirectly obtaining its accuracy of temperature data can not meet the demands, and to the Computer Recognition Technology level of infared spectrum, can't substitute artificial cognition, and automaticity is not high, the cost of thermal infrared imager is higher simultaneously, is unfavorable for promoting the use of; Infrared measurement of temperature is subject to environment and the interference of electromagnetic field around in addition, because the space in switch cubicle is very narrow and small, cannot installation infrared temperature probe (because probe must keep certain safe distance with testee, and need to be over against the surface of testee), require measured point can in the visual field, there is no coverage, and surface clean, to guarantee accuracy, has dead angle to occur while therefore using infrared thermoviewer to carry out temperature survey to it, cannot all monitor; Infrared thermoviewer is measured and must staff be held instrument and measure to scene, cannot realize long-range, Real-Time Monitoring, wastes a large amount of manpowers; When the disconnecting link to outdoor etc. is monitored, due to distant, cost is higher, runs into ice and snow weather, and this monitoring of equipment was lost efficacy.
Four, active radio thermometric: active radio temperature sensor size conventionally relatively large and need is often changed battery, system maintenance cost is higher, simultaneously, battery is unsuitable for working under the condition of high temperature, excess Temperature can affect battery normal operation, finally affect measuring accuracy, even there will be false alarm; When battery electric quantity is not enough, there will be the phenomenon of false alarm in addition, affect monitoring accuracy; The antenna that current most wireless senser adopts is in addition common sucker antenna, and this antenna, due to its profile reason, when the contact temperature monitoring in switch cubicle, cannot be realized the installation in handcart cabinet.
Summary of the invention
The present invention overcomes the deficiency that prior art exists, and technical matters to be solved is: a kind of device that facilitates substation equipment contact temperature monitoring is provided.
For solving the problems of the technologies described above, the technical solution adopted in the present invention is: passive wireless temperature sensor, comprise: interdigital transducer, reflecting grating, piezoelectric substrate and sensor antenna, described interdigital transducer and reflecting grating are arranged on piezoelectric substrate, described sensor antenna is electrically connected to interdigital transducer, and described interdigital transducer, reflecting grating, piezoelectric substrate and sensor antenna are encapsulated in sensor outer housing.
On described sensor outer housing, be provided with fabricated section.
Described fabricated section is tuning-fork-type fabricated section, or is metal ring, or is band.
The beneficial effect that the present invention compared with prior art has is:
One, without power supply, reduce high maintenance and false alarm that battery produces, sensor adopts passive induction mode, without battery-operated, has reduced the maintenance cost that battery altering brings, and can not impact ecologic environment simultaneously;
Two, safe and reliable, wireless temperature sampling mode is without line in measured point or related support structure, between sensor and receiving equipment without electrical link, thereby realized high pressure isolation, support equipment safe operation;
Three, easy for installation flexibly, temperature sensor volume little and and collector between data wireless transmission, easy for installation flexibly, be not subject to switch cabinet structure and spacial influence;
Four, good environmental adaptability, temperature sensor has just compensated the deviation in sensor production process afterwards by the correction of adapting software, and sensor can the temperature in any operating temperature range be debugged, and not affected by seasonal factor.
Accompanying drawing explanation
Below in conjunction with accompanying drawing, the present invention will be further described in detail:
Fig. 1 is structural representation of the present invention;
Fig. 2 is the structural representation of sensor outer housing in the present invention;
In figure: 1 is that interdigital transducer, 2 is that reflecting grating, 3 is that piezoelectric substrate, 4 is that sensor antenna, 5 is that sensor outer housing, 6 is fabricated section.
Embodiment
As shown in Figure 1, passive wireless temperature sensor of the present invention, comprise: interdigital transducer 1, reflecting grating 2, piezoelectric substrate 3 and sensor antenna 4, described interdigital transducer 1 and reflecting grating 2 are arranged on piezoelectric substrate 3, described sensor antenna 4 is electrically connected to interdigital transducer 1, and described interdigital transducer 1, reflecting grating 2, piezoelectric substrate 3 and sensor antenna 4 are encapsulated in sensor outer housing 5.
Described interdigital transducer 1(is called for short IDT), it is the core component of SAW (Surface Acoustic Wave) device, IDT is a kind of sound-electric transducer that excites on piezoelectric crystal and detect surface acoustic wave temperature, IDT is deposited on metallic aluminium on piezoelectric substrate 3 by semiconductor planar technique, then by photoetching technique, metallic film is carved into the structure of specific size and shape.
Described reflecting grating 2 is Primary Components of realizing surface acoustic wave temperature resonator, surface acoustic wave temperature can only form surface acoustic wave temperature catoptron based on reflector array, surface acoustic wave temperature reflecting grating array has two kinds of reflective trenches and reflective metals bands, wherein groove reflective array performance is better, but metallic reflection grating array is the most easily realized.
As shown in Figure 2, on described shell 5, be provided with fabricated section 6, described fabricated section 6 is tuning-fork-type fabricated section, or be metal ring, or be band, the present invention is divided into according to the difference of mounting means: tuning-fork-type, mosaic and binding type, be useful in respectively in different environment, tuning-fork-type sensor uses screw to be fixed on object under test surface, mosaic sensor utilizes its metal ring carrying to be fixed on the surface of circular object under test, binding type sensor uses band to fix, the present invention can be directly installed on the surperficial thermometric of surveying object, install very convenient, temperature sensor volume little and and collector between data wireless transmission, easy for installation flexible, be not subject to switch cabinet structure and spacial influence, in this embodiment, fabricated section 6 adopts tuning-fork-type fabricated section.
The present invention in use needs to be equipped with the Temperature sampler that can transmit and receive radio frequency signal, temperature sensor is directly installed on testee surface, it is responsible for receiving and inquires after radiofrequency signal, and the radiofrequency signal of returning with temperature information arrives Temperature sampler, temperature sensor is to adopt the design of surface acoustic wave (Surface Acoustic Wave) sensing technology, sensor surface wave technology has been applied the physical characteristics of crystalline material, the change of the physical characteristics of crystal has been changed into electric signal automatically by piezoelectricity principle of induction, the principle of work of sensor is the surface to piezoelectric by emission of radio frequency signals, then the reflection wave that is subject to temperature and has affected is gone back to electric signal again and obtains temperature data.
Temperature acquisition process of the present invention comprises the steps: one, Temperature sampler is by its antenna transmission radio-frequency pulse, two, after pulse signal is received by sensor antenna 4, by interdigital transducer 1(IDT) at surface wave of surface activation of piezoelectric inductor; Three, there is variation owing to being subject to the impact of sensor self-temperature in sensor surface wave frequency, is subject to the mechanism of temperature variation just because of frequency, and temperature data measurement is achieved; Four, interdigital transducer 1 changes into radiofrequency signal by the hunting of frequency of surface wave again, and this radiofrequency signal is processed after being received by the antenna on collector; Five, due to the high-quality characteristic of resonator, even if access ripple has the bandwidth of 50Hz, also guaranteed that the signal reflecting has comprised accurate radio-frequency information; Six, the rf frequency reflecting changes the proportionate relationship that is varied to temperature.
Described Temperature sampler is responsible for communicating by letter with one group of temperature sensor, transmitting thermometric is inquired after radiofrequency signal to temperature sensor, receive the return signal of temperature sensor, and resolve to temperature information and send it back temperature monitoring Master Station Software system, Temperature sampler is connected with collector antenna, described collector antenna is embedded in switch cubicle inwall, like this, can shield outside wave interference, other parts (receiving magazine) of Temperature sampler are arranged on the outside of switch cubicle, collector antenna is adsorbed on cabinet wall by the gap with cabinet through dividing plate, Temperature sampler is placed on top, this cabinet door can be opened without having a power failure, facilitate managerial personnel to operate.
Described Temperature sampler is by independent Power supply, and launch short radiofrequency signal in switch cubicle, if the frequency of the radio-frequency pulse frequency default with temperature sensor is identical, sensor just can be received this radiofrequency signal, and change and reflected impulse signal passively, the pulse signal returning is owing to being subject to the impact of sensor self temperature thereby having carried the temperature information of sensor.
By reference to the accompanying drawings embodiments of the invention are explained in detail above, but the present invention is not limited to above-described embodiment, in the ken possessing those of ordinary skills, can also under the prerequisite that does not depart from aim of the present invention, makes a variety of changes.

Claims (3)

1. passive wireless temperature sensor, it is characterized in that: comprising: interdigital transducer (1), reflecting grating (2), piezoelectric substrate (3) and sensor antenna (4), described interdigital transducer (1) and reflecting grating (2) are arranged on piezoelectric substrate (3), described sensor antenna (4) is electrically connected to interdigital transducer (1), and described interdigital transducer (1), reflecting grating (2), piezoelectric substrate (3) and sensor antenna (4) are encapsulated in sensor outer housing (5).
2. passive wireless temperature sensor according to claim 1, is characterized in that: on described sensor outer housing (5), be provided with fabricated section (6).
3. passive wireless temperature sensor according to claim 2, is characterized in that: described fabricated section (6) is tuning-fork-type fabricated section, or is metal ring, or is band.
CN201310490432.0A 2013-10-19 2013-10-19 Passive wireless temperature sensor Pending CN103557955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310490432.0A CN103557955A (en) 2013-10-19 2013-10-19 Passive wireless temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310490432.0A CN103557955A (en) 2013-10-19 2013-10-19 Passive wireless temperature sensor

Publications (1)

Publication Number Publication Date
CN103557955A true CN103557955A (en) 2014-02-05

Family

ID=50012265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310490432.0A Pending CN103557955A (en) 2013-10-19 2013-10-19 Passive wireless temperature sensor

Country Status (1)

Country Link
CN (1) CN103557955A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406711A (en) * 2014-12-10 2015-03-11 广东电网有限责任公司电力科学研究院 SAW (Surface Acoustic Wave)-technology-based online monitoring system and monitoring method for running temperature of circuit breaker in GIS
CN104458053A (en) * 2014-12-10 2015-03-25 广东电网有限责任公司电力科学研究院 GIS internal bus operating temperature online monitoring system and method based on acoustic surface wave technology
CN104990638A (en) * 2015-06-30 2015-10-21 深圳华远微电科技有限公司 Chip based on wireless temperature sensor
CN105784155A (en) * 2016-04-22 2016-07-20 宁波方太厨具有限公司 Cookware dry burning prevention wireless temperature measuring device and working method thereof
CN106291411A (en) * 2016-08-30 2017-01-04 哈尔滨工业大学深圳研究生院 A kind of wireless and passive detection device in magnetic field
CN107144372A (en) * 2017-05-23 2017-09-08 中国船舶重工集团公司第七研究所 A kind of temperature measuring equipment and temp measuring method of the big end bearing shell of diesel engine connecting bar
CN107271028A (en) * 2017-05-26 2017-10-20 中电科技德清华莹电子有限公司 A kind of hyperthermal environments passive wireless acoustic surface wave sensor-based system transponder
CN110736563A (en) * 2019-10-24 2020-01-31 深圳市三和电力科技有限公司 Passive wireless temperature sensor suitable for distribution temperature monitoring early warning system
CN111141409A (en) * 2020-01-22 2020-05-12 国网上海市电力公司 Transmission line cable temperature monitoring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353473A (en) * 2011-06-23 2012-02-15 成都赛康信息技术有限责任公司 Wireless sensor network remote temperature online monitoring system based on surface acoustic wave
US8240911B1 (en) * 2010-08-30 2012-08-14 Sandia Corporation Wireless passive temperature sensor
WO2013004962A1 (en) * 2011-07-04 2013-01-10 Universite Pierre Et Marie Curie (Paris 6) Piezoelectric device
CN202994326U (en) * 2012-12-24 2013-06-12 西安创富电子科技有限公司 Temperature monitoring system based on acoustic surface wave temperature sensor
CN203231829U (en) * 2013-05-22 2013-10-09 国家电网公司 Wireless and passive type real-time temperature monitoring system
CN203551140U (en) * 2013-10-19 2014-04-16 国家电网公司 Passive wireless temperature sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240911B1 (en) * 2010-08-30 2012-08-14 Sandia Corporation Wireless passive temperature sensor
CN102353473A (en) * 2011-06-23 2012-02-15 成都赛康信息技术有限责任公司 Wireless sensor network remote temperature online monitoring system based on surface acoustic wave
WO2013004962A1 (en) * 2011-07-04 2013-01-10 Universite Pierre Et Marie Curie (Paris 6) Piezoelectric device
CN202994326U (en) * 2012-12-24 2013-06-12 西安创富电子科技有限公司 Temperature monitoring system based on acoustic surface wave temperature sensor
CN203231829U (en) * 2013-05-22 2013-10-09 国家电网公司 Wireless and passive type real-time temperature monitoring system
CN203551140U (en) * 2013-10-19 2014-04-16 国家电网公司 Passive wireless temperature sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李平等: "声表面波谐振型无源无线温度传感器", 《仪器仪表学报》, vol. 24, no. 4, 31 August 2003 (2003-08-31), pages 2 - 1 *
王军峰等: "声表面波谐振型无源无线温度传感器硬件系统", 《压电与声光》, vol. 28, no. 1, 28 February 2006 (2006-02-28), pages 1 - 4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406711A (en) * 2014-12-10 2015-03-11 广东电网有限责任公司电力科学研究院 SAW (Surface Acoustic Wave)-technology-based online monitoring system and monitoring method for running temperature of circuit breaker in GIS
CN104458053A (en) * 2014-12-10 2015-03-25 广东电网有限责任公司电力科学研究院 GIS internal bus operating temperature online monitoring system and method based on acoustic surface wave technology
CN104990638A (en) * 2015-06-30 2015-10-21 深圳华远微电科技有限公司 Chip based on wireless temperature sensor
CN104990638B (en) * 2015-06-30 2018-06-22 深圳华远微电科技有限公司 A kind of chip based on radio temperature sensor
CN105784155A (en) * 2016-04-22 2016-07-20 宁波方太厨具有限公司 Cookware dry burning prevention wireless temperature measuring device and working method thereof
CN106291411A (en) * 2016-08-30 2017-01-04 哈尔滨工业大学深圳研究生院 A kind of wireless and passive detection device in magnetic field
CN107144372A (en) * 2017-05-23 2017-09-08 中国船舶重工集团公司第七研究所 A kind of temperature measuring equipment and temp measuring method of the big end bearing shell of diesel engine connecting bar
CN107271028A (en) * 2017-05-26 2017-10-20 中电科技德清华莹电子有限公司 A kind of hyperthermal environments passive wireless acoustic surface wave sensor-based system transponder
CN110736563A (en) * 2019-10-24 2020-01-31 深圳市三和电力科技有限公司 Passive wireless temperature sensor suitable for distribution temperature monitoring early warning system
CN111141409A (en) * 2020-01-22 2020-05-12 国网上海市电力公司 Transmission line cable temperature monitoring device

Similar Documents

Publication Publication Date Title
CN103557955A (en) Passive wireless temperature sensor
CN103557958A (en) Passive wireless temperature measuring antenna device
CN203551140U (en) Passive wireless temperature sensor
CN202631151U (en) Powerless and wireless online monitoring system for temperature of switch cabinet
CN203551139U (en) Transformer station device contact temperature on-line monitoring device
CN209513092U (en) A kind of cable temperature measuring equipment and cable temp measuring system based on Internet of Things
CN103557957A (en) Device for online monitoring temperature of contact of substation equipment
Ding et al. Distributed travelling‐wave‐based fault location without time synchronisation and wave velocity error
CN204065388U (en) A kind of Secondary Circuit of Potential Transformer pressure drop wireless detection device
CN204988540U (en) A switch cabinet wireless temperature -measuring system
CN109540328A (en) Intelligent radio temp measuring system based on passive sensing technology
CN201413196Y (en) Wireless aerial power cable contact temperature monitoring system
EP2725367B1 (en) Method and device for monitoring partial discharges
Bernauer et al. Temperature measurement on overhead transmission lines (OHTL) utilizing surface acoustic wave (SAW) sensors
CN203551142U (en) Passive wireless temperature measurement antenna device
CN206163747U (en) High tension cable T type head containing passive antenna temperature sensor
CN101852825B (en) Wideband online measuring system for corona current of high-voltage transmission line
CN110736563A (en) Passive wireless temperature sensor suitable for distribution temperature monitoring early warning system
CN102954847A (en) Temperature-measuring insulating plug
CN204944700U (en) A kind of passive and wireless temperature measurement system being applied to high-tension switch cabinet
CN106248244A (en) A kind of passive and wireless real time temperature monitoring system
CN109036991B (en) Contact of breaker, breaker and high-tension switch cabinet
CN206099523U (en) Intelligent transformer substation inspection system
CN108645533A (en) GIS contact temperatures monitoring system based on surface acoustic wave techniques and monitoring method
CN213481568U (en) Passive wireless downhole temperature measurement system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140205