CN101907638A - Method for calibrating accelerometer under unsupported state - Google Patents

Method for calibrating accelerometer under unsupported state Download PDF

Info

Publication number
CN101907638A
CN101907638A CN 201010205033 CN201010205033A CN101907638A CN 101907638 A CN101907638 A CN 101907638A CN 201010205033 CN201010205033 CN 201010205033 CN 201010205033 A CN201010205033 A CN 201010205033A CN 101907638 A CN101907638 A CN 101907638A
Authority
CN
China
Prior art keywords
mtd
msub
accelerometer
msubsup
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010205033
Other languages
Chinese (zh)
Other versions
CN101907638B (en
Inventor
张海
毛友泽
沈晓蓉
任章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010102050331A priority Critical patent/CN101907638B/en
Publication of CN101907638A publication Critical patent/CN101907638A/en
Application granted granted Critical
Publication of CN101907638B publication Critical patent/CN101907638B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

The invention discloses a method for calibrating an accelerometer under an unsupported state, which is applied to an inertial navigation system with the capacity of initially aligning with a static base attitude. The method comprises the following steps of: firstly, simplifying an error model, repeatedly changing the carrier position, and coarsely and finely aligning with each position by using the static base to acquire the attitude information; and calculating the three-axis component of an acceleration of gravity g projected under a carrier coordinate system according to the attitude information, and recording the measured value of the accelerometer at each position. The invention provides a 10-position calibrating scheme, which comprises the following steps of: acquiring zero offset to degenerate the error model into a linear model by identifying the zero offset through a nonlinear least square method according to the calculated value and measured value of the projected component; and mounting an error and scale factor coupled matrix by identifying through a linear least square method. Therefore, the key parameters of the accelerometer are calibrated. The method has the advantages of capacities of realizing unsupported calibration of the accelerometer and effectively estimating the key parameters of the accelerometer with time-varying performance, along with simple process and high speed.

Description

Method for calibrating accelerometer in unsupported state
Technical Field
The invention belongs to the technical field of inertial navigation, and particularly relates to a method for calibrating an accelerometer in an unsupported state.
Background
The accelerometer is effectively calibrated, so that the problem of time-varying performance parameters of the accelerometer can be solved, and the improvement of the measurement precision is very necessary. The traditional calibration method needs calibration equipment such as a rotary table and a centrifuge to carry out complete system-level calibration on unknown parameters, has high calibration precision, but has complex operation, long calibration period and poor real-time performance; therefore, the concept of accelerometer calibration in an unsupported state is provided for the problems, namely calibration can be realized on the use site only by means of an inertia device and without depending on laboratory conditions, and generally only parameters with the most serious influence on the performance of the accelerometer are identified due to the limitation on the site calibration conditions, so that fewer documents are published for accelerometer unsupported site calibration at present.
The method has the advantages of simple structure, time saving and easy realization compared with a multi-position method, but can not calibrate installation errors and scale factor errors, and is only suitable for a short-time low-medium-precision navigation system.
A six-position rotation field calibration method is provided for an optical fiber gyroscope IMU (inertial measurement Unit) by Liubaiqi and House construction of Beijing aerospace university, twelve rotations are performed on six positions by means of a horizontal plane, 42 nonlinear input and output equations are established, and inertial device parameter calibration is performed by rotation integral and symmetrical position error cancellation.
The identification scheme based on the optimization of the downhill simple is provided by W T Fong, S K Ong and A Y C Nee of the national university of Singapore, the operation is simple, and complete error parameters can be identified.
Disclosure of Invention
In order to solve the problems that the installation error and scale factor error of the accelerometer cannot be marked or identified and the identification result precision is low, the invention provides the method for calibrating the accelerometer in the unsupported state
g xa g ya g za = K 11 k x K 12 k y K 13 k z K 21 k x K 22 k y K 23 k z K 31 k x K 32 k y K 33 K z ( g xm - g x 0 ) ( g ym - g y 0 ) ( g zm - g z 0 ) - - - ( 1 )
In the formula, kx、ky、kzScale factors for x, y, z axes of the accelerometer; k11,K12,K13,K21,K22,K23,K31,K32,K33Is an installation error matrix element; gx0、gy0、gz0Zero offset of x, y and z axes of the accelerometer; gxm、gym、gzmAre accelerometer x, y, z axis measurements; gxa、gya、gzaThe gravity acceleration g is a projection component under a carrier coordinate system;
Figure BSA00000180442200021
is a coupling matrix of mounting errors and scale factors.
Calibration is further accomplished by 5 steps:
step 1: roughly aligning the static base to obtain a roll angle gamma and a pitch angle theta of the carrier;
step 2: the Kalman filtering is utilized to carry out precise alignment on the static base, the alignment precision of the roll angle gamma and the pitch angle theta is improved, and the calculated value (g) of the three-axis component of the projection of the gravity acceleration g in a carrier coordinate system is further obtainedxa,gya,gza);
And step 3: the carrier is carried out on 10 different positions in step 1 and step 2 to obtain 10 groups of accelerometer x, y and z axis measurement values (g)xm,gym,gzm) And 10 sets of calculation values (g) of three-axis components of the projection of the gravity acceleration g in the carrier coordinate systemxa,gya,gza). In the step, the process is judged according to whether the carriers are placed on 10 positions, if not, the process is switched to the step 1, and if the process is completed, the required data is obtained, and the step 4 is continued.
And 4, step 4: obtaining zero offset g of accelerometer by nonlinear least square methodx0,gy0,gz0
And 5: by linear optimizationMultiplying by two to obtain a coupling matrix
Obtaining the zero deviation g in the step 4x0,gy0,gz0And substituting the values of the coupling matrix in the step 5 into the formula (1) to construct an error model of the formula (1). So that the accelerometer measurements g can be measuredxm,gym,gzmEffective correction is carried out to obtain the projection component g of the corrected gravity acceleration g under the carrier coordinate systemxa,gya,gzaThereby improving the accuracy of the measurement.
The invention has the advantages that:
(1) the accelerometer can be calibrated without depending under the external field condition, the accelerometer is separated from the laboratory condition, and the traditional calibration equipment is not used;
(2) the calibration process is simple, the calibration speed is high, the accelerometer can be calibrated before being used every time, and the problem of time-varying performance parameters is effectively solved.
(3) The application of the nonlinear least square method can solve the problem of nonlinearity of an error model, avoid the dependence of the traditional calibration on calibration equipment such as a turntable and the like, and realize the calibration of the accelerometer in a non-dependence state.
Drawings
FIG. 1 is a flow chart of the steps of the calibration method of the present invention.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings.
Before calibration, the error model of the triaxial accelerometer needs to be simplified:
on the premise of field calibration, only the error parameter which has the most serious influence on the performance of the accelerometer is considered, and the error model of the triaxial accelerometer can be simplified as follows:
g xa g ya g za = K 11 K 12 K 13 K 21 K 22 K 23 K 31 K 32 K 33 k x ( g xm - g x 0 ) k y ( g ym - g y 0 ) k z ( g zm - g z 0 ) - - - ( 1 )
in the formula,
Figure BSA00000180442200032
to install the error matrix, K11、K12、K13、K21、K22、K23、K31、K32And K33Is an installation error matrix element; k is a radical ofx、ky、kzScale factors for x, y, z axes of the accelerometer; gx0、gy0、gz0Zero offset of x, y and z axes of the accelerometer; gxm、gym、gzmAre accelerometer x, y, z axis measurements; gxa、gya、gzaThe calculated value of the projection component of the gravity acceleration g in the carrier coordinate system is shown.
Further simplification of formula (1) and yields:
g xa g ya g za = K 11 k x K 12 k y K 13 k z K 21 k x K 22 k y K 23 k z K 31 k x K 32 k y K 33 K z ( g xm - g x 0 ) ( g ym - g y 0 ) ( g zm - g z 0 ) - - - ( 2 )
wherein,
Figure BSA00000180442200034
is a coupling matrix S of mounting errors and scale factors.
The coupling matrix S of mounting errors and scale factors is expressed in a simplified manner as follows:
S = S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 - - - ( 3 )
wherein, the elements in the matrix shown in the formula (3) correspond to the elements in the coupling matrix of the installation error and the scale factor in the formula (2) one by one;
the invention relates to a method for calibrating an accelerometer in an unsupported state, which comprises the following steps of calibrating the accelerometer by the following 5 steps:
step 1: and (5) roughly aligning the static base to obtain a roll angle gamma and a pitch angle theta of the carrier. In the embodiment of the invention, the alignment errors of the roll angle gamma and the pitch angle theta of the carrier are controlled within 1 degree, and the roll angle gamma and the pitch angle theta of the carrier are obtained by the following process.
By:
g x b g y b g z b = C n b g x n g y n g z n - - - ( 4 )
<math><mrow><mfenced open='(' close=')'><mtable><mtr><mtd><msubsup><mi>&omega;</mi><mi>iex</mi><mi>b</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&omega;</mi><mi>iey</mi><mi>b</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup></mtd></mtr></mtable></mfenced><mo>=</mo><msubsup><mi>C</mi><mi>n</mi><mi>b</mi></msubsup><mfenced open='(' close=')'><mtable><mtr><mtd><msubsup><mi>&omega;</mi><mi>iex</mi><mi>n</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&omega;</mi><mi>iey</mi><mi>n</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&omega;</mi><mi>iez</mi><mi>n</mi></msubsup></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
obtaining a direction cosine matrix between a carrier coordinate system and a geographic coordinate system of the carrier:
<math><mrow><msubsup><mi>C</mi><mi>n</mi><mi>b</mi></msubsup><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>g</mi><mi>x</mi><mi>b</mi></msubsup></mtd><mtd><msubsup><mi>&omega;</mi><mi>iex</mi><mi>b</mi></msubsup></mtd><mtd><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>y</mi><mi>b</mi></msubsup><mo>-</mo><msubsup><mi>&omega;</mi><mi>iey</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>z</mi><mi>b</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>g</mi><mi>y</mi><mi>b</mi></msubsup></mtd><mtd><msubsup><mi>&omega;</mi><mi>iey</mi><mi>b</mi></msubsup></mtd><mtd><msubsup><mi>&omega;</mi><mi>iex</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>z</mi><mi>b</mi></msubsup><mo>-</mo><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>x</mi><mi>b</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>g</mi><mi>z</mi><mi>b</mi></msubsup></mtd><mtd><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup></mtd><mtd><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>x</mi><mi>b</mi></msubsup><mo>-</mo><msubsup><mi>&omega;</mi><mi>iex</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>y</mi><mi>b</mi></msubsup></mtd></mtr></mtable></mfenced><mo>&CenterDot;</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mn>1</mn><mi>g</mi></mfrac><mi>tan</mi><mi>L</mi></mtd><mtd><mo>-</mo><mfrac><mn>1</mn><mi>g</mi></mfrac></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mfrac><mn>1</mn><msub><mi>&omega;</mi><mi>ie</mi></msub></mfrac><mi>sec</mi><mi>L</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><msub><mi>g&omega;</mi><mi>ie</mi></msub></mfrac><mi>sec</mi><mi>L</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></mrow></math>
<math><mrow><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mrow><mo>(</mo><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>y</mi><mi>b</mi></msubsup><mo>-</mo><msubsup><mi>&omega;</mi><mi>iey</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>z</mi><mi>b</mi></msubsup><mo>)</mo></mrow><mo>&CenterDot;</mo><mfrac><mn>1</mn><mrow><mi>g</mi><msub><mi>&omega;</mi><mi>ie</mi></msub></mrow></mfrac><mi>sec</mi><mi>L</mi></mtd><mtd><msubsup><mi>g</mi><mi>x</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><mi>g</mi></mfrac><mi>tan</mi><mi>L</mi><mo>+</mo><msubsup><mi>&omega;</mi><mi>iex</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><msub><mi>&omega;</mi><mi>ie</mi></msub></mfrac><mi>sec</mi><mi>L</mi></mtd><mtd><mo>-</mo><msubsup><mi>g</mi><mi>x</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><mi>g</mi></mfrac></mtd></mtr><mtr><mtd><mrow><mo>(</mo><msubsup><mi>&omega;</mi><mi>iex</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>z</mi><mi>b</mi></msubsup><mo>-</mo><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>x</mi><mi>b</mi></msubsup><mo>)</mo></mrow><mo>&CenterDot;</mo><mfrac><mn>1</mn><mrow><mi>g</mi><msub><mi>&omega;</mi><mi>ie</mi></msub></mrow></mfrac><mi>sec</mi><mi>l</mi></mtd><mtd><msubsup><mi>g</mi><mi>y</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><mi>g</mi></mfrac><mi>tan</mi><mi>L</mi><mo>+</mo><msubsup><mi>&omega;</mi><mi>iey</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><msub><mi>&omega;</mi><mi>ie</mi></msub></mfrac><mi>sec</mi><mi>L</mi></mtd><mtd><mo>-</mo><msubsup><mi>g</mi><mi>y</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><mi>g</mi></mfrac></mtd></mtr><mtr><mtd><mrow><mo>(</mo><msubsup><mi>&omega;</mi><mi>iey</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>x</mi><mi>b</mi></msubsup><mo>-</mo><msubsup><mi>&omega;</mi><mi>iex</mi><mi>b</mi></msubsup><msubsup><mi>g</mi><mi>y</mi><mi>b</mi></msubsup><mo>)</mo></mrow><mo>&CenterDot;</mo><mfrac><mn>1</mn><msub><mi>g&omega;</mi><mi>ie</mi></msub></mfrac><mi>sec</mi><mi>L</mi></mtd><mtd><msubsup><mi>g</mi><mi>z</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><mi>g</mi></mfrac><mi>tan</mi><mi>L</mi><mo>+</mo><msubsup><mi>&omega;</mi><mi>iez</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><msub><mi>&omega;</mi><mi>ie</mi></msub></mfrac><mi>sec</mi><mi>L</mi></mtd><mtd><mo>-</mo><msubsup><mi>g</mi><mi>z</mi><mi>b</mi></msubsup><mo>&CenterDot;</mo><mfrac><mn>1</mn><mi>g</mi></mfrac></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure BSA00000180442200043
the three-axis component measurement value of the gravity acceleration g projected under the carrier coordinate system is obtained;
Figure BSA00000180442200044
the three-axis component of the gravity acceleration g projected under the geographic coordinate system; omegaieThe angular velocity of the earth rotation is a constant with the value of 7.292115147e-5 radians per second;
Figure BSA00000180442200045
three-axis components of the projection of the rotational angular velocity of the earth in a carrier coordinate system are obtained;
Figure BSA00000180442200046
three-axis components of the earth rotation angular velocity projected under a geographic system; l is the local geographical latitude; g is the local gravitational acceleration.
The direction cosine matrix in equation (6) is represented in a simplified manner as follows:
C n b = T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 - - - ( 7 )
wherein, the elements in the matrix shown in the formula (7) correspond to the elements in the matrix shown in the formula (6) one by one;
thus, the pitch angle θ and the roll angle γ with a carrier error within 1 ° can be obtained from equation (7):
θ=sin-1T23 (8)
γ=tg-1(-T13/T33) (9)
step 2: and carrying out precise alignment on the static base by using Kalman filtering, improving the alignment precision of the roll angle gamma and the pitch angle theta, and obtaining the pitch angle theta 'and the roll angle gamma'.
In the embodiment of the invention, the alignment error of the carrier is within 50 arc seconds, and the process of specifically obtaining the pitch angle theta 'and the roll angle gamma' is as follows.
Applying Kalman filtering to the precise alignment of the static base, wherein the Kalman filtering state equation is as follows:
<math><mrow><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mover><mi>&phi;</mi><mo>&CenterDot;</mo></mover><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&phi;</mi><mo>&CenterDot;</mo></mover><mi>y</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&phi;</mi><mo>&CenterDot;</mo></mover><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&epsiv;</mi><mo>&CenterDot;</mo></mover><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&epsiv;</mi><mo>&CenterDot;</mo></mover><mi>y</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&epsiv;</mi><mo>&CenterDot;</mo></mover><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mo>&dtri;</mo><mo>&CenterDot;</mo></mover><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mo>&dtri;</mo><mo>&CenterDot;</mo></mover><mi>y</mi></msub></mtd></mtr><mtr><mtd><mover><mi>&delta;</mi><mo>&CenterDot;</mo></mover><msub><mi>V</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><mover><mi>&delta;</mi><mo>&CenterDot;</mo></mover><msub><mi>V</mi><mi>y</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='(' close=')'><mtable><mtr><mtd><mn>0</mn></mtd><mtd><msub><mi>&omega;</mi><mi>ie</mi></msub><mi>sin</mi><mi>L</mi></mtd><mtd><mo>-</mo><msub><mi>&omega;</mi><mi>ie</mi></msub><mi>cos</mi><mi>L</mi></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mn>1</mn><mo>/</mo><mi>R</mi></mtd></mtr><mtr><mtd><mo>-</mo><msub><mi>&omega;</mi><mi>ie</mi></msub><mi>sin</mi><mi>L</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn><mo>/</mo><mi>R</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>&omega;</mi><mi>ie</mi></msub><mi>cos</mi><mi>L</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>tgL</mi><mo>/</mo><mi>R</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>-</mo><mi>g</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>g</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&phi;</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&phi;</mi><mi>y</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&phi;</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&epsiv;</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&epsiv;</mi><mi>y</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&epsiv;</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mo>&dtri;</mo><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mo>&dtri;</mo><mi>y</mi></msub></mtd></mtr><mtr><mtd><mi>&delta;</mi><msub><mi>V</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><mi>&delta;</mi><msub><mi>V</mi><mi>y</mi></msub></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow></math>
the Kalman filter measurement equation is:
<math><mrow><mfenced open='(' close=')'><mtable><mtr><mtd><mi>&delta;</mi><msub><mi>V</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><mi>&delta;</mi><msub><mi>V</mi><mi>y</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='(' close=')'><mtable><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&phi;</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&phi;</mi><mi>y</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&phi;</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&epsiv;</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&epsiv;</mi><mi>y</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&epsiv;</mi><mi>z</mi></msub></mtd></mtr><mtr><mtd><msub><mo>&dtri;</mo><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mo>&dtri;</mo><mi>y</mi></msub></mtd></mtr><mtr><mtd><mi>&delta;</mi><msub><mi>V</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><mi>&delta;</mi><msub><mi>V</mi><mi>y</mi></msub></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced open='(' close=')'><mtable><mtr><mtd><msub><mi>&eta;</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&eta;</mi><mi>y</mi></msub></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow></math>
wherein phi isx、φy、φzRespectively a carrier pitching error angle, a carrier rolling error angle and a carrier course error angle; epsilonx、εy、εzRespectively installing x, y and z axial gyro errors of a coordinate system for the carrier;
Figure BSA00000180442200053
respectively installing errors of an x-axis accelerometer and a y-axis accelerometer of a coordinate system for the carrier; delta Vx、δVyRespectively installing x and y axial carrier speed errors of a coordinate system for the carrier; r is the radius of the earth; etax、ηyRespectively installing speed noises of x and y axes of a coordinate system for the carrier; and L is the local geographical latitude.
Phi can be obtained by the following formulas (10) and (11)x、φy、φz、εx、εy、εz
Figure BSA00000180442200054
δVx、δVy
By phix、φy、φzAn error matrix, let it be C, is formed, as follows:
<math><mrow><mi>C</mi><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mo>-</mo><msub><mi>&phi;</mi><mi>z</mi></msub></mtd><mtd><mo>-</mo><msub><mi>&phi;</mi><mi>y</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&phi;</mi><mi>z</mi></msub></mtd><mtd><mn>1</mn></mtd><mtd><msub><mi>&phi;</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&phi;</mi><mi>y</mi></msub></mtd><mtd><mo>-</mo><msub><mi>&phi;</mi><mi>x</mi></msub></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>
then the direction cosine matrix after fine alignment can be obtained
<math><mrow><msubsup><mi>C</mi><mi>n</mi><mrow><mo>&prime;</mo><mi>b</mi></mrow></msubsup><mo>=</mo><msubsup><mi>C</mi><mi>n</mi><mi>b</mi></msubsup><mo>*</mo><mi>C</mi><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msub><mi>T</mi><mn>11</mn></msub><mo>+</mo><msub><mi>T</mi><mn>12</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>z</mi></msub><mo>+</mo><msub><mi>T</mi><mn>13</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>y</mi></msub></mtd><mtd><mo>-</mo><msub><mi>T</mi><mn>11</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>z</mi></msub><mo>+</mo><msub><mi>T</mi><mn>12</mn></msub><mo>-</mo><msub><mi>T</mi><mn>13</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>x</mi></msub></mtd><mtd><mo>-</mo><msub><mi>T</mi><mn>11</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>y</mi></msub><mo>+</mo><msub><mi>T</mi><mn>12</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>x</mi></msub><mo>+</mo><msub><mi>T</mi><mn>13</mn></msub></mtd></mtr><mtr><mtd><msub><mi>T</mi><mn>21</mn></msub><mo>+</mo><msub><mi>T</mi><mn>22</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>z</mi></msub><mo>+</mo><msub><mi>T</mi><mn>23</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>y</mi></msub></mtd><mtd><mo>-</mo><msub><mi>T</mi><mn>21</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>z</mi></msub><mo>+</mo><msub><mi>T</mi><mn>22</mn></msub><mo>-</mo><msub><mi>T</mi><mn>23</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>x</mi></msub></mtd><mtd><mo>-</mo><msub><mi>T</mi><mn>21</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>y</mi></msub><mo>+</mo><msub><mi>T</mi><mn>22</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>x</mi></msub><mo>+</mo><msub><mi>T</mi><mn>23</mn></msub></mtd></mtr><mtr><mtd><msub><mi>T</mi><mn>31</mn></msub><mo>+</mo><msub><mi>T</mi><mn>32</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>z</mi></msub><mo>+</mo><msub><mi>T</mi><mn>33</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>y</mi></msub></mtd><mtd><mo>-</mo><msub><mi>T</mi><mn>31</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>z</mi></msub><mo>+</mo><msub><mi>T</mi><mn>32</mn></msub><mo>-</mo><msub><mi>T</mi><mn>33</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>x</mi></msub></mtd><mtd><mo>-</mo><msub><mi>T</mi><mn>31</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>y</mi></msub><mo>+</mo><msub><mi>T</mi><mn>32</mn></msub><mo>*</mo><msub><mi>&phi;</mi><mi>x</mi></msub><mo>+</mo><msub><mi>T</mi><mn>33</mn></msub></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow></mrow></math>
The direction cosine matrix after fine alignment
Figure BSA00000180442200057
Expressed in a simplified manner as follows:
<math><mrow><msubsup><mi>C</mi><mi>n</mi><mrow><mo>&prime;</mo><mi>b</mi></mrow></msubsup><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>T</mi><mn>11</mn><mo>&prime;</mo></msubsup></mtd><mtd><msubsup><mi>T</mi><mn>12</mn><mo>&prime;</mo></msubsup></mtd><mtd><msubsup><mi>T</mi><mn>13</mn><mo>&prime;</mo></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>T</mi><mn>21</mn><mo>&prime;</mo></msubsup></mtd><mtd><msubsup><mi>T</mi><mn>22</mn><mo>&prime;</mo></msubsup></mtd><mtd><msubsup><mi>T</mi><mn>23</mn><mo>&prime;</mo></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>T</mi><mn>31</mn><mo>&prime;</mo></msubsup></mtd><mtd><msubsup><mi>T</mi><mn>32</mn><mo>&prime;</mo></msubsup></mtd><mtd><msubsup><mi>T</mi><mn>33</mn><mo>&prime;</mo></msubsup></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>14</mn><mo>)</mo></mrow></mrow></math>
wherein, the direction cosine matrix after the elements in the matrix shown in the formula (14) are precisely aligned with the formula (13)
Figure BSA00000180442200062
The middle elements correspond one to one. This can be obtained by the formula (14):
θ′=sin-1T′23 (15)
γ′=tg-1(-T′13/T′33) (16)
thereby obtaining the pitch angle theta 'and the roll angle gamma' of the carrier alignment error within 50 arc seconds. Projecting the gravity acceleration g to a carrier coordinate system to obtain a calculated value of a projected triaxial component of the gravity acceleration g in the carrier coordinate system:
gxa=-sin(γ′)·cos(θ′)·g (17)
gya=sin(θ′)·g (18)
gza=cos(γ′)·cos(θ′)·g (19)
and step 3: placing a carrier at 10 different positions, wherein the coarse alignment and the precise alignment of the static base in the step 1 and the step 2 are required to be carried out at each position, judging whether the placement of the 10 positions is finished, if not, turning to the step 1, and if so, obtaining the x-axis, y-axis and z-axis measurement values (g) of 10 groups of accelerometersxm,gym,gzm) And 10 sets of calculation values (g) of three-axis components of the projection of the gravity acceleration g in the carrier coordinate systemxa,gya,gza)。
And 4, step 4: obtaining zero offset g of accelerometer by nonlinear least square methodx0,gy0,gz0
a. Constructing an objective function;
the equation (2) can be modified according to the equation (3) to make the objective function
f(p)=[S11(gxm-gx0)+S12(gym-gy0)+S13(gzm-gz0)]2+[S21(gxm-gx0)+S22(gym-gy0)+S23(gzm-gz0)]2 (20)
+[S31(gxm-gx0)+S32(gym-gy0)+S33(gzm-gz0)]2-(gxp 2+gyp 2+gzp 2)
Wherein p ═ gx0,gy0,gz0,S11,S12,S13,S21,S22,S23,S31,S32,S33];
b. Solving a Jacobian matrix of the objective function f (p);
the jacobian matrix J of the objective function f (p) is:
in the formula (f)1...f10Is an objective function f (p) at the 1 st to 10 th positions; p is a radical of1...p12The 1 st to 12 th elements of the vector p.
c. Iteratively approximating an unknown vector p;
solving the equation:
<math><mrow><mrow><mo>(</mo><msubsup><mi>J</mi><mi>k</mi><mi>T</mi></msubsup><msub><mi>J</mi><mi>k</mi></msub><mo>+</mo><msub><mi>v</mi><mi>k</mi></msub><mi>I</mi><mo>)</mo></mrow><msup><mi>&delta;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>=</mo><mo>-</mo><msubsup><mi>J</mi><mi>k</mi><mi>T</mi></msubsup><msup><mi>f</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>22</mn><mo>)</mo></mrow></mrow></math>
obtaining the k step correction quantity delta of the vector p(k)
Wherein, JkUpdates the k-th step of the jacobian matrix J,is JkTransposing; v. ofkIs an adjustable iteration step length; i is a 12-order unit array;
Figure BSA00000180442200073
Figure BSA00000180442200074
is the updated result of the k step of the objective function f (p) at the 1 st to 10 th positions;
by passing
p(k+1)=p(k)(k) (23)
In the formula, p(k+1)Updating the k +1 step of the p vector; p is a radical of(k)Updating the value of the k step for the p direction; the solution iteration is repeated for equations (20), (21), (22), (23) until the vector p converges to a stable value. The first three elements g of the vector px0,gy0,gz0I.e. the zero offset of the accelerometer.
And 5: obtaining a coupling matrix S through a linear least square method;
the zero deviation g obtained in the step 4 is comparedx0,gy0,gz0The formula (2) is taken in, the error model of the formula (2) can be degenerated into linearity, and a coupling matrix S can be obtained by using a linear least square method, wherein the coupling matrix S is as follows:
S=(R*(GT*(G*GT)-1))-1 (25)
wherein:
G = g xa 1 . . . g xa 10 g ya 1 . . . g ya 10 g za 1 . . . g za 10 ; GTis the transpose of G; R = g xm 1 - g x 0 . . . g xm 10 - g x 0 g ym 1 - g y 0 . . . g ym 10 - g y 0 g zm 1 - g z 0 . . . g zm 10 - g z 0
in the formula, gxa1...gxa10,gya1...gya10,gza1...gza10The projection of the gravity acceleration g under the carrier coordinate system under the 1 st to the 10 th positions; gxm1...gxm10,gym1...gym10,gzm1...gzm10Are the x, y, z axis measurements of the accelerometer in the 1 st to 10 th positions.
Obtaining the zero deviation g in the step 4x0,gy0,gz0And the value of the coupling matrix S of the installation error and the scale factor in the step 5 is substituted into the formula (2), so that an error model of the formula (2) can be constructed, and the measurement value g of the accelerometer can be measuredxm,gym,gzmEffective correction is carried out to obtain the projection component g of the corrected gravity acceleration g under the carrier coordinate systemxa,gya,gzaThereby improving the accuracy of the measurement.
The non-linear least squares and the linear least squares performed in the above steps 4 and 5 require that the correlation among the 10 positions of the carrier in the steps 1 and 2 is small, i.e., 10 groups (g)xa,gya,gza) 10 groups (g)xm,gym,gzm) The correlation between them is small. The present invention employs the following position selection method (different pitch and roll represent different positions) as shown in table 1.
Table 110 location selection scheme one
Attitude angle 1 2 3 4 5 6 7 8 9 10
Pitch angle/(°) 0 -20 40 -60 80 -100 120 -140 160 -180
Roll angle/(°) -10 30 -50 70 -90 110 -130 150 -170 10
The scheme meets the requirement of correlation, and the calibration precision is high under the selection method. The simulation verification for this location scheme is as follows: and (3) carrying out calibration experiments according to the position scheme through MATLAB programming verification of mathematical software, wherein if parameters such as zero offset and the like can be accurately identified, 10 calibration positions are irrelevant, and otherwise, the operation is not relevant. In the verification process, 3000 experiments are performed, the number of experiments in which the parameters to be solved can be accurately identified is recorded as an evaluation index of the scheme, different 10-position schemes are selected for comparison, and the result is shown in table 5.
The 10 position was chosen as follows for scheme two of table 2:
table 210 position selection scheme two
Attitude angle 1 2 3 4 5 6 7 8 9 10
Pitch angle/(°) 0 -20 40 -60 80 -100 120 -140 160 -180
Roll angle/(°) 0 30 -50 70 -90 110 -130 150 -170 10
The 10 position was selected as follows for scheme three of table 3:
table 310 position selection scheme three
Attitude angle 1 2 3 4 5 6 7 8 9 10
Pitch angle/(°) 0 -20 40 -60 80 -100 120 -140 160 -180
Roll angle/(°) -10 10 -30 50 -70 90 -110 130 -150 170
The 10 position was chosen as follows for scheme four of table 4:
table 410 position selection scheme four
Attitude angle 1 2 3 4 5 6 7 8 9 10
Pitch angle/(°) 0 -20 40 -60 80 -100 120 -140 160 -180
Roll angle/(°) 0 -30 50 -70 90 -110 130 -150 170 -10
The 10-position selection is performed in four schemes, each of which performs 3000 experiments, and the statistical results of the experiment times for which the parameters to be solved can be accurately identified in each scheme are shown in table 5:
TABLE 5 comparative results
Figure BSA00000180442200081
As can be seen from table 5, the 10-position selection has the highest number of experiments for accurately identifying the parameter to be solved in the case of the first scheme, and thus the first scheme is selected as the preferred scheme.

Claims (4)

1. A method for calibrating an accelerometer in an unsupported state is characterized in that: before the calibration process, firstly, the error parameter which has the most serious influence on the performance of the accelerometer needs to be considered, and the error model of the simplified triaxial accelerometer is as follows:
g xa g ya g za = K 11 k x K 12 k y K 13 k z K 21 k x K 22 k y K 23 k z K 31 k x K 32 k y K 33 k z ( g xm - g x 0 ) ( g ym - g y 0 ) ( g zm - g z 0 ) - - - ( 1 )
wherein k isx、ky、kzScale factors for x, y, z axes of the accelerometer; k11、K12、K13、K21、K22、K23、K31、K32And K33Is an installation error matrix element; gx0、gy0、gz0Zero offset of x, y and z axes of the accelerometer; gxm、gym、gzmAre accelerometer x, y, z axis measurements; gxa、gya、gzaThe calculated value of the projection component of the gravity acceleration g under the carrier coordinate system is obtained;
Figure FSA00000180442100012
a coupling matrix of mounting errors and scale factors;
further calibration is accomplished by the following 5 steps:
step 1: roughly aligning the static base to obtain a roll angle gamma and a pitch angle theta of the carrier;
step 2: the Kalman filtering is utilized to carry out precise alignment on the static base, the alignment precision of the roll angle gamma and the pitch angle theta is improved, and the calculated value (g) of the three-axis component of the projection of the gravity acceleration g under the carrier coordinate system is obtainedxa,gya,gza);
And step 3: placing the carrier at 10 different positions to perform the steps 1 and 2, judging whether the placement at 10 positions is finished, if not, executing the step 1, and if so, obtaining the x-axis measurement value, the y-axis measurement value and the z-axis measurement value (g) of 10 groups of accelerometersxm,gym,gzm) And 10 sets of calculation values (g) of three-axis components of the projection of the gravity acceleration g in the carrier coordinate systemxa,gya,gza) Continuing to step 4;
and 4, step 4: obtaining triaxial zero offset g of accelerometer by nonlinear least square methodx0,gy0,gz0
And 5: obtaining a coupling matrix of installation errors and scale factors by a linear least square method K 11 k x K 12 k y K 13 k z K 21 k x K 22 k y K 23 k z K 31 k x K 32 k y K 33 k z ;
The zero deviation g obtained in the step 4 is comparedx0、gy0、gz0And substituting the values of the coupling matrix of the installation error and the scale factors into the formula (1), constructing an error model of the formula (1), and realizing the calibration of the accelerometer in an unsupported state.
2. The method for calibrating the accelerometer in the unsupported state as claimed in claim 1, wherein: and 4, obtaining the three-axis zero offset through a nonlinear least square method, and specifically comprising the following steps:
step a, constructing a target function;
transforming equation (1) into the order of the objective function f (p)
f(p)=[K11kx(gxm-gx0)+K12ky(gym-gy0)+K13kz(gzm-gz0)]2+[K21kx(gxm-gx0)+K22ky(gym-gy0)+K23kz(gzm-gz0)]2 (2)
+[K31kx(gxm-gx0)+K32ky(gym-gy0)+K33kz(gzm-gz0)]2-(gxa 2+gya 2+gza 2)
Wherein, the vector p ═ gx0,gy0,gz0,S11,S12,S13,S21,S22,S23,S31,S32,S33];
B, solving a Jacobian matrix of the objective function f (p);
the jacobian matrix J of the objective function f (p) is:
Figure FSA00000180442100021
wherein f is1...f10Is an objective function f (p) at the 1 st to 10 th positions; p is a radical of1...p12Is given as vector p ═ gx0,gy0,gz0,S11,S12,S13,S21,S22,S23,S31,S32,S33]1 st to 12 th element of (1);
step c, iterative approximation is carried out on an unknown vector p;
solving the equation:
<math><mrow><mrow><mo>(</mo><msubsup><mi>J</mi><mi>k</mi><mi>T</mi></msubsup><msub><mi>J</mi><mi>k</mi></msub><mo>+</mo><msub><mi>v</mi><mi>k</mi></msub><mi>I</mi><mo>)</mo></mrow><msup><mi>&delta;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>=</mo><mo>-</mo><msubsup><mi>J</mi><mi>k</mi><mi>T</mi></msubsup><msup><mi>f</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
obtaining the k step correction quantity delta of the vector p(k)
Wherein, JkUpdates the k-th step of the jacobian matrix J,
Figure FSA00000180442100023
is JkTransposing; v. ofkIs an adjustable iteration step length; i is a 12-order unit array;
Figure FSA00000180442100024
Figure FSA00000180442100025
is the updated result of the k step of the objective function f (p) at the 1 st to 10 th positions;
by passing
p(k+1)=p(k)(k) (5)
Wherein p is(k+1)Updating the k +1 step of the vector p; p is a radical of(k)Updating the value of the k step for the vector p; solving iterations for equations (2), (3), (4), (5) until vector p converges to a stable value; the first three elements g of the vector px0,gy0,gz0Is the null of the accelerometer.
3. The method for calibrating the accelerometer in the unsupported state as claimed in claim 1, wherein: and 5, obtaining the coupling matrix of the installation error and the scale factor by a linear least square method, and specifically comprising the following steps:
deviation of zero position gx0,gy0,gz0Taking formula (1), degrading the error model of formula (1) into linearity, and obtaining the coupling matrix by using a linear least square method
Figure FSA00000180442100026
Comprises the following steps:
K 11 k x K 12 k y K 13 k z K 21 k x K 22 k y K 23 k z K 31 k x K 32 k y K 33 k z = ( R * ( G T * ( G * G T ) - 1 ) ) - 1 - - - ( 6 )
wherein:
G = g xa 1 . . . g xa 10 g ya 1 . . . g ya 10 g za 1 . . . g za 10 ; GTis the transpose of G; R = g xm 1 - g x 0 . . . g xm 10 - g x 0 g ym 1 - g y 0 . . . g ym 10 - g y 0 g zm 1 - g z 0 . . . g zm 10 - g z 0
in the formula, gxa1...gxa10,gya1...gya10,gza1...gza10The projection of the gravity acceleration g under the carrier coordinate system under the 1 st to the 10 th positions; gxm1...gxm10,gym1...gym10,gzm1...gzm10The x, y and z axis measurement values of the accelerometers of the carrier in the 1 st to 10 th positions are obtained.
4. The method for calibrating the accelerometer in the unsupported state as claimed in claim 1, wherein: the pitch angle and the roll angle were (0 °, -10 °), (-20 °, 30 °), (40 °, -50 °) (60 °, 70 °), (80 °, -90 °), (-100 °, 110 °), (120 °, -130 °), (-140 °, 150 °), (160 °, (170 °), (-180 °, 10 °) respectively, and 10 positions of the carrier were selected.
CN2010102050331A 2010-06-11 2010-06-11 Method for calibrating accelerometer under unsupported state Expired - Fee Related CN101907638B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102050331A CN101907638B (en) 2010-06-11 2010-06-11 Method for calibrating accelerometer under unsupported state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102050331A CN101907638B (en) 2010-06-11 2010-06-11 Method for calibrating accelerometer under unsupported state

Publications (2)

Publication Number Publication Date
CN101907638A true CN101907638A (en) 2010-12-08
CN101907638B CN101907638B (en) 2011-09-28

Family

ID=43263154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102050331A Expired - Fee Related CN101907638B (en) 2010-06-11 2010-06-11 Method for calibrating accelerometer under unsupported state

Country Status (1)

Country Link
CN (1) CN101907638B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662083A (en) * 2012-03-28 2012-09-12 北京航空航天大学 Accelerometer calibration method based on GPS velocity information
CN103823084A (en) * 2014-03-21 2014-05-28 苏州纳芯微电子有限公司 Method for calibrating three-axis acceleration sensor
CN103884870A (en) * 2014-03-13 2014-06-25 工业和信息化部电子第五研究所 Method and device for improving accelerometer calibration accuracy
CN104501833A (en) * 2014-12-08 2015-04-08 北京航天控制仪器研究所 Method for calibrating combined error coefficient of accelerometer under condition of reference uncertainty
CN106813680A (en) * 2016-12-28 2017-06-09 兰州空间技术物理研究所 A kind of static demarcating method of high accuracy, high-resolution quartz immunity sensor
CN108139426A (en) * 2015-09-30 2018-06-08 西门子股份公司 For identifying the method for the failure of acceleration transducer and measuring system
CN108398576A (en) * 2018-03-06 2018-08-14 中国人民解放军火箭军工程大学 A kind of static error calibration system and method
CN108982918A (en) * 2018-07-27 2018-12-11 北京航天控制仪器研究所 The separation of accelerometer combined error coefficient and scaling method under benchmark uncertain condition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989186A (en) * 1982-08-16 1991-01-29 The United States Of America As Represented By The Secretary Of The Navy Target tracking sonar with false target detector
US6640165B1 (en) * 2002-11-26 2003-10-28 Northrop Grumman Corporation Method and system of determining altitude of flying object
US20050240347A1 (en) * 2004-04-23 2005-10-27 Yun-Chun Yang Method and apparatus for adaptive filter based attitude updating
CN101078627A (en) * 2007-06-28 2007-11-28 北京航空航天大学 On-line calibration method for shield machine automatic guiding system based on optical fiber gyro and PSD laser target
CN101571394A (en) * 2009-05-22 2009-11-04 哈尔滨工程大学 Method for determining initial attitude of fiber strapdown inertial navigation system based on rotating mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989186A (en) * 1982-08-16 1991-01-29 The United States Of America As Represented By The Secretary Of The Navy Target tracking sonar with false target detector
US6640165B1 (en) * 2002-11-26 2003-10-28 Northrop Grumman Corporation Method and system of determining altitude of flying object
US20050240347A1 (en) * 2004-04-23 2005-10-27 Yun-Chun Yang Method and apparatus for adaptive filter based attitude updating
CN101078627A (en) * 2007-06-28 2007-11-28 北京航空航天大学 On-line calibration method for shield machine automatic guiding system based on optical fiber gyro and PSD laser target
CN101571394A (en) * 2009-05-22 2009-11-04 哈尔滨工程大学 Method for determining initial attitude of fiber strapdown inertial navigation system based on rotating mechanism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662083A (en) * 2012-03-28 2012-09-12 北京航空航天大学 Accelerometer calibration method based on GPS velocity information
CN102662083B (en) * 2012-03-28 2014-04-02 北京航空航天大学 Accelerometer calibration method based on GPS velocity information
CN103884870A (en) * 2014-03-13 2014-06-25 工业和信息化部电子第五研究所 Method and device for improving accelerometer calibration accuracy
CN103884870B (en) * 2014-03-13 2016-08-24 工业和信息化部电子第五研究所 The method and apparatus improving accelerometer calibration precision
CN103823084A (en) * 2014-03-21 2014-05-28 苏州纳芯微电子有限公司 Method for calibrating three-axis acceleration sensor
CN104501833A (en) * 2014-12-08 2015-04-08 北京航天控制仪器研究所 Method for calibrating combined error coefficient of accelerometer under condition of reference uncertainty
CN104501833B (en) * 2014-12-08 2017-07-07 北京航天控制仪器研究所 Accelerometer combined error coefficient scaling method under a kind of benchmark uncertain condition
CN108139426A (en) * 2015-09-30 2018-06-08 西门子股份公司 For identifying the method for the failure of acceleration transducer and measuring system
CN106813680A (en) * 2016-12-28 2017-06-09 兰州空间技术物理研究所 A kind of static demarcating method of high accuracy, high-resolution quartz immunity sensor
CN108398576A (en) * 2018-03-06 2018-08-14 中国人民解放军火箭军工程大学 A kind of static error calibration system and method
CN108398576B (en) * 2018-03-06 2020-02-07 中国人民解放军火箭军工程大学 Static error calibration system and method
CN108982918A (en) * 2018-07-27 2018-12-11 北京航天控制仪器研究所 The separation of accelerometer combined error coefficient and scaling method under benchmark uncertain condition

Also Published As

Publication number Publication date
CN101907638B (en) 2011-09-28

Similar Documents

Publication Publication Date Title
CN101907638B (en) Method for calibrating accelerometer under unsupported state
CN113029199B (en) System-level temperature error compensation method of laser gyro inertial navigation system
CN110160554B (en) Single-axis rotation strapdown inertial navigation system calibration method based on optimization method
CN103808331B (en) A kind of MEMS three-axis gyroscope error calibrating method
CN101290326B (en) Parameter identification calibration method for rock quartz flexibility accelerometer measuring component
CN102486377B (en) Method for acquiring initial course attitude of fiber optic gyro strapdown inertial navigation system
CN1330935C (en) Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling
CN103076025B (en) A kind of optical fibre gyro constant error scaling method based on two solver
CN103217159B (en) A kind of SINS/GPS/ polarized light integrated navigation system modeling and initial alignment on moving base method
CN112595350B (en) Automatic calibration method and terminal for inertial navigation system
CN103852085B (en) A kind of fiber strapdown inertial navigation system system for field scaling method based on least square fitting
CN102680004B (en) Scale factor error calibration and compensation method of flexible gyroscope position and orientation system (POS)
CN108592952A (en) The method for demarcating more MIMU errors simultaneously with positive and negative times of rate based on lever arm compensation
CN104165638B (en) Multi-position self-calibration method for biaxial rotating inertial navigation system
CN106482746B (en) Lever arm calibration and compensation method in a kind of accelerometer for hybrid inertial navigation system
CN110887507B (en) Method for quickly estimating all zero offsets of inertial measurement units
CN102564455B (en) Star sensor installation error four-position calibration and compensation method
CN103900608B (en) A kind of low precision inertial alignment method based on quaternary number CKF
CN106017507A (en) Method for fast calibration of medium-and-low-precision optical fiber inertia units
CN103453917A (en) Initial alignment and self-calibration method of double-shaft rotation type strapdown inertial navigation system
CN106017452B (en) Double tops disturbance rejection north finding method
CN109556631A (en) INS/GNSS/polarization/geomagnetic combined navigation system alignment method based on least squares
CN102393210A (en) Temperature calibration method of laser gyro inertia measurement unit
CN102679999A (en) Star sensor installation error four-position calibrating and compensating method
CN104596543A (en) Error coefficient calibration method for gyroscope combination under uncertain standard condition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110928

Termination date: 20140611

EXPY Termination of patent right or utility model