CN103557873B - A kind of dynamic alignment method fast - Google Patents

A kind of dynamic alignment method fast Download PDF

Info

Publication number
CN103557873B
CN103557873B CN201310556839.9A CN201310556839A CN103557873B CN 103557873 B CN103557873 B CN 103557873B CN 201310556839 A CN201310556839 A CN 201310556839A CN 103557873 B CN103557873 B CN 103557873B
Authority
CN
China
Prior art keywords
calculate
omega
accelerometer
parameter
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310556839.9A
Other languages
Chinese (zh)
Other versions
CN103557873A (en
Inventor
胡平华
詹双豪
赵明
唐江
黄鹤
苗成义
曲雪云
李爱萍
陈晓华
刘东斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Automation Control Equipment Institute BACEI
Original Assignee
Beijing Automation Control Equipment Institute BACEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Automation Control Equipment Institute BACEI filed Critical Beijing Automation Control Equipment Institute BACEI
Priority to CN201310556839.9A priority Critical patent/CN103557873B/en
Publication of CN103557873A publication Critical patent/CN103557873A/en
Application granted granted Critical
Publication of CN103557873B publication Critical patent/CN103557873B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

The invention belongs to alignment methods, be specifically related to a kind of dynamic alignment method fast. It comprises: step 1: coarse alignment; Step 1.1: input message; Step 1.2: calculate ax、ay、az; Step 1.3: calculate ωx、ωzStep 1.4: calculateStep 1.5: calculate Step 1.6: calculate

Description

A kind of dynamic alignment method fast
Technical field
The invention belongs to alignment methods, be specifically related to a kind of dynamic alignment method fast.
Background technology
Platform Inertial Navigation System, externally exporting before navigation information, must be carried out initial alignment. Under quiet pedestal condition, in order to complete initial alignment, need to utilize gravity and earth rotation angular speed information, make platform stage body in Platform Inertial Navigation System right on the course be operated in one or more diverse locations, thereby show that the drift of three gyros is three misalignments of relative Department of Geography with platform. But under swaying base condition, due to the angular oscillation of carrier, make inertial platform record gravity and earth rotation angular speed all disturbs, have a strong impact on alignment precision. Disturb in order to eliminate these, need to adopt new filtering method to complete the Platform INS autoregistration under swaying base.
Summary of the invention
The object of the invention is the defect for prior art, a kind of dynamic alignment method is fast provided.
The present invention is achieved in that 1. 1 kinds of quick dynamic alignment methods, it is characterized in that, comprises the steps:
Step 1: coarse alignment
Step 1.1: input message
Need the information of input to comprise following three classes
(a) accelerometer data
b xk ( 2 ) , b yk ( 2 ) , b zk ( 2 ) ( k = 1 , . . . , N ( 2 ) )
Above-mentioned xyz refers to the direction of acceleration, and subscript k represents the data of k sampling instant, and the footmark (2) in the upper right corner refers to position two, N(2)Data altogether in the second place.
(b) revolve parameter certificate
J represents position, and the application has two positions, position one and position two, the footmark 1,2,3 in the lower right corner represents the data that different sensors provide, and needs input in each position, the zero hour revolve parameter certificate
The meaning of all footmarks and front identical, described T1Refer to the finish time, T1/ 2 refer in the middle of the moment, need input in each position, middle moment and the finish time revolve parameter certificate.
(c) accelerometer parameter
n0x,n0y,n0z,Mx,My,Mz,△yx,△zx,△zy
Described n0x,n0y,n0zFor accelerometer bias, Mx,My,MzFor accelerometer calibration factor, △yx,△zx,△zyFor accelerometer alignment error.
Above-mentioned accelerometer parameter all can directly obtain.
Step 1.2: calculate ax、ay、az
a x = 1 T Σ k = 1 N ( b xk ( 2 ) M x ) - n 0 x
a y = 1 T Σ k = 1 N ( b yk ( 2 ) M y - b xk ( 2 ) M x Δ yx ) - n 0 y
a z = 1 T Σ k = 1 N ( b zk ( 2 ) M z - b xk ( 2 ) M x Δ zx - b yk ( 2 ) M y Δ zy ) - n 0 z
In formula:
n0x,n0y,n0zFor accelerometer bias; Mx,My,MzFor accelerometer calibration factor;
ΔyxzxzyFor accelerometer alignment error.
Step 1.3: calculate ωx、ωz
In formula:
For T1The angle in/2 moment.
Step 1.4: calculate
C gp ( 2 ) ( T 1 / 2 ) = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33
In formula:
c 21 = a x a x 2 + a y 2 + a z 2
c 22 = a y a x 2 + a y 2 + a z 2
c 23 = a z a x 2 + a y 2 + a z 2
c11=c22c33-c32c23
c12=c31c23-c21c33
c13=c21c32-c31c22
Wherein Ω is earth rotation angular speed.
Step 1.5: calculate
C mg ( 2 ) ( T 1 / 2 ) = C mp ( 2 ) ( T 1 / 2 ) C pg ( 2 ) ( T 1 / 2 )
In formula
C mp = C 11 C 12 C 13 C 21 C 22 C 23 C 31 C 32 C 33 Here
ExtremelyFor T1The angle in/2 moment.
Step 1.6: calculate
C gp ( j ) ( 0 ) = [ C pm ( j ) ( 0 ) C mg ( 2 ) ( T 1 / 2 ) ] T ( j = 1,2 )
For the output data of this step.
The quick dynamic alignment method of one as above wherein, increases following step after step 1,
Step 2: navigation calculation
Step 2.1: input
The parameter that the parameter that this step needs has been inputted in step 1, also comprise
(a) platform drift and accelerometer parameter
ω0x0y0zThe irrelevant drift of platform and acceleration, these three parameters are the intrinsic parameter of platform,
ωxxxzyxyyzxzzPlatform and acceleration associated drift, these six parameters are the input that sensor measurement obtains;
n0x,n0y,n0z,Mx,My,MzAccelerometer bias and calibration factor, these six parameters are the intrinsic parameter of accelerometer;
Each position(), this parameter is that step 1 calculates;
The linear velocity of pedestalThese three obtain for sensor measurement.
Step 2.2: calculate ωxk-1、ωxk、ωyk-1、ωyk、ωzk-1、ωzk
Calculate by following formula
Cip0=Cgp(0)
C ipk = C ipk - 1 1 - ω zk - 1 Δt ω yk - 1 Δt ω zk - 1 Δt 1 - ω xk - 1 Δt - ω yk - 1 Δt ω xk - 1 Δt 1
ω xk ω yk ω zk T = ω 0 x ω 0 y ω 0 z T + C gp 21 k C gp 22 k C gp 23 k T ω xx ω yx ω zx ω xy ω yy ω zy ω xz ω yz ω zz
ω xk - 1 ω yk - 1 ω zk - 1 T = ω 0 x ω 0 y ω 0 z T + C gp 21 k - 1 C gp 22 k - 1 C gp 23 k - 1 T ω xx ω yx ω zx ω xy ω yy ω zy ω xz ω yz ω zz
△ t is the sampling time.
Step 2.3: calculate ωx、ωy、ωz
ωx=(ωxk-1xk)/2
ωy=(ωyk-1yk)/2
ωz=(ωzk-1zk)/2
Step 2.4: calculate Cipk
C ipk = C ipk - 1 1 - ( ω y 2 + ω z 2 ) Δt 2 / 2 - ω z Δt + ω x ω y Δt 2 / 2 ω y Δt + ω x ω z Δt 2 / 2 ω z Δt + ω x ω y Δt 2 / 2 1 - ( ω x 2 + ω z 2 ) Δt 2 / 2 - ω x Δt + ω y ω z Δt 2 / 2 - ω y Δt + ω x ω z Δt 2 / 2 ω x Δt + ω y ω z Δt 2 / 2 1 - ( ω y 2 + ω x 2 ) Δt 2 / 2
Step 2.5: calculate Cgik
Ω is earth rotation angular speed.
Step 2.6: calculate Cgpk
Cgpk=Cgik·Cipk
Step 2.7: calculating location rgk
f k = f xk f yk f zk = n 0 x n 0 y n 0 z + 1 + Δ xx 0 0 Δ yx 1 + Δ yy 0 Δ zx Δ zy 1 + Δ zz b xk M x b yk M y b zk M z
V g 0 T = V x ( 0 ) V y ( 0 ) V z ( 0 )
r gk = r gk - 1 + 1 2 ( V gk + V gk - 1 ) Δt
Step 2.6 calculatesCalculate with step 2.7 r xgk ( j ) , r ygk ( j ) , r zgk ( j ) ( j = 1,2 , k = 1 , . . . , N j )
The quick dynamic alignment method of one as above wherein, increases following step after step 2,
Step 3: intermediate variable calculates
Step 3.1: input message
This step, except the input message of preceding step and the result of calculating, also needs to input each position and revolves parameter certificate
Step 3.2: calculate:
Calculate with following formula
r xg ( t ) = V x t + α z gt 2 2 + ω zg gt 3 6 - R x θ z ( t ) ;
r zg ( t ) = V z t - α x gt 2 2 - ω xg gt 3 6 + R z θ x ( t ) ;
θy(t)=θy0ygt.
Least square
Zm×1=Hm×nXn×1
The least-squares estimation of X is: X ^ n × 1 = ( H n × m T H m × n ) - 1 H n × m T Z m × 1
Wherein Z m × 1 = r xg ( t ) r yg ( t ) r zg ( t ) θ y ( t ) T
The quick dynamic alignment method of one as above wherein, increases following step after step 3,
Step 4: aim at
Calculate with following formula:
ω ^ 0 z = 1 2 [ ( ω xg ( 2 ) - ω xg ( 1 ) ) sin K + ( ω zg ( 2 ) - ω zg ( 1 ) ) cos K ] ; ω ^ 0 y = - 1 2 ( ω yg ( 2 ) + ω yg ( 1 ) ) .
The result calculating is final result.
The invention has the beneficial effects as follows: the present invention has at carrier can accurately estimate under the condition of angular oscillation that platform is three misalignments and three uncompensated platform drift (platform system) of relative Department of Geography, thereby has reached high-precision autoregistration object.
Detailed description of the invention
A kind of dynamic alignment method fast, comprises the steps:
Step 1: coarse alignment
Step 1.1: input message
Need the information of input to comprise following three classes
(a) accelerometer data
b xk ( 2 ) , b yk ( 2 ) , b zk ( 2 ) ( k = 1 , . . . , N ( 2 ) )
Above-mentioned xyz refers to the direction of acceleration, and subscript k represents the data of k sampling instant, and the footmark (2) in the upper right corner refers to position two, N(2)Data altogether in the second place.
(b) revolve parameter certificate
J represents position, and the application has two positions, position one and position two, the footmark 1,2,3 in the lower right corner represents the data that different sensors provide, and needs input in each position, the zero hour revolve parameter certificate
The meaning of all footmarks and front identical, described T1Refer to the finish time, T1/ 2 refer in the middle of the moment, need input in each position, middle moment and the finish time revolve parameter certificate.
(c) accelerometer parameter
n0x,n0y,n0z,Mx,My,Mzyxzxzy
Described n0x,n0y,n0zFor accelerometer bias, Mx,My,MzFor accelerometer calibration factor, ΔyxzxzyFor accelerometer alignment error.
Above-mentioned accelerometer parameter all can directly obtain.
Step 1.2: calculate ax、ay、az
a x = 1 T Σ k = 1 N ( b xk ( 2 ) M x ) - n 0 x
a y = 1 T Σ k = 1 N ( b yk ( 2 ) M y - b xk ( 2 ) M x Δ yx ) - n 0 y
a z = 1 T Σ k = 1 N ( b zk ( 2 ) M z - b xk ( 2 ) M x Δ zx - b yk ( 2 ) M y Δ zy ) - n 0 z
In formula:
n0x,n0y,n0zFor accelerometer bias; Mx,My,MzFor accelerometer calibration factor;
ΔyxzxzyFor accelerometer alignment error.
Step 1.3: calculate ωx、ωz
In formula:
For T1The angle in/2 moment.
Step 1.4: calculate
C gp ( 2 ) ( T 1 / 2 ) = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33
In formula:
c 21 = a x a x 2 + a y 2 + a z 2
c 22 = a y a x 2 + a y 2 + a z 2
c 23 = a z a x 2 + a y 2 + a z 2
c11=c22c33-c32c23
c12=c31c23-c21c33
c13=c21c32-c31c22
Wherein Ω is earth rotation angular speed.
Step 1.5: calculate
C mg ( 2 ) ( T 1 / 2 ) = C mp ( 2 ) ( T 1 / 2 ) C pg ( 2 ) ( T 1 / 2 )
In formula
C mp = C 11 C 12 C 13 C 21 C 22 C 23 C 31 C 32 C 33 Here
ExtremelyFor T1The angle in/2 moment.
Step 1.6: calculate
C gp ( j ) ( 0 ) = [ C pm ( j ) ( 0 ) C mg ( 2 ) ( T 1 / 2 ) ] T ( j = 1,2 )
For the output data of this step
Step 2: navigation calculation
Step 2.1: input
The parameter that the parameter that this step needs has been inputted in step 1, also comprise
(a) platform drift and accelerometer parameter
ω0x0y0zThe irrelevant drift of platform and acceleration, these three parameters are the intrinsic parameter of platform,
ωxxxzyxyyzxzzPlatform and acceleration associated drift, these six parameters are the input that sensor measurement obtains;
n0x,n0y,n0z,Mx,My,MzAccelerometer bias and calibration factor, these six parameters are the intrinsic parameter of accelerometer;
Each position(), this parameter is that step 1 calculates;
The linear velocity of pedestalThese three obtain for sensor measurement.
Step 2.2: calculate ωxk-1、ωxk、ωyk-1、ωyk、ωzk-1、ωzk
Calculate by following formula
Cip0=Cgp(0)
C ipk = C ipk - 1 1 - ω zk - 1 Δt ω yk - 1 Δt ω zk - 1 Δt 1 - ω xk - 1 Δt - ω yk - 1 Δt ω xk - 1 Δt 1
ω xk ω yk ω zk T = ω 0 x ω 0 y ω 0 z T + C gp 21 k C gp 22 k C gp 23 k T ω xx ω yx ω zx ω xy ω yy ω zy ω xz ω yz ω zz
ω xk - 1 ω yk - 1 ω zk - 1 T = ω 0 x ω 0 y ω 0 z T + C gp 21 k - 1 C gp 22 k - 1 C gp 23 k - 1 T ω xx ω yx ω zx ω xy ω yy ω zy ω xz ω yz ω zz
△ t is the sampling time.
Step 2.3: calculate ωx、ωy、ωz
ωx=(ωxk-1xk)/2
ωy=(ωyk-1yk)/2
ωz=(ωzk-1zk)/2
Step 2.4: calculate Cipk
C ipk = C ipk - 1 1 - ( ω y 2 + ω z 2 ) Δt 2 / 2 - ω z Δt + ω x ω y Δt 2 / 2 ω y Δt + ω x ω z Δt 2 / 2 ω z Δt + ω x ω y Δt 2 / 2 1 - ( ω x 2 + ω z 2 ) Δt 2 / 2 - ω x Δt + ω y ω z Δt 2 / 2 - ω y Δt + ω x ω z Δt 2 / 2 ω x Δt + ω y ω z Δt 2 / 2 1 - ( ω y 2 + ω x 2 ) Δt 2 / 2
Step 2.5: calculate Cgik
Ω is earth rotation angular speed.
Step 2.6: calculate Cgpk
Cgpk=Cgik·Cipk
Step 2.7: calculating location rgk
f k = f xk f yk f zk = n 0 x n 0 y n 0 z + 1 + Δ xx 0 0 Δ yx 1 + Δ yy 0 Δ zx Δ zy 1 + Δ zz b xk M x b yk M y b zk M z
V g 0 T = V x ( 0 ) V y ( 0 ) V z ( 0 )
r gk = r gk - 1 + 1 2 ( V gk + V gk - 1 ) Δt
Step 2.6 calculatesCalculate with step 2.7 r xgk ( j ) , r ygk ( j ) , r zgk ( j ) ( j = 1,2 , k = 1 , . . . , N j )
Step 3: intermediate variable calculates
Step 3.1: input message
This step, except the input message of preceding step and the result of calculating, also needs to input each position and revolves parameter certificate
Step 3.2: calculate:
Calculate with following formula
r xg ( t ) = V x t + α z gt 2 2 + ω zg gt 3 6 - R x θ z ( t ) ;
r zg ( t ) = V z t - α x gt 2 2 - ω xg gt 3 6 + R z θ x ( t ) ;
θy(t)=θy0ygt.
Least square
Zm×1=Hm×nXn×1
The least-squares estimation of X is: X ^ n × 1 = ( H n × m T H m × n ) - 1 H n × m T Z m × 1
Wherein Z m × 1 = r xg ( t ) r yg ( t ) r zg ( t ) θ y ( t ) T
Step 4: aim at
Calculate with following formula:
ω ^ 0 z = 1 2 [ ( ω xg ( 2 ) - ω xg ( 1 ) ) sin K + ( ω zg ( 2 ) - ω zg ( 1 ) ) cos K ] ; ω ^ 0 y = - 1 2 ( ω yg ( 2 ) + ω yg ( 1 ) ) .
The result calculating is final result.

Claims (1)

1. a quick dynamic alignment method, is characterized in that, comprises the steps:
Step 1: coarse alignment
Step 1.1: input message
Need the information of input to comprise following three classes
(a) accelerometer data
Above-mentioned xyz refers to the direction of acceleration, and subscript k represents the data of k sampling instant, and the footmark (2) in the upper right corner refers to position two, N(2)Data altogether in the second place,
(b) revolve parameter certificate
J represents position, and the application has two positions, position one and position two, the footmark 1,2,3 in the lower right corner represents the data that different sensors provide, and needs input in each position, the zero hour revolve parameter certificate
The meaning of all footmarks and front identical, described T1Refer to the finish time, T1/ 2 refer in the middle of the moment, need input in each position, middle moment and the finish time revolve parameter certificate,
(c) accelerometer parameter
n0x,n0y,n0z,Mx,My,Mzyxzxzy
Described n0x,n0y,n0zFor accelerometer bias, Mx,My,MzFor accelerometer calibration factor, ΔyxzxzyFor accelerometer alignment error,
Above-mentioned accelerometer parameter all can directly obtain,
Step 1.2: calculate ax、ay、az
In formula:
n0x,n0y,n0zFor accelerometer bias; Mx,My,MzFor accelerometer calibration factor;
ΔyxzxzyFor accelerometer alignment error,
Step 1.3: calculate ωx、ωz
In formula:
For T1The angle in/2 moment,
Step 1.4: calculate
In formula:
c11=c22c33-c32c23
c12=c31c23-c21c33
c13=c21c32-c31c22
Wherein Ω is earth rotation angular speed,
Step 1.5: calculate
In formula
Here
ExtremelyFor T1The angle in/2 moment,
Step 1.6: calculate
For the output data of this step;
Step 2: navigation calculation
Step 2.1: input
The parameter that the parameter that this step needs has been inputted in step 1, also comprise
(a) platform drift and accelerometer parameter
ω0x0y0zThe irrelevant drift of platform and acceleration, these three parameters are the intrinsic parameter of platform,
ωxxxzyxyyzxzzPlatform and acceleration associated drift, these six parameters are the input that sensor measurement obtains;
n0x,n0y,n0z,Mx,My,MzAccelerometer bias and calibration factor, these six parameters are the intrinsic parameter of accelerometer;
Each position(), this parameter is that step 1 calculates;
The linear velocity of pedestalThese three for sensor measurement obtains,
Step 2.2: calculate ωxk-1、ωxk、ωyk-1、ωyk、ωzk-1、ωzk
Calculate by following formula
Cip0=Cgp(0)
Δ t is the sampling time,
Step 2.3: calculate ωx、ωy、ωz
ωx=(ωxk-1xk)/2
ωy=(ωyk-1yk)/2
ωz=(ωzk-1zk)/2
Step 2.4: calculate Cipk
Step 2.5: calculate Cgik
Ω is earth rotation angular speed,
Step 2.6: calculate Cgpk
Cgpk=Cgik·Cipk
Step 2.7: calculating location rgk
Step 2.6 calculatesCalculate with step 2.7
Step 3: intermediate variable calculates
Step 3.1: input message
This step, except the input message of preceding step and the result of calculating, also needs to input each position and revolves parameter certificate
Step 3.2: calculate:
Calculate with following formula
θy(t)=θy0ygt.
Least square
Zm×1=Hm×nXn×1
The least-squares estimation of X is:
Wherein Zm×1=[rxg(t)ryg(t)rzg(t)θy(t)]T
Step 4: aim at
Calculate with following formula:
The result calculating is final result.
CN201310556839.9A 2013-11-11 2013-11-11 A kind of dynamic alignment method fast Active CN103557873B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310556839.9A CN103557873B (en) 2013-11-11 2013-11-11 A kind of dynamic alignment method fast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310556839.9A CN103557873B (en) 2013-11-11 2013-11-11 A kind of dynamic alignment method fast

Publications (2)

Publication Number Publication Date
CN103557873A CN103557873A (en) 2014-02-05
CN103557873B true CN103557873B (en) 2016-05-25

Family

ID=50012183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310556839.9A Active CN103557873B (en) 2013-11-11 2013-11-11 A kind of dynamic alignment method fast

Country Status (1)

Country Link
CN (1) CN103557873B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797156B (en) * 2016-09-06 2019-09-17 北京自动化控制设备研究所 The Alignment Method of gravimeter under the conditions of a kind of shaking
CN107289971B (en) * 2017-05-10 2019-11-29 北京航天控制仪器研究所 A kind of angular speed calculating and compensation method that base motion causes stage body to drift about
CN107238386B (en) * 2017-05-10 2019-07-12 北京航天控制仪器研究所 A kind of angular speed calculating and compensation method that base motion causes stage body to drift about
CN107131879B (en) * 2017-05-10 2019-12-20 北京航天控制仪器研究所 Angular rate calculation and compensation method for table body drifting caused by base motion
CN111121817B (en) * 2018-11-01 2023-02-10 北京自动化控制设备研究所 Precision self-calibration method for shaking base of platform type gravimeter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514900A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311740B2 (en) * 2010-01-28 2012-11-13 CSR Technology Holdings Inc. Use of accelerometer only data to improve GNSS performance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514900A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Base Motion Isolation Algorithm for Rate Biased RLG North Finder with Disturbances;Chu Minsheng et al.;《The Tenth International Conference on Electronic Measurement & Instruments》;20111231;第316-320页 *
一种新的惯性平台快速连续旋转自对准方法;曹渊等;《兵工学报》;20111231;第32卷(第12期);第1468-1473页 *
摇摆基座上基于信息的捷联惯导粗对准研究;秦永元等;《西北工业大学学报》;20051031;第23卷(第5期);第681-683页 *

Also Published As

Publication number Publication date
CN103557873A (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN103557873B (en) A kind of dynamic alignment method fast
CN103900565B (en) A kind of inertial navigation system attitude acquisition method based on differential GPS
CN101246024B (en) Method for external field fast calibrating miniature multi-sensor combined navigation system
CN101290326B (en) Parameter identification calibration method for rock quartz flexibility accelerometer measuring component
CN101105503B (en) Acceleration meter assembling error scalar rectification method for strapdown type inertia navigation measurement combination
CN101975872A (en) Method for calibrating zero offset of quartz flexible accelerometer component
WO2015113329A1 (en) On-board combination navigation system based on mems inertial navigation
CN101893445A (en) Rapid initial alignment method for low-accuracy strapdown inertial navigation system under swinging condition
JP2006214993A (en) Mobile navigation apparatus
CN108051866A (en) Gravimetric Method based on strap down inertial navigation/GPS combination subsidiary level angular movement isolation
CN105628025B (en) A kind of constant speed offset frequency/machine laser gyroscope shaking inertial navigation system air navigation aid
CN103323625B (en) Error calibration compensation method of accelerometers in MEMS-IMU under dynamic environment
CN105371868A (en) Error calibration and compensation method for accelerometer unit of inertially stabilized platform system
CN104864874B (en) A kind of inexpensive single gyro dead reckoning navigation method and system
CN102680000A (en) Zero-velocity/course correction application online calibrating method for optical fiber strapdown inertial measuring unit
CN103575296A (en) Dual-axis rotational inertial navigation system self-calibration method
CN103712622A (en) Gyroscopic drift estimation compensation method and device based on rotation of inertial measurement unit
CN110749338A (en) Off-axis-rotation composite transposition error calibration method for inertial measurement unit
CN106123917B (en) Consider the Strapdown Inertial Navigation System compass alignment methods of outer lever arm effect
CN101907638A (en) Method for calibrating accelerometer under unsupported state
CN107782307A (en) A kind of SINS/DR integrated navigation systems odometer abnormal data post-processing approach
CN106403999B (en) Inertial navigation accelerometer drift real-time compensation method based on GNSS
CN103954299B (en) A kind of method demarcating strap down inertial navigation combination gyroscope combination
CN103884356A (en) Method for calibrating combination of strapdown inertial combination gyroscope
CN103901496A (en) Gravity measuring method based on fiber-optic gyroscope SINS and Big Dipper

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant