CN103544985A - Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories - Google Patents

Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories Download PDF

Info

Publication number
CN103544985A
CN103544985A CN201310302503.XA CN201310302503A CN103544985A CN 103544985 A CN103544985 A CN 103544985A CN 201310302503 A CN201310302503 A CN 201310302503A CN 103544985 A CN103544985 A CN 103544985A
Authority
CN
China
Prior art keywords
magnetic
symmetry
layer
pinned
free layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310302503.XA
Other languages
Chinese (zh)
Other versions
CN103544985B (en
Inventor
W.H.巴特勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/549,331 external-priority patent/US9130151B2/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN103544985A publication Critical patent/CN103544985A/en
Application granted granted Critical
Publication of CN103544985B publication Critical patent/CN103544985B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开了用于提供可在磁存储器中使用的磁隧道结的方法和系统。该方法和系统提供磁性结。提供自由层、对称性过滤器和被钉扎层。当写电流流过磁性结时,自由层具有可在稳定的状态之间转换的磁矩。对称性过滤器以比具有另一对称性的电荷载流子高的几率传输具有第一对称性的电荷载流子。对称性过滤器位于自由层和被钉扎层之间。自由层和/或被钉扎层位于平面中,在自旋通道中具有在费米能级处的第一对称性的电荷载流子,在另一自旋通道中没有在费米能级处的第一对称性的电荷载流子,并具有垂直于平面的非零磁矩分量。自由层和/或被钉扎层与对称性过滤器具有小于百分之七的至少一个晶格失配。

Figure 201310302503

Methods and systems for providing magnetic tunnel junctions usable in magnetic memories are disclosed. The method and system provide a magnetic junction. Free layers, symmetry filters, and pinned layers are provided. The free layer has a magnetic moment that can be switched between stable states when a write current flows through the magnetic junction. A symmetry filter transmits charge carriers of a first symmetry with a higher probability than charge carriers of another symmetry. Symmetry filters are located between the free layer and the pinned layer. The free layer and/or the pinned layer lie in a plane with charge carriers of the first symmetry at the Fermi level in the spin channel and not at the Fermi level in the other spin channel The charge carriers of the first symmetry of , and have a nonzero magnetic moment component perpendicular to the plane. The free layer and/or the pinned layer have at least one lattice mismatch with the symmetry filter of less than seven percent.

Figure 201310302503

Description

用于提供可在磁存储器中使用的磁隧道结的方法和系统Method and system for providing a magnetic tunnel junction usable in magnetic memory

背景技术Background technique

磁存储器,特别地磁随机存取存储器(MRAM),由于它们对于高读/写速度的潜力、耐久性、非易失性以及运行时低的功耗而引起人们越来越多的兴趣。一种类型的MRAM是自旋转移矩随机存取存储器(STT-RAM)。STT-RAM利用通过驱动经过其的电流而被至少部分地写入的磁性结。Magnetic memories, especially Magnetic Random Access Memory (MRAM), are attracting increasing interest due to their potential for high read/write speeds, endurance, non-volatility, and low power consumption during operation. One type of MRAM is spin-transfer torque random-access memory (STT-RAM). STT-RAM utilizes magnetic junctions that are at least partially written by driving a current through them.

图1示出了常规的磁隧道结(MTJ)10,其可以用于常规的STT-RAM中。常规的MTJ10通常位于底接触11上,采用常规的籽层12,并在顶接触16下。常规的MTJ10包括常规的反铁磁(AFM)层20、常规的被钉扎层30、常规的隧穿阻挡层40和常规的自由层50。还示出了常规的覆盖层14。常规的自由层50具有可改变的磁矩52,而常规被钉扎层30的磁矩43是稳定的。更具体地,常规被钉扎层30的磁矩32通过与常规的AFM层20的相互作用而被固定。Figure 1 shows a conventional magnetic tunnel junction (MTJ) 10, which can be used in a conventional STT-RAM. A conventional MTJ 10 is typically located on a bottom contact 11 , employing a conventional seed layer 12 , and under a top contact 16 . A conventional MTJ 10 includes a conventional antiferromagnetic (AFM) layer 20 , a conventional pinned layer 30 , a conventional tunneling barrier layer 40 and a conventional free layer 50 . A conventional cover layer 14 is also shown. The conventional free layer 50 has a changeable magnetic moment 52, while the magnetic moment 43 of the conventional pinned layer 30 is stable. More specifically, the magnetic moment 32 of the conventional pinned layer 30 is fixed by interaction with the conventional AFM layer 20 .

常规的接触12和16用于在电流垂直于平面(CPP)方向或沿如图1所示的z轴驱动电流。流过常规被钉扎层30的电流变得自旋极化并携带角动量。此角动量可以传输到常规的自由层50。如果足够量的角动量被如此传输,则自由层50的磁矩52可以被转换为与被钉扎层30的磁矩平行或反平行。Conventional contacts 12 and 16 are used to drive current in a current-perpendicular-to-plane (CPP) direction or along the z-axis as shown in FIG. 1 . Current flowing through conventional pinned layer 30 becomes spin polarized and carries angular momentum. This angular momentum can be transferred to the conventional free layer 50 . If a sufficient amount of angular momentum is so transferred, the magnetic moment 52 of the free layer 50 can be converted to be parallel or antiparallel to the magnetic moment of the pinned layer 30 .

为了改善STT-RAM的性能,期望优化常规磁性结10的各种因素。例如,常规磁性结10可以设计为期望的临界电流Ic,该临界电流用于转换热稳定的常规自由层50。临界电流可以由以下估算:In order to improve the performance of STT-RAM, it is desirable to optimize various factors of the conventional magnetic junction 10 . For example, the conventional magnetic junction 10 can be designed for a desired critical current I c for switching the thermally stable conventional free layer 50 . The critical current can be estimated by:

II cc == αα ηη ⟨⟨ Hh ⟩⟩ effeff Hh KK 1.51.5 mAmA

其中<H>eff是通过常规自由层50的进动磁矩所见的平均有效磁场,Hk是当沿着易磁化轴施加时转换磁矩52所需的磁场,α是阻尼常数,η是自旋力矩效率,1.5mA表示电流且适于60的热稳定系数(ΔE/kBT),其中ΔE表示热转换的能量势垒,kB是波尔兹曼常数,T是绝对温度。where <H> eff is the average effective magnetic field seen by the precessing magnetic moment of the conventional free layer 50, Hk is the magnetic field required to switch the magnetic moment 52 when applied along the easy axis, α is the damping constant, and η is Spin-torque efficiency, 1.5 mA represents current and fits a thermal stability coefficient (ΔE/k B T ) of 60, where ΔE represents the energy barrier for thermal conversion, k B is the Boltzmann constant, and T is the absolute temperature.

常规的磁性结10可以被优化以改善临界电流。设计常规的磁性结10可以包括采用CoFe和/或CoFeB用于常规的被钉扎层30和常规的自由层50。CoFe和CoFeB倾向于具有平面内磁矩,如由磁矩32和52所示。此外,常规的隧道结40通常地为晶体MgO。CoFe和CoFeB与MgO的结合可以导致较低的临界电流。Conventional magnetic junctions 10 can be optimized to improve critical current. Designing a conventional magnetic junction 10 may include employing CoFe and/or CoFeB for the conventional pinned layer 30 and the conventional free layer 50 . CoFe and CoFeB tend to have in-plane magnetic moments, as shown by magnetic moments 32 and 52 . Furthermore, conventional tunnel junctions 40 are typically crystalline MgO. The combination of CoFe and CoFeB with MgO can lead to lower critical current.

尽管常规的磁隧道结10起作用,但是期望进一步改善。例如,期望可在如下的磁存储器中使用的磁性结,该磁存储器可以是较小的、可缩小至较小的尺寸、采用低的临界电流、可容易制造和/或具有其它的特性。Although the conventional magnetic tunnel junction 10 works, further improvements are desired. For example, magnetic junctions that can be used in magnetic memories that can be smaller, can be scaled to smaller sizes, employ low critical currents, can be easily fabricated, and/or have other properties are desired.

因此,期望一种可在更高密度的STT-RAM中使用的改进的磁性结。Therefore, an improved magnetic junction that can be used in higher density STT-RAM is desired.

发明内容Contents of the invention

所描述的是用于提供磁性结的方法和系统。该方法和系统包括提供自由层、对称性过滤器(symmetry filter)和被钉扎层。自由层具有第一磁矩,当写电流流过磁性结时该第一磁矩可在多个稳定的磁状态之间转换。对称性过滤器以比具有另一对称性的电荷载流子高的几率传输具有第一对称性的电荷载流子。被钉扎层具有被钉扎在特定方向上的第二磁矩。对称性过滤器位于自由层和被钉扎层之间。自由层和被钉扎层中的至少一个在自旋通道中具有在费米能级处的第一对称性的电荷载流子,而在另一个自旋通道中没有在费米能级处的第一对称性的电荷载流子,位于平面中,并具有基本上垂直于平面的非零磁矩分量。自由层和/或被钉扎层与对称性过滤器具有至少一个小于百分之七的晶格失配。在某些方面中,对称性过滤器包括Ge、GaAs和ZnSe中的至少一个。Described are methods and systems for providing magnetic junctions. The method and system include providing a free layer, a symmetry filter and a pinned layer. The free layer has a first magnetic moment that is switchable between a plurality of stable magnetic states when a write current flows through the magnetic junction. A symmetry filter transmits charge carriers of a first symmetry with a higher probability than charge carriers of another symmetry. The pinned layer has a second magnetic moment pinned in a specific direction. Symmetry filters are located between the free layer and the pinned layer. At least one of the free layer and the pinned layer has charge carriers of the first symmetry at the Fermi level in the spin channel and no charge carriers at the Fermi level in the other spin channel Charge carriers of a first symmetry lie in a plane and have a non-zero magnetic moment component substantially perpendicular to the plane. The free layer and/or the pinned layer has at least one lattice mismatch of less than seven percent with the symmetric filter. In certain aspects, the symmetry filter includes at least one of Ge, GaAs, and ZnSe.

附图说明Description of drawings

图1示出了常规的磁隧道结。Figure 1 shows a conventional magnetic tunnel junction.

图2示出了适于在磁存储器中使用的磁性结的示范性实施例。Figure 2 shows an exemplary embodiment of a magnetic junction suitable for use in a magnetic memory.

图3示出了在磁性结的示范性实施例的自由层和/或被钉扎层中对于多子与少子自旋通道的能带结构的示范性实施例。Figure 3 shows an exemplary embodiment of the energy band structure for many-carrier and minority-carrier spin channels in the free layer and/or pinned layer of an exemplary embodiment of a magnetic junction.

图4示出了基于波函数对称性通过对称性过滤器传输电荷载流子的示范性实施例。Figure 4 illustrates an exemplary embodiment of transporting charge carriers through a symmetric filter based on wave function symmetry.

图5示出了适于在磁存储器中使用的磁性结的另一个示范性实施例,其中自由层和被钉扎层两者具有在能米能量处带有对称性的状态,该对称性优先由自旋过滤器层传输。Fig. 5 shows another exemplary embodiment of a magnetic junction suitable for use in a magnetic memory, where both the free layer and the pinned layer have states with symmetry at energy meter energies, the symmetry preferentially Transmitted by the spin filter layer.

图6示出了适于在磁存储器中使用的磁性结的另一个示范性实施例。Figure 6 shows another exemplary embodiment of a magnetic junction suitable for use in a magnetic memory.

图7示出了适于在磁存储器中使用的磁性结的另一个示范性实施例。Figure 7 shows another exemplary embodiment of a magnetic junction suitable for use in a magnetic memory.

图8示出了适于在磁存储器中使用的磁性结的另一个示范性实施例。Figure 8 shows another exemplary embodiment of a magnetic junction suitable for use in a magnetic memory.

图9示出了适于在磁存储器中使用的磁性结的另一个示范性实施例。Figure 9 shows another exemplary embodiment of a magnetic junction suitable for use in a magnetic memory.

图10示出了适于在磁存储器中使用的磁性结的另一个示范性实施例。Figure 10 shows another exemplary embodiment of a magnetic junction suitable for use in a magnetic memory.

图11示出了适于在磁存储器中使用的双磁性结的另一个示范性实施例。Figure 11 shows another exemplary embodiment of a dual magnetic junction suitable for use in magnetic memory.

图12示出了利用磁性结的磁存储器的示范性实施例。Figure 12 shows an exemplary embodiment of a magnetic memory utilizing magnetic junctions.

图13示出了用于制造适于在磁存储器中使用的磁隧道结的方法的示范性实施例。Figure 13 shows an exemplary embodiment of a method for fabricating a magnetic tunnel junction suitable for use in a magnetic memory.

具体实施方式Detailed ways

示范性实施例涉及可在磁装置诸如磁存储器中使用的磁性结以及采用这样的磁性结的装置。给出下面的描述以使得本领域普通技术人员能够制造和使用本发明,并在专利申请及其要求的背景下提供。对示范性实施例以及这里描述的一般原理和特征的各种修改将易于变得显然。示范性实施例主要在特定实施中提供的特定方法和系统方面进行描述。然而,方法和系统将在其它实施中有效操作。诸如“示范性实施例”、“一个实施例”和“另一个实施例”的术语可以指的是相同或不同的实施例以及多个实施例。实施例将关于具有特定部件的系统和/或装置进行描述。然而,系统和/或装置可以包括比示出的更多或更少的部件,并且可以进行这些部件的布置和类型的变化而在不脱离本发明的范围。示范性实施例也将在具有某些步骤的特定方法的背景下进行描述。然而,该方法和系统对于与示范性实施例不一致的具有不同和/或另外的步骤以及不同顺序的步骤的方法有效操作。因此,本发明并不意在被限于所示的实施例,而是被给予与这里描述的原理和特征一致的最宽范围。Exemplary embodiments relate to magnetic junctions usable in magnetic devices, such as magnetic memories, and devices employing such magnetic junctions. The following description is given to enable one of ordinary skill in the art to make and use the invention, and is provided in the context of a patent application and its requirements. Various modifications to the exemplary embodiments, and the general principles and features described herein, will be readily apparent. The exemplary embodiments are described primarily in terms of particular methods and systems provided in particular implementations. However, the methods and systems will operate effectively in other implementations. Terms such as "exemplary embodiment," "one embodiment," and "another embodiment" can refer to the same or different embodiments and multiple embodiments. Embodiments will be described in relation to systems and/or devices having particular components. However, the system and/or device may include more or fewer components than shown, and changes may be made in the arrangement and type of these components without departing from the scope of the invention. Exemplary embodiments will also be described in the context of particular methods having certain steps. However, the methods and systems operate effectively with methods having different and/or additional steps and steps in a different order than the exemplary embodiments. Thus, the present invention is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features described herein.

用于提供磁性结的方法和系统被描述。该方法和系统包括提供自由层、对称性过滤器和被钉扎层。自由层具有第一磁矩,当写电流通过磁性结时该第一磁矩可在多个稳定的磁状态之间转换。对称性过滤器以比具有其它对称性的电荷载流子高的几率传输具有第一对称性的电荷载流子。被钉扎层具有被钉扎在特定方向上的第二磁矩。对称性过滤器位于自由层和被钉扎层之间。自由层和被钉扎层中的至少一个在一个自旋通道中具有在费米能级处的第一对称性的电荷载流子,而在其它自旋通道中没有在费米能级处的第一对称性的电荷载流子,并在平面中,并且具有基本上垂直于平面的非零磁矩分量。自由层和/或被钉扎层与对称性过滤器具有小于百分之七的至少一个晶格失配。在某些方面中,该至少一个晶格失配可以小于百分之三或百分之四。在某些方面中,对称性过滤器包括Ge、GaAs和ZnSe中的至少一个。Methods and systems for providing magnetic junctions are described. The method and system include providing a free layer, a symmetry filter, and a pinned layer. The free layer has a first magnetic moment that is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. The symmetry filter transmits charge carriers with a first symmetry with a higher probability than charge carriers with other symmetries. The pinned layer has a second magnetic moment pinned in a specific direction. Symmetry filters are located between the free layer and the pinned layer. At least one of the free layer and the pinned layer has charge carriers of the first symmetry at the Fermi level in one spin channel and none at the Fermi level in the other spin channel The charge carriers of the first symmetry are in a plane and have a nonzero magnetic moment component substantially perpendicular to the plane. The free layer and/or the pinned layer have at least one lattice mismatch with the symmetry filter of less than seven percent. In certain aspects, the at least one lattice mismatch can be less than three or four percent. In certain aspects, the symmetry filter includes at least one of Ge, GaAs, and ZnSe.

示范性实施例在具有一定成分的特定磁性结和磁存储器的背景下描述。本领域普通技术人员将容易认识到,本发明与具有其它和/或另外成分和/或其它特征的磁性结和存储器的使用一致,该其它和/或另外成分和/或其它特征与本发明不一致。该方法和系统还在对自旋转移现象的当前理解的背景下描述。因此,本领域普通技术人员将容易认识到,该方法和系统的表现的理论解释是基于自旋转移的该当前理解进行。本领域普通技术人员还将易于认识到,该方法和系统在与基板具有特定关系的结构的背景下描述。然而,本领域普通技术人员将易于认识到,该方法和系统与其它的结构一致。此外,该方法和系统在某些层为合成和/或简单的背景下描述。然而,本领域普通技术人员将易于认识到,所述层可以具有另外的结构。此外,该方法和系统在具有特定层的磁性结的背景下描述。然而,本领域普通技术人员将易于认识到,也可以采用具有与该方法和系统不一致的另外和/或不同层的磁性结。而且,一定的成分被描述为磁性的、铁磁性的和亚铁磁的。如这里使用的,术语磁性的可以包括铁磁的、亚铁磁的或类似的结构。因此,如这里所使用的,术语“磁性的”或“铁磁的”包括但不限于铁磁体和亚铁磁体。该方法和系统还在单个元件的背景下描述。然而,本领域普通技术人员将易于认识到,该方法和系统与具有多个元件的磁存储器的使用一致。此外,如这里所用的,“平面内”基本上在磁性结的一个或多个层的平面内或与其平行。相反地,“垂直”对应于基本上与磁性结的一个或多个层垂直的方向。Exemplary embodiments are described in the context of specific magnetic junctions and magnetic memories having certain compositions. Those of ordinary skill in the art will readily recognize that the present invention is consistent with the use of magnetic junctions and memories having other and/or additional components and/or other features not consistent with the present invention . The method and system are also described in the context of the current understanding of the spin transfer phenomenon. Accordingly, one of ordinary skill in the art will readily recognize that theoretical explanations of the performance of the methods and systems are based on this current understanding of spin transfer. Those of ordinary skill in the art will also readily recognize that the methods and systems are described in the context of structures having a particular relationship to a substrate. However, one of ordinary skill in the art will readily recognize that the methods and systems are consistent with other structures. Furthermore, the methods and systems are described in the context of certain layers being synthetic and/or simple. However, one of ordinary skill in the art will readily recognize that the layers may have alternative structures. Furthermore, the methods and systems are described in the context of magnetic junctions with specific layers. However, one of ordinary skill in the art will readily recognize that magnetic junctions having additional and/or different layers inconsistent with the methods and systems may also be employed. Also, certain compositions are described as magnetic, ferromagnetic and ferrimagnetic. As used herein, the term magnetic may include ferromagnetic, ferrimagnetic or similar structures. Thus, as used herein, the terms "magnetic" or "ferromagnetic" include, but are not limited to, ferromagnets and ferrimagnets. The methods and systems are also described in the context of individual components. However, one of ordinary skill in the art will readily recognize that the method and system are consistent with the use of magnetic memories having multiple elements. Also, as used herein, "in-plane" is substantially in or parallel to the plane of one or more layers of the magnetic junction. Conversely, "vertical" corresponds to a direction substantially perpendicular to one or more layers of the magnetic junction.

图2示出了磁性结100的示范性实施例。例如,磁性结100可以在磁存储器中使用,其中电流在CPP方向上被驱动经过磁性结100。为了清晰起见,图2没有按比例绘制,磁性结100的某些部分可能被省略。磁性结100包括被钉扎层110、自旋过滤器120和自由层130。磁性结100还可以包括其它层(未示出)。FIG. 2 shows an exemplary embodiment of a magnetic junction 100 . For example, magnetic junction 100 may be used in magnetic memory where current is driven through magnetic junction 100 in the CPP direction. For clarity, FIG. 2 is not drawn to scale and certain portions of magnetic junction 100 may be omitted. The magnetic junction 100 includes a pinned layer 110 , a spin filter 120 and a free layer 130 . The magnetic junction 100 may also include other layers (not shown).

自由层130是具有可改变的磁矩131的磁层。磁矩131示出为在两端具有箭头以表示磁矩131可以改变方向。当写电流流过磁性结100时,磁矩131可在稳定的磁状态之间转换。因此,在图2所示的示范性实施例中,自旋转移矩可以用于转换自由层130的磁矩131。例如,在z方向上驱动的电流能够将磁矩131转换为平行于或反平行于被钉扎层110的磁矩111。在某些实施例中,自由层130具有至少一纳米且不大于十纳米的厚度。然而,其它的厚度是可以的。尽管示出为具有单一磁矩131的简单层,但是自由层130也可以包括多个铁磁层和/或非磁层。例如,自由层130可以为合成反铁磁(SAF),包括通过一个或多个薄层诸如Ru反铁磁耦合或铁磁耦合的磁层。自由层130也可以是另外的多层,其中一个或多个子层是磁性的。也可以采用其它结构用于自由层130。The free layer 130 is a magnetic layer with a changeable magnetic moment 131 . Magnetic moment 131 is shown with arrows at both ends to indicate that magnetic moment 131 can change direction. When a write current flows through the magnetic junction 100, the magnetic moment 131 can switch between stable magnetic states. Thus, in the exemplary embodiment shown in FIG. 2 , the spin transfer torque can be used to switch the magnetic moment 131 of the free layer 130 . For example, a current driven in the z-direction can convert the magnetic moment 131 to a magnetic moment 111 parallel or antiparallel to the pinned layer 110 . In some embodiments, free layer 130 has a thickness of at least one nanometer and no greater than ten nanometers. However, other thicknesses are possible. Although shown as a simple layer with a single magnetic moment 131, the free layer 130 may also include multiple ferromagnetic and/or nonmagnetic layers. For example, the free layer 130 may be a synthetic antiferromagnetic (SAF), comprising a magnetic layer antiferromagnetically coupled or ferromagnetically coupled through one or more thin layers such as Ru. Free layer 130 may also be an additional multilayer in which one or more sublayers are magnetic. Other structures for the free layer 130 may also be employed.

在所示的实施例中,自由层130具有沿着磁矩131的易磁化轴。磁矩131沿着易磁化轴是稳定的。在所示的实施例中,磁矩具有平面内的分量。换言之,磁矩131具有基本上在自由层130的平面内的分量。因此,在所示的实施例中,磁矩131具有与x-y平面平行的分量。另外,自由层磁矩131具有基本上垂直于平面的分量。换言之,自由层磁矩131具有平行于图2的z轴的分量。在某些实施例中,磁矩131可以垂直于平面。在这样的实施例中,磁矩131的平面内分量为零。在这样的实施例中,自由层130可以包括诸如AlMn的材料。在某些这样的实施例中,自由层130可以由处于L10相的AlMn组成,具有垂直于该平面的(100)轴。在其它实施例中,自由层130可以包括MnGa和/或MnIn。In the illustrated embodiment, free layer 130 has an easy axis along magnetic moment 131 . The magnetic moment 131 is stable along the easy axis. In the illustrated embodiment, the magnetic moment has an in-plane component. In other words, the magnetic moment 131 has a component substantially in the plane of the free layer 130 . Thus, in the illustrated embodiment, the magnetic moment 131 has a component parallel to the xy plane. In addition, the free layer magnetic moment 131 has a component substantially perpendicular to the plane. In other words, the free layer magnetic moment 131 has a component parallel to the z-axis of FIG. 2 . In some embodiments, magnetic moment 131 may be perpendicular to the plane. In such embodiments, the in-plane component of magnetic moment 131 is zero. In such an embodiment, the free layer 130 may include a material such as AlMn. In some of these embodiments, the free layer 130 may consist of AlMn in the L1 0 phase, with a (100) axis perpendicular to the plane. In other embodiments, the free layer 130 may include MnGa and/or MnIn.

对称性过滤器120是以比具有另一对称性的电荷载流子高的几率传输具有第一对称性的电荷载流子的层。传输可以经由隧穿。在某些实施例中,对称性过滤器120仅以较高的几率传输具有第一对称性的电荷载流子。所有其它的对称性将具有较低的传输几率。例如,对称性过滤器120可以为具有(100)织构(texture)的晶体MgO。这样的层以比具有其他对称性的波函数的电流载流子高的几率来传输在(100)方向上具有Δ1对称性的波函数的电流载流子。因此,对称性过滤器120可以被认为以类似于过滤器的方式作用,该过滤器让具有第一对称性的电流载流子通过,而不让具有其它对称性的电流载流子通过。在其它实施例中,可以使用其它的材料。例如,可以采用SrSnO3。尽管用作隧穿势垒的绝缘体被描述为用于对称性过滤器120,但是在其它实施例中,可以采用具有其它电特性的其它材料。The symmetry filter 120 is a layer that transmits charge carriers with a first symmetry with a higher probability than charge carriers with another symmetry. Transmission can be via tunneling. In some embodiments, the symmetry filter 120 only transmits charge carriers having a first symmetry with a higher probability. All other symmetries will have a lower probability of transmission. For example, the symmetry filter 120 may be crystalline MgO with a (100) texture. Such a layer transports current carriers with a wave function with Δ1 symmetry in the (100) direction with a higher probability than current carriers with wave functions with other symmetries. Thus, the symmetry filter 120 may be considered to act similarly to a filter that passes current carriers having a first symmetry and excludes current carriers having other symmetries. In other embodiments, other materials may be used. For example, SrSnO 3 can be used. Although an insulator used as a tunneling barrier is described for the symmetric filter 120, in other embodiments other materials with other electrical properties may be employed.

被钉扎层110具有被钉扎在特定方向上的磁矩111。例如,磁矩111可以被AFM层(未示出)、硬磁体(未示出)或经由某些其它机构钉扎。所示的被钉扎层110是简单层,由单一磁层组成。尽管示出为具有单一磁矩111的简单层,但是被钉扎层110可以包括多层。例如,被钉扎层110可以是包括通过一个或多个薄层诸如Ru反铁磁或铁磁耦合的磁层的SAF。被钉扎层110也可以为另外的多层,其中一个或多个子层为磁性的。也可以采用用于被钉扎层110的其它结构。The pinned layer 110 has a magnetic moment 111 pinned in a specific direction. For example, magnetic moment 111 may be pinned by an AFM layer (not shown), a hard magnet (not shown), or via some other mechanism. The illustrated pinned layer 110 is a simple layer, consisting of a single magnetic layer. Although shown as a simple layer with a single magnetic moment 111, the pinned layer 110 may include multiple layers. For example, the pinned layer 110 may be a SAF including magnetic layers antiferromagnetically or ferromagnetically coupled through one or more thin layers such as Ru. The pinned layer 110 may also be an additional multilayer in which one or more sublayers are magnetic. Other structures for the pinned layer 110 may also be employed.

在所示的实施例中,磁矩111被钉扎使得其具有平面内分量。换言之,磁矩111具有基本上在被钉扎层110的平面内的分量。因此,在所示的实施例中,磁矩111具有平行于x-y平面的分量。另外,磁矩111具有基本上垂直于平面的分量。换言之,磁矩111具有平行于图2的z轴的分量。在某些实施例中,磁矩111具有零平面内分量。在这样的实施例中,被钉扎层110可以包括诸如AlMn的材料。在某些这样的实施例中,被钉扎层110可以由处于L10相且具有(100)取向的AlMn组成。在其它实施例中,被钉扎层100可以包括MnGa。In the illustrated embodiment, the magnetic moment 111 is pinned such that it has an in-plane component. In other words, the magnetic moment 111 has a component substantially in the plane of the pinned layer 110 . Thus, in the illustrated embodiment, the magnetic moment 111 has a component parallel to the xy plane. In addition, the magnetic moment 111 has a component substantially perpendicular to the plane. In other words, the magnetic moment 111 has a component parallel to the z-axis of FIG. 2 . In some embodiments, magnetic moment 111 has a zero in-plane component. In such an embodiment, the pinned layer 110 may include a material such as AlMn. In some of these embodiments, the pinned layer 110 can be composed of AlMn in the L1 0 phase with a (100) orientation. In other embodiments, the pinned layer 100 may include MnGa.

自由层130和/或被钉扎层110构造为使得层110和130中的至少一个在一个自旋通道中在费米能级处具有被对称性过滤器120传输的对称性的电荷载流子。此外,自由层130和被钉扎层110中的至少一个在另一个自旋通道中没有在费米能级处的对称性的电荷载流子。这样的自由层和/或被钉扎层110还具有其垂直于平面的磁化分量131/111。例如,自由层130和/或被钉扎层110可以在多子自旋通道中具有在费米能级处带有对称性的电荷载流子,但是在少子自旋通道中没有在费米能级处具有对称性的电荷载流子。在铁磁材料中,多子自旋通道具有其自旋与净磁化方向对齐的电子。少子自旋通道电子具有其反平行于多子自旋通道电子的自旋。对于传输具有Δ1对称性的电流载流子的对称性过滤器120,例如具有(100)织构的MgO,层110和/或130可以在多子自旋通道中具有在费米能级处的Δ1对称性的电流载流子。然而,少子自旋通道或者不具有Δ1对称性的电流载流子,或者具有与费米能级间隔开的Δ1对称性的电流载流子。在某些实施例中,具有这些特性的层110和/或130也具有垂直于平面的磁化。Free layer 130 and/or pinned layer 110 are configured such that at least one of layers 110 and 130 has symmetric charge carriers transported by symmetry filter 120 in a spin channel at the Fermi level . In addition, at least one of the free layer 130 and the pinned layer 110 has no symmetric charge carriers at the Fermi level in the other spin channel. Such a free layer and/or pinned layer 110 also has its magnetization component 131/111 perpendicular to the plane. For example, free layer 130 and/or pinned layer 110 may have charge carriers with symmetry at the Fermi level in many spin channels, but not at the Fermi level in minority spin channels. There are symmetrical charge carriers at the stage. In ferromagnetic materials, many sub-spin channels have electrons whose spins are aligned with the direction of net magnetization. Minority spin channel electrons have their spins antiparallel to the many spin channel electrons. For a symmetry filter 120 that transports current carriers with Δ1 symmetry, such as MgO with a (100) texture, layers 110 and/or 130 may have in a multisub-spin channel at the Fermi level The Δ1 symmetry of the current carriers. However, minority spin channels either have current carriers without Δ1 symmetry or have current carriers with Δ1 symmetry spaced from the Fermi level. In some embodiments, layers 110 and/or 130 having these properties also have a magnetization perpendicular to the plane.

例如,已经发现,包括L10相和(100)取向的AlMn的自由层130和/或被钉扎层110具有垂直磁矩并具有在费米能级处的期望对称性。更具体地,如果被钉扎层110包括其(100)轴垂直于平面的L10相的AlMn,则被钉扎层110将具有垂直于平面的磁矩111。此外,被钉扎层110将在多子自旋通道中具有在费米能级处带有Δ1对称性的电荷载流子。对于多子自旋通道具有Δ1对称性的电荷载流子因此更可能传输电流通过被钉扎层110。具有这样的成分和结构的被钉扎层110在少子通道中没有在(001)方向上具有Δ1对称性的电荷载流子。这样的层的示范性实施例的能带结构160在图3中示出。然而,应注意,所示的能带仅是举例说明的目的,而不旨在精确地反映这样的材料的能带结构。如能带结构中可见,多子自旋通道具有在费米能级处的Δ1对称性的电荷载流子。因而,Δ1对称性电荷载流子很可能携载电流通过被钉扎层110。具有相同的晶体结构和成分的自由层110可以具有类似的性质。类似地,自由层130和/或被钉扎层110可以包括MnGa并具有与上面描述的那些类似的性质。For example, it has been found that the free layer 130 and/or the pinned layer 110 comprising L1 0 phase and (100) oriented AlMn have a perpendicular magnetic moment and have a desired symmetry at the Fermi level. More specifically, if the pinned layer 110 includes AlMn of the L1 0 phase whose (100) axis is perpendicular to the plane, the pinned layer 110 will have a magnetic moment 111 perpendicular to the plane. Furthermore, the pinned layer 110 will have charge carriers with Δ1 symmetry at the Fermi level in the multisub-spin channel. Charge carriers with Δ1 symmetry for a multisub spin channel are therefore more likely to transport current through the pinned layer 110 . The pinned layer 110 having such a composition and structure has no charge carriers having Δ1 symmetry in the (001) direction in the minority carrier channel. The band structure 160 of an exemplary embodiment of such a layer is shown in FIG. 3 . It should be noted, however, that the energy bands shown are for illustrative purposes only and are not intended to accurately reflect the energy band structure of such materials. As seen in the band structure, many sub-spin channels have charge carriers with Δ1 symmetry at the Fermi level. Thus, the Δ1 symmetry charge carriers are likely to carry current through the pinned layer 110 . Free layers 110 having the same crystal structure and composition may have similar properties. Similarly, the free layer 130 and/or the pinned layer 110 may comprise MnGa and have properties similar to those described above.

这样的被钉扎层110和/或自由层130可以用于与自旋过滤器120结合,该自旋过滤器120对于传输具有Δ1对称性的电荷载流子具有高的几率,而对于传输具有其他对称性的波函数的电荷载流子具有较低的几率。因此,尽管对于电荷载流子的所有波函数被预期在绝缘自旋过滤器中衰减,但是Δ1波函数衰减更缓慢。从传输和反射的观点来看,具有Δ1对称性的电荷载流子以比具有其他对称性的波函数的电子高的几率被传输。没有被传输的电荷载流子可以被反射。例如,具有(100)取向的MgO倾向于以比具有其他对称性的波函数的电子高的几率传输具有特定Δ1对称性的波函数的电子。图4示出了与其它对称性情形相比Δ1波函数在MgO中的相对慢的衰减。因为多子自旋通道具有在费米能级处的Δ1对称性,所以被钉扎层110和自由层130中来自费米能级的多子电荷电流子很可能传输通过自旋过滤器120。结果,可以实现高程度的自旋极化。因此,可以改善自旋力矩引发转变的效率,并减小临界电流。以这样的方式,磁性结100以类似于常规磁性结100的方式作用,其采用在多子自旋通道中具有在费米能级处的Δ1电子而在少子自旋通道中没有在费米能级处的Δ1电子的CoFe。Such a pinned layer 110 and/or a free layer 130 can be used in combination with a spin filter 120 that has a high probability for transporting charge carriers with Δ1 symmetry, while for transporting Charge carriers with wave functions with other symmetries have lower probability. Thus, while all wave functions for charge carriers are expected to decay in insulating spin filters, the Δ1 wave function decays more slowly. From the perspective of transmission and reflection, charge carriers with Δ1 symmetry are transported with higher probability than electrons with wave functions of other symmetries. Charge carriers that are not transported can be reflected. For example, MgO with a (100) orientation tends to transport electrons with wave functions of a particular Δ1 symmetry with higher probability than electrons with wave functions of other symmetries. Figure 4 shows the relatively slow decay of the Δ1 wave function in MgO compared to other symmetry cases. Because the multisub spin channel has a Δ1 symmetry at the Fermi level, the multisub charge currents in the pinned layer 110 and the free layer 130 from the Fermi level are likely to be transported through the spin filter 120 . As a result, a high degree of spin polarization can be achieved. Therefore, the efficiency of spin torque induced transition can be improved and the critical current can be reduced. In this way, the magnetic junction 100 functions in a manner similar to conventional magnetic junctions 100 by employing Δ1 electrons at the Fermi level in the many-carrier spin channel and not at the Fermi level in the minority-carrier spin channel. CoFe with Δ 1 electrons at the energy level.

此外,对于诸如AlMn的材料,磁矩111/131可以垂直于平面。因此,对于AlMn,量<H>eff/Hk为1或接近于1。此特征也可以降低临界电流。结果,可以改善磁性结100的性能。因此,磁性结100可以使用在具有改善性能的磁存储器诸如STT-RAM中。磁性结100的其它应用也是可以的。Furthermore, for materials such as AlMn, the magnetic moments 111/131 may be perpendicular to the plane. Therefore, for AlMn, the quantity <H> eff /H k is 1 or close to 1. This feature can also reduce the critical current. As a result, the performance of the magnetic junction 100 can be improved. Therefore, the magnetic junction 100 can be used in magnetic memory such as STT-RAM with improved performance. Other applications for magnetic junction 100 are also possible.

另外,对称性过滤器120可以具有相对于被钉扎层110和/或自由层130的另外的特性。在某些实施例中,邻接对称性过滤器120的层110和130中的一个或二者之间的晶格失配会期望是低的。例如,层120与层110和/或130之间的晶格失配可以小于百分之七。在某些实施例中,层120与层110和/或130之间的晶格失配可以小于百分之三或百分之四。晶格失配是对于邻接层的晶格位置之间的差异。因此,晶格失配取决于层的晶格常数和层的织构二者。较小的晶格失配可以导致磁层110和/或130具有期望磁各向异性的增大的几率。在某些实施例中,MgO(001)可以具有与L10AlMn的至少百分之七的晶格失配。在某些实施例中,此较大的晶格失配会导致被钉扎层110和/或自由层130具有不同的磁各向异性。此失配引起的磁各向异性会导致对于自由层130和/或被钉扎层110的平面内磁矩。在某些实施例中,这是不期望的。此外,在某些情况下,晶格失配会不利地影响能带结构。这会导致电流载流子的减小的极化,这是不期望的。因此,期望减小晶格失配以实现期望的磁各向异性和/或自旋极化。例如,自由层130和/或被钉扎层110可以具有较高的垂直磁各向异性和垂直于平面的磁矩。类似地,自由层130和/或被钉扎层110可以在多子自旋通道中具有更多的电子而在其它自旋通道中具有更少(或没有)电子。Additionally, the symmetry filter 120 may have additional properties relative to the pinned layer 110 and/or the free layer 130 . In certain embodiments, the lattice mismatch between one or both of layers 110 and 130 adjacent to symmetry filter 120 may desirably be low. For example, the lattice mismatch between layer 120 and layers 110 and/or 130 may be less than seven percent. In some embodiments, the lattice mismatch between layer 120 and layers 110 and/or 130 may be less than three or four percent. Lattice mismatch is the difference between the lattice positions for adjacent layers. Thus, the lattice mismatch depends on both the layer's lattice constant and the layer's texture. A smaller lattice mismatch can lead to an increased chance that magnetic layers 110 and/or 130 have the desired magnetic anisotropy. In certain embodiments, MgO(001) may have a lattice mismatch of at least seven percent with L1 0 AlMn. In some embodiments, this larger lattice mismatch results in different magnetic anisotropy for the pinned layer 110 and/or the free layer 130 . The magnetic anisotropy induced by this mismatch can result in an in-plane magnetic moment for the free layer 130 and/or the pinned layer 110 . In some embodiments, this is not desired. Furthermore, in some cases lattice mismatch can adversely affect the band structure. This would lead to a reduced polarization of the current carriers, which is undesirable. Therefore, it is desirable to reduce the lattice mismatch to achieve the desired magnetic anisotropy and/or spin polarization. For example, the free layer 130 and/or the pinned layer 110 may have high perpendicular magnetic anisotropy and a magnetic moment perpendicular to the plane. Similarly, the free layer 130 and/or the pinned layer 110 may have more electrons in multiple sub-spin channels and fewer (or no) electrons in other spin channels.

减小晶格失配可以以许多方式实现。在某些实施例中,对称性过滤器120的晶格收缩或扩张以接近于被钉扎层110和/或自由层130的晶格。例如,对称性过滤器120中采用的MgO的晶格常数可以大于被钉扎层110和/或自由层130中采用的材料(例如,AlMn L10)的晶格常数。因此,对称性过滤器层120的晶格期望被收缩。在某些实施例中,这通过采用Ge、GaAs、ZnSe或其它对称性过滤器实现,它们具有比对称性过滤器120中的MgO的晶格常数小的晶格常数。因此,对称性过滤器120的晶格常数接近于用于被钉扎层110/自由层130的AlMn L10和/或其它材料的晶格常数。对称性过滤器层120与被钉扎层110和/或自由层130之间所产生的晶格失配可以小于百分之七。在某些实施例中,对称性过滤器层120和层110和/或130之间的晶格失配可以小于百分之三或百分之四。因此,用于对称性层120的材料的晶格可以被收缩以接近于被钉扎层110和/或自由层130的晶格。在其它实施例中,被钉扎层110和/或自由层130的晶格可以被扩大。在某些实施例中,这可以通过掺杂或者可增加层110和/或130中采用的AlMn或其它材料的晶格常数的其它手段实现。在其它实施例中,其它材料可以用于层110和/或130。例如,可以采用MnGa和/或MnIn。然而,期望用于更接近地匹配晶格的手段不过度地干扰层110和130的磁性质。Reducing the lattice mismatch can be achieved in many ways. In some embodiments, the lattice of the symmetry filter 120 shrinks or expands to approximate the lattice of the pinned layer 110 and/or the free layer 130 . For example, the lattice constant of MgO employed in symmetry filter 120 may be greater than the lattice constant of the material employed in pinned layer 110 and/or free layer 130 (eg, AlMn L1 0 ). Therefore, the lattice of the symmetric filter layer 120 is expected to be shrunk. In some embodiments, this is achieved by using Ge, GaAs, ZnSe, or other symmetry filters that have a lower lattice constant than that of MgO in symmetry filter 120 . Therefore, the lattice constant of the symmetry filter 120 is close to that of AlMn L1 0 and/or other materials for the pinned layer 110/free layer 130 . The resulting lattice mismatch between the symmetric filter layer 120 and the pinned layer 110 and/or the free layer 130 may be less than seven percent. In certain embodiments, the lattice mismatch between symmetric filter layer 120 and layers 110 and/or 130 may be less than three or four percent. Accordingly, the crystal lattice of the material used for the symmetry layer 120 may be shrunk to be close to the crystal lattice of the pinned layer 110 and/or the free layer 130 . In other embodiments, the crystal lattice of the pinned layer 110 and/or the free layer 130 may be enlarged. In certain embodiments, this may be achieved by doping or other means that may increase the lattice constant of the AlMn or other material employed in layers 110 and/or 130 . In other embodiments, other materials may be used for layers 110 and/or 130 . For example, MnGa and/or MnIn may be used. However, it is desirable that the means for more closely matching the lattice do not unduly disturb the magnetic properties of layers 110 and 130 .

图5示出了可在磁存储器中使用的磁性结100’的另一个示范性实施例。为了清晰起见,图5没有按比例。磁性结100’包括与图2所示的磁性结100类似的成分。因此,类似的成分被类似地标示。因此,磁性结100’包括被钉扎层110’、对称性过滤器120’和自由层130’,分别类似于被钉扎层110、对称性过滤器120和自由层130。还示出了籽层102、钉扎层104和覆盖层106。在其它实施例中,籽层102、钉扎层104和/或覆盖层106可以被省略。另外,还可以提供接触(未示出)以在期望的方向上驱动电流。籽层102可以用于为钉扎层104的期望晶体结构提供模板。钉扎层104可以包括AFM层、硬磁体或用于钉扎被钉扎层110’的磁化的其它材料。Figure 5 shows another exemplary embodiment of a magnetic junction 100' that may be used in a magnetic memory. For clarity, Figure 5 is not to scale. Magnetic junction 100' includes similar components to magnetic junction 100 shown in FIG. 2 . Accordingly, similar components are similarly labeled. Thus, the magnetic junction 100' includes a pinned layer 110', a symmetry filter 120', and a free layer 130', similar to the pinned layer 110, the symmetry filter 120, and the free layer 130, respectively. Also shown is a seed layer 102 , a pinning layer 104 and a capping layer 106 . In other embodiments, the seed layer 102, the pinning layer 104, and/or the capping layer 106 may be omitted. Additionally, contacts (not shown) may also be provided to drive current in the desired direction. The seed layer 102 can be used to provide a template for the desired crystal structure of the pinned layer 104 . The pinning layer 104 may include an AFM layer, a hard magnet, or other material for pinning the magnetization of the pinned layer 110&apos;.

在所示的实施例中,被钉扎层110’的磁矩111’和自由层130’的磁矩131’垂直于平面。另外,自由层130’和被钉扎层110’二者构造为使得层110’和130’的每个在第一自旋通道诸如多子自旋通道中具有在费米能级处以较高的几率被对称性过滤器传输的对称性的电荷载流子。在某些实施例中,自由层130’和被钉扎层110’中的至少一个在其它自旋通道(例如,少子自旋通道)中没有在费米能级处的对称性的电荷载流子。例如,被钉扎层110’和自由层130’二者可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。这样的材料在多子自旋通道中具有在费米能级处的Δ1电子,但是在少子自旋通道中没有在(100)方向上的Δ1电子。另外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器120’。在某些实施例中,对称性过滤器120’和层110’和/或130’之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器120’和层110’和/或130’之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器120’可以包括Ge、GaAs和或ZnSe。被钉扎层110’和/或自由层130’可以包括MnGa和/或MnIn。In the illustrated embodiment, the magnetic moment 111' of the pinned layer 110' and the magnetic moment 131' of the free layer 130' are perpendicular to the plane. In addition, both the free layer 130' and the pinned layer 110' are configured such that each of the layers 110' and 130' has a higher value at the Fermi level in a first spin channel, such as a multi-sub-spin channel. Symmetrical charge carriers that are likely to be transported by the symmetry filter. In certain embodiments, at least one of the free layer 130' and the pinned layer 110' has no symmetric charge-carrying at the Fermi level in other spin channels (e.g., minority spin channels) son. For example, both the pinned layer 110 ′ and the free layer 130 ′ may include AlMn having an L1 0 crystal structure and a (100) axis perpendicular to the plane. Such materials have Δ1 electrons at the Fermi level in many-carrier spin channels, but no Δ1 electrons in the (100) direction in minority-carrier spin channels. In addition, MgO or SrSnO 3 having a (100) texture may be used as the spin filter 120 ′. In some embodiments, the lattice mismatch between symmetric filter 120' and layers 110' and/or 130' is less than seven percent. In some embodiments, the lattice mismatch between symmetry filter 120' and layers 110' and/or 130' may be less than three or four percent. For example, the symmetry filter 120' may include Ge, GaAs, and or ZnSe. The pinned layer 110' and/or the free layer 130' may include MnGa and/or MnIn.

磁性结100’共享磁性结100的益处。因为磁矩111’和131’垂直于平面,所以量<H>eff/Hk为一。另外,可以改善自旋极化效率。因此,可以提高磁性结的性能。Magnetic junction 100 ′ shares the benefits of magnetic junction 100 . Since the magnetic moments 111' and 131' are perpendicular to the plane, the quantity <H> eff / Hk is unity. In addition, spin polarization efficiency can be improved. Therefore, the performance of the magnetic junction can be improved.

图6示出了适于在磁存储器中使用的磁性结100”的另一个示范性实施例。为了清晰起见,图6没有按比例。磁性结100”包括与磁性结100/100’类似的成分。因此,类似的成分被类似地标示。因此,磁性结100”包括被钉扎层110”、对称性过滤器120”和自由层130”,分别类似于被钉扎层110/110’、对称性过滤器120/120’和自由层130/130’。还示出了籽层102’、钉扎层104’和覆盖层106’。在其它实施例中,籽层102’、钉扎层104’和/或覆盖层106’可以被省略。籽层102’可以用于为钉扎层104’的期望晶体结构提供模板。钉扎层104’可以包括AFM层、硬磁体或用于钉扎被钉扎层110”的磁化的其它材料。另外,还可以提供接触(未示出)以在期望的方向上驱动电流。Figure 6 shows another exemplary embodiment of a magnetic junction 100" suitable for use in a magnetic memory. For clarity, Figure 6 is not to scale. The magnetic junction 100" includes similar components to the magnetic junctions 100/100' . Accordingly, similar components are similarly labeled. Thus, magnetic junction 100" includes pinned layer 110", symmetry filter 120", and free layer 130", similar to pinned layer 110/110', symmetry filter 120/120', and free layer 130, respectively. /130'. Also shown are a seed layer 102', a pinning layer 104' and a capping layer 106'. In other embodiments, the seed layer 102', the pinning layer 104' and/or the capping layer 106' may be omitted. The seed layer 102' can be used to provide a template for the desired crystal structure of the pinned layer 104'. The pinned layer 104' may include an AFM layer, a hard magnet, or other material for pinning the magnetization of the pinned layer 110". Additionally, contacts (not shown) may also be provided to drive current in a desired direction.

在所示的实施例中,自由层130”的磁矩131”垂直于平面。另外,自由层130”构造为使得该层和130’在自旋通道诸如多子自旋通道中具有在费米能级处以较高的几率被对称性过滤器120''传输的对称性的电荷载流子。在某些实施例中,自由层130”在其它自旋通道诸如少子自旋通道中没有在费米能级处的对称性的电荷载流子。例如,自由层130”可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。另外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器120”。被钉扎层110”可以包括其它的磁材料。例如,被钉扎层110”包括bcc(001)Fe、bcc(001)Co和/或bcc(001)FeCo。在某些实施例中,被钉扎层110”还可以具有其垂直于平面的磁化(图6中未示出)。然而,其它的取向是可以的。在某些实施例中,对称性过滤器120”与层110”和/或130”之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器层120”与层110”和/或130”之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器120”可以包括Ge、GaAs和/或ZnSe。被钉扎层110”和/或自由层130”可以包括MnGa和/或MnIn。In the illustrated embodiment, the magnetic moment 131" of the free layer 130" is perpendicular to the plane. In addition, the free layer 130" is configured such that the layer and 130' have symmetric electrical properties that are transported by the symmetry filter 120" with high probability at the Fermi level in a spin channel such as a multisub-spin channel. Charge carriers. In some embodiments, the free layer 130" has no symmetric charge carriers at the Fermi level in other spin channels, such as minority spin channels. For example, the free layer 130 ″ may include AlMn having a L1 0 crystal structure and a (100) axis perpendicular to the plane. In addition, MgO or SrSnO 3 having a (100) texture may be used as the spin filter 120 ″. The pinned layer 110" may include other magnetic materials. For example, the pinned layer 110" includes bcc(001)Fe, bcc(001)Co, and/or bcc(001)FeCo. In some embodiments, the pinned layer 110" may also have its magnetization perpendicular to the plane (not shown in FIG. 6). However, other orientations are possible. In some embodiments, symmetry filtering The lattice mismatch between device 120" and layers 110" and/or 130" is less than seven percent. In some embodiments, the lattice mismatch between symmetric filter layer 120" and layers 110" and/or 130" may be less than three or four percent. For example, symmetric filter 120" Ge, GaAs and/or ZnSe may be included. The pinned layer 110" and/or the free layer 130" may include MnGa and/or MnIn.

磁性结100”共享磁性结100/100’的益处。因为磁矩131’垂直于平面,所以量<H>eff/Hk为一。另外,可以改善自旋极化效率。因此,可以提高磁性结100”的性能。The magnetic junction 100" shares the benefits of the magnetic junction 100/100'. Since the magnetic moment 131' is perpendicular to the plane, the quantity <H> eff / Hk is unity. In addition, the spin polarization efficiency can be improved. Therefore, the magnetic Knot 100" performance.

图7示出了适于在磁存储器中使用的磁性结100’’’的另一个实施例。为了清晰起见,图7没有按比例。磁性结100’’’包括与磁性结100/100’/100”类似的成分。因此,类似的成分被类似地标示。因此,磁性结100’’’包括被钉扎层110’’’、对称性过滤器120’’’和自由层130’’’,分别类似于被钉扎层110/110’/110”、对称性过滤器120/120’120”和自由层130/130’/130”。还示出了籽层102”、钉扎层104”和覆盖层106”。在其它实施例中,籽层102”、钉扎层104”和/或覆盖层106”可以被省略。籽层102”可以用于为钉扎层104”的期望晶体结构提供模板。钉扎层104’’’可以包括AFM层、硬磁体或其它用于钉扎被钉扎层100’’’的磁化的材料。另外,还可以提供接触(未示出)以在期望的方向上驱动电流。FIG. 7 shows another embodiment of a magnetic junction 100'' suitable for use in a magnetic memory. For clarity, Figure 7 is not to scale. Magnetic junction 100''' includes similar components to magnetic junction 100/100'/100". Accordingly, similar components are similarly labeled. Thus, magnetic junction 100''' includes pinned layer 110''', symmetric Symmetrical filter 120''' and free layer 130''', similar to pinned layer 110/110'/110", symmetrical filter 120/120'120" and free layer 130/130'/130" . Also shown are the seed layer 102", the pinning layer 104", and the covering layer 106". In other embodiments, the seed layer 102", the pinning layer 104", and/or the covering layer 106" may be omitted. The seed layer 102" can be used to provide a template for the desired crystal structure of the pinned layer 104". The pinning layer 104''' may include an AFM layer, a hard magnet, or other materials for pinning the magnetization of the pinned layer 100'''. Additionally, contacts (not shown) may also be provided to drive current in the desired direction.

在所示的实施例中,被钉扎层110’’’的磁矩111’’’垂直于平面。另外,被钉扎层110’’’构造为使得被钉扎层110’’’在多子自旋通道中具有在费米能级处被对称性过滤器120’’’传输的对称性的电荷载流子。在某些实施例中,被钉扎层110’’’在少子自旋通道中没有在费米能级处的对称性的电荷载流子。例如,被钉扎层110’’’可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。另外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器120’’’。自由层130’’’可以包括其它的磁材料。例如,自由层130’’’包括bcc(001)Fe、bcc(001)Co和/或bcc(001)FeCo。在所示的实施例中,自由层130’’’具有其垂直于平面的磁化131’’’。然而,其它的取向是可以的。在某些实施例中,对称性过滤器120’’’与层110’’’和/或130’’’之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器120’’’与层110’’’和/或130’’’之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器120’’’可以包括Ge、GaAs和/或ZnSe。被钉扎层110’’’和/或自由层130’’’可以包括MnGa和/或MnIn。In the illustrated embodiment, the magnetic moment 111'' of the pinned layer 110''' is perpendicular to the plane. In addition, the pinned layer 110''' is configured such that the pinned layer 110''' has an electrical symmetry in the multi-sub-spin channel that is transmitted by the symmetry filter 120''' at the Fermi level. load streamer. In some embodiments, the pinned layer 110'' has no symmetric charge carriers at the Fermi level in the minority spin channel. For example, the pinned layer 110 ″ may include AlMn having an L1 0 crystal structure and a (100) axis perpendicular to a plane. In addition, MgO or SrSnO 3 with (100) texture can be used as the spin filter 120'''. The free layer 130''' may include other magnetic materials. For example, the free layer 130 ″ includes bcc(001) Fe, bcc(001) Co, and/or bcc(001) FeCo. In the illustrated embodiment, the free layer 130''' has its magnetization 131''' perpendicular to the plane. However, other orientations are possible. In certain embodiments, the lattice mismatch between symmetry filter 120''' and layers 110''' and/or 130''' is less than seven percent. In some embodiments, the lattice mismatch between symmetry filter 120''' and layers 110''' and/or 130''' may be less than three or four percent. For example, the symmetry filter 120''' may include Ge, GaAs and/or ZnSe. The pinned layer 110''' and/or the free layer 130''' may include MnGa and/or MnIn.

磁性结100’’’共享磁性结100/100’/100’’的益处。因为磁矩111’’’垂直于平面,所以量<H>eff/Hk为一。另外,可以改善自旋极化效率。因此,可以提高磁性结100’’’的性能。Magnetic junction 100''' shares the benefits of magnetic junctions 100/100'/100''. Since the magnetic moment 111'' is perpendicular to the plane, the quantity <H> eff / Hk is unity. In addition, spin polarization efficiency can be improved. Therefore, the performance of the magnetic junction 100''' may be improved.

图8示出了适于在磁存储器中使用的磁性结200的另一示范性实施例。为了清晰起见,图8没有按比例。磁性结200包括与图2和5中所示的磁性结100/100’类似的成分。因此,类似的成分被类似地标示。因此,磁性结200包括被钉扎层210、对称性过滤器220和自由层230,分别类似于被钉扎层110/110’、对称性过滤器120/120’和自由层130/130’。还示出了籽层202、钉扎层204和覆盖层206,分别类似于籽层102、钉扎层104和覆盖层106。在其它实施例中,籽层202、钉扎层204和/或覆盖层206可以被省略。另外,还可以提供接触(未示出)以在期望的方向上驱动电流。FIG. 8 shows another exemplary embodiment of a magnetic junction 200 suitable for use in a magnetic memory. For clarity, Figure 8 is not to scale. Magnetic junction 200 includes similar components to magnetic junction 100/100' shown in FIGS. 2 and 5 . Accordingly, similar components are similarly labeled. Thus, magnetic junction 200 includes pinned layer 210, symmetry filter 220, and free layer 230, similar to pinned layer 110/110', symmetry filter 120/120', and free layer 130/130', respectively. Also shown are a seed layer 202, a pinning layer 204, and a cover layer 206, similar to the seed layer 102, pinning layer 104, and cover layer 106, respectively. In other embodiments, the seed layer 202, the pinning layer 204, and/or the capping layer 206 may be omitted. Additionally, contacts (not shown) may also be provided to drive current in the desired direction.

在所示的实施例中,被钉扎层210和自由层230是SAF。因此,被钉扎层210包括通过非磁间隔层214分隔的铁磁层212和216。类似地,自由层230包括通过非磁间隔层234分隔的铁磁层232和236。间隔层214和234典型地为Ru。在所示的实施例中,被钉扎层210的磁矩211和215以及自由层230的磁矩231和235垂直于平面。此外,自由层130’和被钉扎层110’二者构造为使得层210和230的每个在自旋通道诸如多子自旋通道中具有在费米能级处被对称性过滤器220传输的对称性的电荷载流子。在某些实施例中,自由层230和被钉扎层210中的至少一个在其它自旋通道诸如少子自旋通道中没有在费米能级处的对称性的电荷载流子。例如,被钉扎层210的铁磁层212和216以及自由层230的铁磁层232和236二者可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。然而,对于这样的实施例,间隔层214和234能够允许铁磁层212和216之间以及层232和236之间的反铁磁耦合。此外,间隔层214和234将为层216和236的期望晶体结构和织构提供合适的生长模板。此外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器220。在某些实施例中,对称性过滤器220与层216和/或232之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器220与层216和/或232之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器220可以包括Ge、GaAs和/或ZnSe。层232和/或层216可以包括MnGa和/或MnIn。In the illustrated embodiment, the pinned layer 210 and the free layer 230 are SAF. Accordingly, pinned layer 210 includes ferromagnetic layers 212 and 216 separated by nonmagnetic spacer layer 214 . Similarly, free layer 230 includes ferromagnetic layers 232 and 236 separated by nonmagnetic spacer layer 234 . Spacer layers 214 and 234 are typically Ru. In the illustrated embodiment, the magnetic moments 211 and 215 of the pinned layer 210 and the magnetic moments 231 and 235 of the free layer 230 are perpendicular to the plane. Furthermore, both the free layer 130' and the pinned layer 110' are configured such that each of the layers 210 and 230 in a spin channel, such as a multi-sub-spin channel, is transported by the symmetry filter 220 at the Fermi level. symmetrical charge carriers. In certain embodiments, at least one of the free layer 230 and the pinned layer 210 has no symmetric charge carriers at the Fermi level in other spin channels, such as minority carrier spin channels. For example, both the ferromagnetic layers 212 and 216 of the pinned layer 210 and the ferromagnetic layers 232 and 236 of the free layer 230 may include AlMn having an L1 0 crystal structure and a (100) axis perpendicular to the plane. However, for such an embodiment, spacer layers 214 and 234 can allow antiferromagnetic coupling between ferromagnetic layers 212 and 216 and between layers 232 and 236 . Additionally, spacer layers 214 and 234 will provide a suitable growth template for the desired crystal structure and texture of layers 216 and 236 . In addition, MgO or SrSnO 3 having a (100) texture may be used as the spin filter 220 . In certain embodiments, the lattice mismatch between symmetry filter 220 and layers 216 and/or 232 is less than seven percent. In certain embodiments, the lattice mismatch between symmetry filter 220 and layers 216 and/or 232 may be less than three or four percent. For example, symmetry filter 220 may include Ge, GaAs, and/or ZnSe. Layer 232 and/or layer 216 may include MnGa and/or MnIn.

图9示出了适于在磁存储器中使用的磁性结200’的另一个示范性实施例。为了清晰起见,图9没有按比例。磁性结200’包括与磁性结100/100’/200类似的成分。因此,类似的成分被类似地标示。因此,磁性结200’包括被钉扎层210’、对称性过滤器220’和自由层230’,分别类似于层210/110/110’、220/120/120’和230/130/130’。还示出了籽层202’、钉扎层204’和覆盖层206’。在其它实施例中,籽层202'、钉扎层204’和/或覆盖层206’可以被省略。籽层202’可以用于为钉扎层204’的期望晶体结构提供模板。钉扎层204’可以包括AFM层、硬磁体或用于钉扎被钉扎层210’’的磁化的其他材料。此外,还可以提供接触(未示出)以在期望的方向上驱动电流。Figure 9 shows another exemplary embodiment of a magnetic junction 200' suitable for use in a magnetic memory. For clarity, Figure 9 is not to scale. Magnetic junction 200' includes similar components to magnetic junction 100/100'/200. Accordingly, similar components are similarly labeled. Thus, the magnetic junction 200' comprises a pinned layer 210', a symmetry filter 220' and a free layer 230' similar to layers 210/110/110', 220/120/120' and 230/130/130', respectively. . Also shown are a seed layer 202', a pinning layer 204', and a capping layer 206'. In other embodiments, the seed layer 202', the pinning layer 204', and/or the capping layer 206' may be omitted. The seed layer 202' can be used to provide a template for the desired crystal structure of the pinned layer 204'. The pinning layer 204' may include an AFM layer, a hard magnet, or other material for pinning the magnetization of the pinned layer 210''. Additionally, contacts (not shown) may also be provided to drive current in the desired direction.

在所示的实施例中,自由层230’是SAF,包括与层232、234和236类似的层232’、234’和236’。在所示的实施例中,自由层230’的磁矩231和235垂直于平面。在其它实施例中,被钉扎层210’的磁矩垂直于平面。此外,自由层230’构造为使得层230’在多子自旋通道中具有在费米能级处被对称性过滤器220'传输的对称性的电荷载流子。在某些实施例中,自由层230’在少子自旋通道中没有在费米能级处的对称性的电荷载流子。例如,自由层230’可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。另外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器220’。In the illustrated embodiment, the free layer 230 ′ is a SAF comprising layers 232 ′, 234 ′, and 236 ′ similar to layers 232 , 234 , and 236 . In the illustrated embodiment, the magnetic moments 231 and 235 of the free layer 230' are perpendicular to the plane. In other embodiments, the magnetic moment of the pinned layer 210' is perpendicular to the plane. Furthermore, the free layer 230' is configured such that the layer 230' has symmetric charge carriers transported at the Fermi level by the symmetry filter 220' in a multisub-spin channel. In some embodiments, the free layer 230' has no symmetric charge carriers at the Fermi level in the minority spin channel. For example, the free layer 230 ′ may include AlMn having an L1 0 crystal structure and a (100) axis perpendicular to a plane. In addition, MgO or SrSnO 3 having a (100) texture may be used as the spin filter 220 ′.

在所示的实施例中,自由层230’的磁矩231’和235’垂直于平面。此外,自由层230’构造为使得层230’在一个自旋通道中具有在费米能级处以较高几率被对称性过滤器传输的对称性的电荷载流子。例如,多子自旋通道可以包括在费米能级处的对称性的电荷载流子。在某些实施例中,自由层230’在其它自旋通道诸如少子自旋通道中没有在费米能级处以较高几率被传输的对称性的电荷载流子。例如,自由层130’可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。此外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器220’。被钉扎层210’可以包括其它的磁材料。例如,被钉扎层210’包括bcc(001)Fe、bcc(001)Co和/或bcc(001)FeCo。尽管被钉扎层的磁矩211’示出为垂直于平面,但是其它的取向是可以的。在某些实施例中,对称性过滤器220’与层210’和/或232’之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器220’与层210’和/或232’之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器220’可以包括Ge、GaAs和/或AnSe。层232’和/或层210’可以包括MnGa和/或MnIn。In the illustrated embodiment, the magnetic moments 231' and 235' of the free layer 230' are perpendicular to the plane. Furthermore, the free layer 230' is configured such that the layer 230' has, in a spin channel, symmetric charge carriers that are transported by the symmetry filter with high probability at the Fermi level. For example, a multisub-spin channel may include symmetric charge carriers at the Fermi level. In some embodiments, the free layer 230' is devoid of symmetric charge carriers that are transported with higher probability at the Fermi level in other spin channels, such as minority spin channels. For example, the free layer 130 ′ may include AlMn having an L1 0 crystal structure and a (100) axis perpendicular to a plane. In addition, MgO or SrSnO 3 having a (100) texture may be used as the spin filter 220 ′. The pinned layer 210' may include other magnetic materials. For example, the pinned layer 210 ′ includes bcc(001)Fe, bcc(001)Co, and/or bcc(001)FeCo. Although the magnetic moment 211' of the pinned layer is shown perpendicular to the plane, other orientations are possible. In certain embodiments, the lattice mismatch between symmetry filter 220' and layers 210' and/or 232' is less than seven percent. In some embodiments, the lattice mismatch between symmetry filter 220' and layers 210' and/or 232' may be less than three or four percent. For example, the symmetry filter 220' may include Ge, GaAs and/or AnSe. Layer 232' and/or layer 210' may include MnGa and/or MnIn.

图10示出了适于在磁存储器中使用的磁性结200”的另一个示范性实施例。为了清晰起见,图10没有按比例。磁性结200”包括与磁性结100/100”/200/200’类似的成分。因此,类似的成分被类似地标示。因此,磁性结200”包括被钉扎层210”、对称性过滤器220”和自由层230”,分别类似于层210/210’/110/110’、220/220’/120/120’和230/230’/130/130’。还示出了籽层202”、钉扎层204”和覆盖层206”。在其它实施例中,籽层202”、钉扎层204”和/或覆盖层206”可以被省略。籽层202”可以为钉扎层204”的期望晶体结构提供模板。钉扎层204”可以包括AFM层、硬磁体或用于钉扎被钉扎层210”的磁化的其他材料。此外,还可以提供接触(未示出)以在期望的方向上驱动电流。FIG. 10 shows another exemplary embodiment of a magnetic junction 200″ suitable for use in a magnetic memory. For clarity, FIG. 10 is not to scale. Magnetic junction 200″ includes magnetic junctions 100/100″/200/ 200' similar components. Accordingly, similar components are similarly labeled. Accordingly, magnetic junction 200" includes pinned layer 210", symmetry filter 220", and free layer 230", similar to layers 210/210', respectively /110/110', 220/220'/120/120' and 230/230'/130/130'. Seed layer 202", pinning layer 204", and cover layer 206" are also shown. In other embodiments, the seed layer 202", the pinning layer 204", and/or the capping layer 206" may be omitted. The seed layer 202" may provide a template for the desired crystal structure of the pinning layer 204". The pinning layer 204" AFM layers, hard magnets, or other materials for pinning the magnetization of the pinned layer 210" may be included. In addition, contacts (not shown) may also be provided to drive current in a desired direction.

在所示的实施例中,被钉扎层210”是SAF,包括与层212、214和216类似的层212’、214’和216’。在所示的实施例中,被钉扎层210”的磁矩211’和215’垂直于平面。在其它实施例中,自由层230”的磁矩垂直于平面。此外,被钉扎层210”构造为使得层210”在自旋通道(例如,多子自旋通道)中具有在费米能级处以较高几率被对称性过滤器220''传输的对称性的电荷载流子。在某些实施例中,被钉扎层210”在其它自旋通道(例如,少子自旋通道)中没有在费米能级处的对称性的电荷载流子。例如,被钉扎层210”可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。此外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器220”。In the illustrated embodiment, pinned layer 210" is a SAF and includes layers 212', 214', and 216' similar to layers 212, 214, and 216. In the illustrated embodiment, pinned layer 210 "The magnetic moments 211' and 215' are perpendicular to the plane. In other embodiments, the magnetic moment of the free layer 230" is perpendicular to the plane. In addition, the pinned layer 210" is configured such that the layer 210" has a Fermi energy in a spin channel (eg, a multi-sub-spin channel). Symmetrical charge carriers that are transported by the symmetry filter 220'' with a higher probability at the level. In some embodiments, the pinned layer 210" is in other spin channels (e.g., minority spin channels) There are no symmetric charge carriers at the Fermi level. For example, the pinned layer 210 ″ may include AlMn having a L1 0 crystal structure and a (100) axis perpendicular to the plane. In addition, MgO or SrSnO 3 having a (100) texture may be used as the spin filter 220 ″.

在所示的实施例中,被钉扎层210”的磁矩211和215垂直于平面。此外,被钉扎层210”构造为使得层210”在一个自旋通道诸如多子自旋通道中具有在费米能级处以较高的几率被对称性过滤器220''传输的对称性的电荷载流子。在某些实施例中,被钉扎层210”在其他自旋通道诸如少子自旋通道中没有在费米能级处的对称性的电荷载流子。例如,被钉扎层210”可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。此外,具有(100)织构的MgO或SrSnO3可以用作自旋过滤器220”。自由层230”可以包括其它的磁材料。例如,自由层230”包括bcc(001)Fe、bcc(001)Co和/或bcc(001)FeCo。尽管自由层的磁矩231”示出为垂直于平面,但是其它的取向是可以的。在某些实施例中,对称性过滤器220”与层216’和/或230”之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器220”与层216’和/或230”之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器220”可以包括Ge、GaAs和/或ZnSe。层230”和/或层216’可以包括MnGa和/或MnIn。In the illustrated embodiment, the magnetic moments 211 and 215 of the pinned layer 210" are perpendicular to the plane. Furthermore, the pinned layer 210" is configured such that the layer 210" is in a spin channel such as a multi-sub-spin channel Charge carriers with symmetry that are transported with higher probability at the Fermi level by the symmetry filter 220″. In some embodiments, the pinned layer 210″ is in other spin channels such as minority There are no symmetric charge carriers at the Fermi level in the spin channel. For example, the pinned layer 210 ″ may include AlMn having a L1 0 crystal structure and a (100) axis perpendicular to the plane. In addition, MgO or SrSnO 3 having a (100) texture may be used as the spin filter 220 ″. The free layer 230" may include other magnetic materials. For example, the free layer 230" includes bcc(001)Fe, bcc(001)Co and/or bcc(001)FeCo. Although the magnetic moment 231" of the free layer is shown perpendicular to the plane, other orientations are possible. In some embodiments, the lattice between the symmetry filter 220" and the layers 216' and/or 230" The mismatch is less than seven percent. In some embodiments, the lattice mismatch between symmetric filter 220" and layers 216' and/or 230" may be less than three or four percent. For example , the symmetry filter 220" may include Ge, GaAs and/or ZnSe. Layer 230" and/or layer 216' may include MnGa and/or MnIn.

磁性结200、200’和200”共享磁性结100/100’/100”的益处。因为层210/210’/210”和230/230’/230”的磁矩可以垂直于平面,所以量<H>eff/Hk为一。此外,可以改善自旋极化效率。因此,可以提高磁性结200、200’和200”的性能。Magnetic junctions 200, 200' and 200" share the benefits of magnetic junctions 100/100'/100". Since the magnetic moments of layers 210/210'/210" and 230/230'/230" can be perpendicular to the plane, the quantity <H> eff /H k is unity. In addition, spin polarization efficiency can be improved. Therefore, the performance of the magnetic junctions 200, 200' and 200" may be improved.

图11示出了适于在磁存储器中使用的磁性结300的另一个示范性实施例。为了清晰起见,图11没有按比例。磁性结300包括与图2和5-10中所示的磁性结100/100’/100”/200/200’/200”类似的成分。因此,类似的成分进行类似的标示。因此,磁性结300包括被钉扎层310、对称性过滤器320和自由层330,分别类似于被钉扎层110/110’/210、对称性过滤器120/120’/220和自由层130/130’/230。还示出了籽层302、钉扎层304和覆盖层306,分别类似于籽层102/102’/102”/202/202’/202”、钉扎层104/104’/104”/204/204’/204”204’’’和覆盖层106/106’/106”/206/206’/206”。在其它实施例中,籽层302、钉扎层304和/或覆盖层306可以被省略。磁性结300还包括另外的间隔层340、另外的被钉扎层350和另外的钉扎层360。因此,磁性结300可以被认为是包括类似于磁元件100/100’/100”/200/200’/200”的磁元件加上另外的层340、350和360。FIG. 11 shows another exemplary embodiment of a magnetic junction 300 suitable for use in a magnetic memory. For clarity, Figure 11 is not to scale. Magnetic junction 300 includes similar components to magnetic junctions 100/100&apos;/100&quot;/200/200&apos;/200&quot; shown in Figures 2 and 5-10. Accordingly, similar ingredients are similarly labeled. Thus, the magnetic junction 300 includes a pinned layer 310, a symmetry filter 320, and a free layer 330 similar to the pinned layer 110/110'/210, the symmetry filter 120/120'/220, and the free layer 130, respectively. /130'/230. Also shown is a seed layer 302, a pinning layer 304, and a cover layer 306, similar to the seed layer 102/102'/102"/202/202'/202", pinning layer 104/104'/104"/204, respectively. /204'/204"204''' and overlay 106/106'/106"/206/206'/206". In other embodiments, the seed layer 302, the pinning layer 304, and/or the capping layer 306 may be omitted. The magnetic junction 300 also includes an additional spacer layer 340 , an additional pinned layer 350 and an additional pinned layer 360 . Thus, magnetic junction 300 may be considered to include a magnetic element similar to magnetic element 100/100'/100"/200/200'/200" plus additional layers 340, 350, and 360.

在所示的实施例中,另外的间隔层340可以为隧穿势垒层。在其它实施例中,另外的间隔层340可以为导电的。此外,在某些实施例中,另外的间隔层340可以为对称性过滤器,诸如上述的MgO。另外的被钉扎层350可以类似于层110/110’/110”/110’’’/210/210’/210”。因此,被钉扎层350可以在自旋通道诸如多子自旋通道中具有在费米能级处以较高的几率被对称性过滤器320传输的对称性的电荷载流子。在某些实施例中,另外的被钉扎层350在另一自旋通道诸如少子自旋通道中没有在费米能级处的对称性的电荷载流子。例如,被钉扎层350两者可以包括具有L10晶体结构和垂直于平面的(100)轴的AlMn。另外的被钉扎层的磁矩351可以因此垂直于平面。应注意,尽管磁矩311和351示出为反平行,但是可以采用其它配置。此外,可以采用具有(100)织构的MgO或SrSnO3,从而间隔层340用作自旋过滤器。此外,尽管示出为简单层,但是层310、330和350中的一个或多个可以为SAF。在某些实施例中,对称性过滤器320与层330和/或310之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器320与层330和/或310之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器320可以包括Ge、GaAs和/或ZnSe。层330和/或层310可以包括MnGa和/或MnIn。类似地,如果层340是对称性过滤器,则对称性过滤器340与层330和/或360之间的晶格失配小于百分之七。在某些实施例中,对称性过滤器340与层330和/或360之间的晶格失配可以小于百分之三或百分之四。例如,对称性过滤器340可以包括Ge、GaAs和/或ZnSe。层330和/或层360可以包括MnGa和/或MnIn。In the illustrated embodiment, the further spacer layer 340 may be a tunneling barrier layer. In other embodiments, the additional spacer layer 340 may be conductive. Additionally, in some embodiments, the additional spacer layer 340 may be a symmetric filter, such as the MgO described above. Additional pinned layers 350 may be similar to layers 110/110'/110"/110'"/210/210'/210". Accordingly, the pinned layer 350 may have symmetric charge carriers transported by the symmetry filter 320 with a higher probability at the Fermi level in a spin channel such as a multisub-spin channel. In certain embodiments, the additional pinned layer 350 has no symmetric charge carriers at the Fermi level in another spin channel, such as a minority spin channel. For example, both pinned layers 350 may include AlMn having an L1 0 crystal structure and a (100) axis perpendicular to the plane. The magnetic moment 351 of the additional pinned layer may thus be perpendicular to the plane. It should be noted that although magnetic moments 311 and 351 are shown as antiparallel, other configurations may be employed. In addition, MgO or SrSnO 3 having a (100) texture may be used so that the spacer layer 340 functions as a spin filter. Furthermore, while shown as simple layers, one or more of layers 310, 330, and 350 may be SAFs. In some embodiments, the lattice mismatch between symmetry filter 320 and layers 330 and/or 310 is less than seven percent. In some embodiments, the lattice mismatch between symmetry filter 320 and layers 330 and/or 310 may be less than three or four percent. For example, symmetry filter 320 may include Ge, GaAs, and/or ZnSe. Layer 330 and/or layer 310 may include MnGa and/or MnIn. Similarly, if layer 340 is a symmetric filter, the lattice mismatch between symmetric filter 340 and layers 330 and/or 360 is less than seven percent. In some embodiments, the lattice mismatch between symmetry filter 340 and layers 330 and/or 360 may be less than three or four percent. For example, symmetry filter 340 may include Ge, GaAs, and/or ZnSe. Layer 330 and/or layer 360 may include MnGa and/or MnIn.

双磁性结300共享磁性结100/100’/100”/200/200’/200”的益处。因为层210/210’/210”/310、230、230’/230”/330和可选的350的磁矩可以垂直于平面,所以量<H>eff/Hk为一。此外,可以改善自旋极化效率。因此,可以提高磁性结300的性能。Dual magnetic junctions 300 share the benefits of magnetic junctions 100/100'/100"/200/200'/200". Since the magnetic moments of layers 210/210'/210"/310, 230, 230'/230"/330 and optionally 350 may be perpendicular to the plane, the quantity <H> eff /H k is unity. In addition, spin polarization efficiency can be improved. Therefore, the performance of the magnetic junction 300 can be improved.

图12示出了利用双磁性结的磁存储器400的示范性实施例。在所示的实施例中,磁存储器是STT-RAM400。磁存储器400包括读/写列选择器/驱动器402和406以及字线选择器/驱动器404。磁存储器400还包括存储单元410,存储单元410包括磁性结412和选择/隔离器件414。磁性结412可以为任何的磁性结100/100’/100”/200/200’/200”/300。读/写列选择器/驱动器402和406可以用于选择性地驱动电流经过位线403且因此经过单元410。字线选择器/驱动器404通过使与选择的字线405耦合的选择/隔离器件414开启而选择性开启磁存储器4000的行。FIG. 12 shows an exemplary embodiment of a magnetic memory 400 utilizing a dual magnetic junction. In the illustrated embodiment, the magnetic memory is STT-RAM 400 . Magnetic memory 400 includes read/write column selectors/drivers 402 and 406 and word line selector/driver 404 . The magnetic memory 400 also includes a memory cell 410 including a magnetic junction 412 and a selection/isolation device 414 . The magnetic junction 412 can be any magnetic junction 100/100'/100"/200/200'/200"/300. Read/write column selectors/drivers 402 and 406 may be used to selectively drive current through bit line 403 and thus through cell 410 . The word line selector/driver 404 selectively turns on a row of the magnetic memory 4000 by turning on a selection/isolation device 414 coupled to a selected word line 405 .

因为磁存储器400可以采用磁性结100/100’/100”/200/200’/200”/300,所以磁存储器400共享磁性结100/100’/100”/200/200’/200”的益处。因此,可以改善磁存储器400的性能。Because magnetic memory 400 can employ magnetic junctions 100/100'/100"/200/200'/200"/300, magnetic memory 400 shares the benefits of magnetic junctions 100/100'/100"/200/200'/200" . Therefore, the performance of the magnetic memory 400 can be improved.

图13示出用于制造适于在磁存储器中使用的双磁性隧道结的方法500的示范性实施例。方法500在磁性结100/100’的背景下描述。然而,方法500也可以用于制造其它的磁性结。此外,为了简化,某些步骤可以被省略。此外,方法500可以结合和/或采用另外和/或其它的步骤。方法500也在制造单磁性结的背景下描述。然而,方法500通常形成多个平行的磁性结,例如用于存储器300。FIG. 13 shows an exemplary embodiment of a method 500 for fabricating a dual magnetic tunnel junction suitable for use in magnetic memory. Method 500 is described in the context of magnetic junction 100/100'. However, method 500 can also be used to fabricate other magnetic junctions. Also, certain steps may be omitted for simplicity. Additionally, method 500 may incorporate and/or employ additional and/or additional steps. Method 500 is also described in the context of fabricating a single magnetic junction. However, method 500 typically forms multiple parallel magnetic junctions, such as for memory 300 .

通过步骤502提供磁性结堆叠。磁性结堆叠包括被钉扎层膜、自旋过滤器膜和自由层膜。堆叠还可以包括间隔层膜和另外的被钉扎层膜,如果要制造磁性结300。在某些实施例中,磁性结堆叠还可以在步骤502中退火。A magnetic junction stack is provided via step 502 . The magnetic junction stack includes a pinned layer film, a spin filter film, and a free layer film. The stack may also include a spacer layer film and an additional pinned layer film if the magnetic junction 300 is to be fabricated. In some embodiments, the magnetic junction stack may also be annealed in step 502 .

磁性结100/100’/100”/200/200’/200”/300通过步骤504由磁性结堆叠限定。步骤504包括提供覆盖磁性结堆叠的一部分的掩模、然后去除磁性结堆叠的暴露部分。磁性结100/100’/100”/200/200’/200”/300包括由第一被钉扎层膜限定的被钉扎层110/110’/110”/110’’’/210/210’210”310、由自旋过滤器膜限定的对称性过滤器120/120’/120”/220/220’/220”320和由自由层膜限定的自由层130/130’/130”/130’’’/230/230’/230”/330。在某些实施例中,磁性结300还包括间隔层340和另外的被钉扎层350。The magnetic junctions 100/100&apos;/100&quot;/200/200&apos;/200&quot;/300 are defined by step 504 by the stack of magnetic junctions. Step 504 includes providing a mask covering a portion of the magnetic junction stack and then removing the exposed portion of the magnetic junction stack. The magnetic junction 100/100'/100"/200/200'/200"/300 includes a pinned layer 110/110'/110"/110'''/210/210 defined by a first pinned layer film '210' 310, symmetric filter 120/120'/120'/220/220'/220' 320 defined by spin filter membrane and free layer 130/130'/130'' defined by free layer membrane/ 130'''/230/230'/230"/330. In some embodiments, the magnetic junction 300 also includes a spacer layer 340 and an additional pinned layer 350 .

被钉扎层110/110’/110”/110’’’/210/210’210”310的磁化方向通过步骤506设定。例如,步骤506可以通过如下进行:在期望的方向上施加磁场同时加热磁性结100/100’/100”/200/200’/200”/300、然后在该磁场存在的情况下冷却磁性结100/100’/100”/200/200’/200”/300。The magnetization direction of the pinned layer 110/110'/110"/110'''/210/210'210"310 is set by step 506. For example, step 506 may be performed by applying a magnetic field in the desired direction while heating the magnetic junction 100/100'/100"/200/200'/200"/300, and then cooling the magnetic junction 100 in the presence of the magnetic field /100'/100"/200/200'/200"/300.

因此,可以制造磁性结100/100’/100”/200/200’/200”/300。通过方法500制造的磁性结和/或磁存储器400共享磁性结100/100’/100”/200/200’/200”和/或磁存储器300的益处。因此,可以改善磁性结100/100’/100”/200/200’/200”和/或磁存储器300的性能。Thus, magnetic junctions 100/100'/100"/200/200'/200"/300 can be fabricated. The magnetic junction and/or magnetic memory 400 fabricated by method 500 shares the benefits of magnetic junction 100/100&apos;/100&quot;/200/200&apos;/200&quot; and/or magnetic memory 300. Accordingly, the performance of the magnetic junction 100/100'/100"/200/200'/200" and/or the magnetic memory 300 may be improved.

已经描述了用于提供磁性结和利用磁存储器结制造的存储器的方法和系统。该方法和系统已经根据所示的示范性实施例来描述,本领域的普通技术人员将易于理解,可以对实施例进行变化,并且任何变化将会在所述方法和系统的精神和范围内。因此,本领域普通技术人员可以进行很多修改而不脱离权利要求书的精神和范围。Methods and systems for providing magnetic junctions and memories fabricated using magnetic memory junctions have been described. The method and system have been described in terms of the exemplary embodiments shown, those of ordinary skill in the art will readily appreciate that changes may be made to the embodiments and any changes will be within the spirit and scope of the methods and systems described. Accordingly, many modifications can be made by one of ordinary skill in the art without departing from the spirit and scope of the claims.

本申请是在2010年1月11日提交的题目为“Method and System forProviding Magnetic Tunneling Junctions Usable in Spin Transfer TorqueMagnetic Memories”且转让给本申请的受让人的共同待决专利申请序号No.12/685418的部分继续申请。This application is a co-pending patent application serial no. 12/685418 entitled "Method and System for Providing Magnetic Tunneling Junctions Usable in Spin Transfer Torque Magnetic Memories" filed on January 11, 2010 and assigned to the assignee of this application continue to apply.

本发明在由DARPA授予的Grant/Contract No.HR0011-09-C-0023下通过美国政府的支持进行。美国政府保留本发明中的某些权利。分配仅授权给美国政府结构。This invention was made with United States Government support under Grant/Contract No. HR0011-09-C-0023 awarded by DARPA. The US Government reserves certain rights in this invention. Assignments are authorized to U.S. government structures only.

Claims (27)

1.一种磁性结,包括:1. A magnetic junction comprising: 自由层,具有第一磁矩,当写电流流过所述磁性结时该第一磁矩可在多个稳定的磁状态之间转换;a free layer having a first magnetic moment switchable between a plurality of stable magnetic states when a write current flows through the magnetic junction; 对称性过滤器,以比具有第二对称性的电荷载流子高的几率来传输第一对称性的电荷载流子;a symmetry filter that transmits charge carriers of a first symmetry with a higher probability than charge carriers of a second symmetry; 被钉扎层,具有被钉扎在特定方向上的第二磁矩,该对称性过滤器位于所述自由层和所述被钉扎层之间;a pinned layer having a second magnetic moment pinned in a specific direction, the symmetry filter positioned between said free layer and said pinned layer; 其中所述自由层和所述被钉扎层中的至少一个在自旋通道中具有在费米能级处的第一对称性的电荷载流子,在另一自旋通道中没有在费米能级处的第一对称性的电荷载流子,基本上位于平面中且具有基本上垂直于该平面的非零磁矩分量,所述对称性过滤器与所述自由层和所述被钉扎层中的至少一个具有小于百分之七的晶格失配。wherein at least one of the free layer and the pinned layer has charge carriers of a first symmetry at the Fermi level in a spin channel, and no charge carriers at the Fermi level in the other spin channel Charge carriers of a first symmetry at an energy level lying substantially in a plane and having a non-zero magnetic moment component substantially perpendicular to the plane, said symmetry filter associated with said free layer and said pinned At least one of the pinned layers has a lattice mismatch of less than seven percent. 2.如权利要求1所述的磁性结,其中所述晶格失配小于百分之四。2. The magnetic junction of claim 1, wherein the lattice mismatch is less than four percent. 3.如权利要求1所述的磁性结,其中所述自由层和所述被钉扎层中的至少一个包括AlMn。3. The magnetic junction of claim 1, wherein at least one of the free layer and the pinned layer comprises AlMn. 4.如权利要求1所述的磁性结,其中所述对称性过滤器包括Ge、GaAs和ZnSe中的至少一个。4. The magnetic junction of claim 1, wherein the symmetry filter comprises at least one of Ge, GaAs, and ZnSe. 5.如权利要求1所述的磁性结,其中所述第一磁矩基本上垂直于平面。5. The magnetic junction of claim 1, wherein the first magnetic moment is substantially perpendicular to a plane. 6.如权利要求1所述的磁性结,其中所述第二磁矩基本上垂直于平面。6. The magnetic junction of claim 1, wherein the second magnetic moment is substantially perpendicular to the plane. 7.如权利要求1所述的磁性结,其中所述自由层和所述被钉扎层中的至少一个包括MnGa和MnIn中的至少一个。7. The magnetic junction of claim 1, wherein at least one of the free layer and the pinned layer comprises at least one of MnGa and MnIn. 8.如权利要求1所述的磁性结,其中所述对称性过滤器是隧穿势垒层。8. The magnetic junction of claim 1, wherein the symmetry filter is a tunneling barrier layer. 9.如权利要求1所述的磁性结,其中所述自由层和所述被钉扎层中的至少一个是合成反铁磁体。9. The magnetic junction of claim 1, wherein at least one of the free layer and the pinned layer is a synthetic antiferromagnet. 10.如权利要求1所述的磁性结,还包括:10. The magnetic junction of claim 1, further comprising: 间隔层;以及spacer layer; and 另外的被钉扎层,该间隔层位于所述自由层和所述另外的被钉扎层之间,所述另外的被钉扎层具有第三磁矩。A further pinned layer, the spacer layer is located between the free layer and the further pinned layer, the further pinned layer has a third magnetic moment. 11.如权利要求10所述的磁性结,其中所述另外的被钉扎层包括AlMn。11. The magnetic junction of claim 10, wherein the further pinned layer comprises AlMn. 12.如权利要求10所述的磁性结,其中所述间隔层是另外的对称性过滤器。12. The magnetic junction of claim 10, wherein the spacer layer is an additional symmetry filter. 13.如权利要求11所述的磁性结,其中所述另外的对称性过滤器与所述自由层和所述另外的被钉扎层中的至少一个具有小于百分之七的另外的晶格失配。13. The magnetic junction of claim 11 , wherein the additional symmetry filter has less than seven percent additional lattice to at least one of the free layer and the additional pinned layer lost pair. 14.如权利要求13所述的磁性结,其中所述另外的晶格失配小于百分之四。14. The magnetic junction of claim 13, wherein the additional lattice mismatch is less than four percent. 15.如权利要求12所述的磁性结,其中所述另外的对称性过滤器包括Ge、GaAs和ZnSe中的至少一个。15. The magnetic junction of claim 12, wherein the additional symmetry filter comprises at least one of Ge, GaAs, and ZnSe. 16.如权利要求1所述的磁性结,其中所述自由层、所述被钉扎层和所述另外的被钉扎层中的至少一个是合成的反铁磁体。16. The magnetic junction of claim 1, wherein at least one of the free layer, the pinned layer, and the additional pinned layer is a synthetic antiferromagnet. 17.一种在磁存储器件中使用的磁性结,包括:17. A magnetic junction for use in a magnetic memory device, comprising: 自由层,基本上平行于平面,包括具有基本上垂直于该平面的(001)轴的AlMn,并具有当写电流流过所述磁性结时可在多个稳定的磁状态之间转换的第一磁矩,该第一磁矩具有基本上垂直于该平面的第一非零分量,所述自由层在第一多子自旋通道中具有在费米能量处的第一对称性的电荷载流子,而在第一少子自旋通道中没有所述第一对称性的电荷载流子;a free layer, substantially parallel to the plane, comprising AlMn having a (001) axis substantially perpendicular to the plane, and having a first magnetic state switchable between a plurality of stable magnetic states when a write current flows through the magnetic junction a magnetic moment having a first non-zero component substantially perpendicular to the plane, the free layer having charge loading of a first symmetry at the Fermi energy in the first multi-sub-spin channel carriers without charge carriers of said first symmetry in the first minority spin channel; 对称性过滤器,传输具有所述第一对称性的电荷载流子,并阻止具有与所述第一对称性不同的第二对称性的电荷载流子,所述对称性过滤器包括Ge、GaAs和ZnSe中的至少一个;a symmetry filter that transmits charge carriers having said first symmetry and blocks charge carriers having a second symmetry different from said first symmetry, said symmetry filter comprising Ge, At least one of GaAs and ZnSe; 被钉扎层,基本上平行于所述平面,包括具有基本上垂直于该平面的(001)轴的AlMn,并具有被钉扎在特定方向上的第二磁矩,该第二磁矩具有基本上垂直于该平面的第二非零分量,该被钉扎层在第二多子自旋通道中具有在费米能量处的所述第一对称性的电荷载流子,而在第二少子自旋通道中没有所述第一对称性的电荷载流子,所述对称性过滤器位于所述自由层和所述被钉扎层之间。The pinned layer, substantially parallel to the plane, includes AlMn having a (001) axis substantially perpendicular to the plane, and has a second magnetic moment pinned in a specific direction, the second magnetic moment having substantially perpendicular to the second non-zero component of the plane, the pinned layer has charge carriers of said first symmetry at the Fermi energy in the second multisub-spin channel, and in the second There are no charge carriers of the first symmetry in the minority spin channel, and the symmetry filter is located between the free layer and the pinned layer. 18.一种磁存储器,包括:18. A magnetic memory comprising: 多个磁存储单元,该多个磁存储单元的每个包括至少一个选择器件和至少一个磁性结,所述至少一个磁性结包括自由层、被钉扎层和在所述自由层和所述被钉扎层之间的对称性过滤器,所述自由层具有在写电流流过所述磁性结时在可多个稳定的磁状态之间转换的第一磁矩,所述对称性过滤器以比具有第二对称性的电荷载流子高的几率传输具有第一对称性的电荷载流子,所述被钉扎层具有被钉扎在特定方向上的第二磁矩,所述自由层和所述被钉扎层的中的至少一个在第一自旋通道中具有在费米能级处的所述第一对称性的电荷载流子,在其它自旋通道中没有在费米能级处的第一对称性的电荷载流子,基本上位于平面中且具有基本上垂直于该平面的非零磁矩分量,所述对称性过滤器与所述自由层和所述被钉扎层中的至少一个具有小于百分之七的晶格失配;A plurality of magnetic memory cells, each of the plurality of magnetic memory cells includes at least one selection device and at least one magnetic junction, the at least one magnetic junction includes a free layer, a pinned layer, and a symmetry filter between pinned layers, the free layer having a first magnetic moment that switches between multiple stable magnetic states when a write current flows through the magnetic junction, the symmetry filter in The charge carrier with the first symmetry is transported with a higher probability than the charge carrier with the second symmetry, the pinned layer has a second magnetic moment pinned in a specific direction, the free layer and at least one of said pinned layers has charge carriers of said first symmetry at the Fermi level in a first spin channel and no charge carriers at the Fermi level in the other spin channel charge carriers of a first symmetry at the stage, substantially in a plane and having a non-zero magnetic moment component substantially perpendicular to the plane, the symmetry filter is associated with the free layer and the pinned at least one of the layers has a lattice mismatch of less than seven percent; 多条位线,与所述多个磁存储单元耦接;以及a plurality of bit lines coupled to the plurality of magnetic memory cells; and 多条字线,与所述多个磁存储单元耦接。A plurality of word lines are coupled to the plurality of magnetic storage units. 19.如权利要求18所述的磁存储器,其中所述晶格失配小于百分之四。19. The magnetic memory of claim 18, wherein the lattice mismatch is less than four percent. 20.如权利要求18所述的磁存储器,其中所述对称性过滤器包括Ge、GaAs和ZnSe中的至少一个。20. The magnetic memory of claim 18, wherein the symmetry filter comprises at least one of Ge, GaAs, and ZnSe. 21.一种用于磁存储器件中的磁性结,包括:21. A magnetic junction for use in a magnetic memory device, comprising: 自由层,基本上平行于平面,并在写电流流过所述磁性结时具有可在多个稳定的磁状态之间转换的第一磁矩,所述第一磁矩具有基本上垂直于该平面的第一非零分量;a free layer substantially parallel to the plane and having a first magnetic moment switchable between a plurality of stable magnetic states when a write current flows through the magnetic junction, the first magnetic moment having a direction substantially perpendicular to the the first nonzero component of the plane; 对称性过滤器;Symmetry filter; 被钉扎层,基本上平行于该平面,并具有被钉扎在特定方向上的第二磁矩,所述对称性过滤器位于所述被钉扎层和所述自由层之间,所述第二磁矩具有基本上垂直于该平面的第二非零分量,所述自由层和所述被钉扎层中的至少一个在第一多子自旋通道中具有在费米能量处的第一对称性的电荷载流子,在第一少子自旋通道中没有所述第一对称性的电荷载流子,所述对称性过滤器传输具有所述第一对称性的电荷载流子,并阻止具有与所述第一对称性不同的第二对称性的电荷载流子,所述对称性过滤器与所述自由层和所述被钉扎层中的至少一个具有小于百分之七的晶格失配。a pinned layer substantially parallel to the plane and having a second magnetic moment pinned in a specific direction, the symmetry filter is located between the pinned layer and the free layer, the The second magnetic moment has a second non-zero component substantially perpendicular to the plane, at least one of the free layer and the pinned layer has a first multi-sub-spin channel at the Fermi energy a symmetry of charge carriers, the absence of charge carriers of said first symmetry in a first minority spin channel, said symmetry filter transporting charge carriers of said first symmetry, and to block charge carriers having a second symmetry different from the first symmetry, the symmetry filter having less than seven percent share with at least one of the free layer and the pinned layer lattice mismatch. 22.一种用于磁存储器件中的磁性结,包括:22. A magnetic junction for use in a magnetic memory device, comprising: 自由层,基本上平行于平面,并在写电流通过所述磁性结时具有可在多个稳定的磁状态之间转换的第一磁矩,所述第一磁矩具有基本上垂直于该平面的第一非零分量,所述自由层在第一多子自旋通道中具有在费米能量处的第一对称性的电荷载流子,而在第一少子自旋通道中没有所述第一对称性的电荷载流子;a free layer substantially parallel to the plane and having a first magnetic moment switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction, the first magnetic moment having a magnetic moment substantially perpendicular to the plane The first non-zero component of , the free layer has charge carriers of the first symmetry at the Fermi energy in the first many-sub-spin channel, while the first minority-sub-spin channel does not have the first a symmetrical charge carrier; 对称性过滤器,传输具有所述第一对称性的电荷载流子,并阻止具有与所述第一对称性不同的第二对称性的电荷载流子;a symmetry filter that transmits charge carriers having said first symmetry and blocks charge carriers having a second symmetry different from said first symmetry; 被钉扎层,基本上平行于该平面并具有被钉扎在特定方向上的第二磁矩,所述第二磁矩具有基本上垂直于该平面的第二非零分量,所述被钉扎层在第二多子自旋通道中具有在费米能量处的所述第一对称性的电荷载流子,而在第二少子自旋通道中没有所述第一对称性的电荷载流子,所述对称性过滤器位于所述自由层和所述被钉扎层之间,所述对称性过滤器与所述自由层和所述被钉扎层中的至少一个具有小于百分之七的晶格失配。a pinned layer substantially parallel to the plane and having a second magnetic moment pinned in a specific direction, the second magnetic moment having a second non-zero component substantially perpendicular to the plane, the pinned The pinned layer has charge carriers of said first symmetry at the Fermi energy in the second many-carrier spin channel, while there is no charge carrier of said first symmetry in the second minority-carrier spin channel The symmetry filter is located between the free layer and the pinned layer, the symmetry filter has less than a percent share with at least one of the free layer and the pinned layer Seven's lattice mismatch. 23.一种用于提供在磁存储器件中使用的磁性结的方法,包括:23. A method for providing a magnetic junction for use in a magnetic memory device, comprising: 提供磁性结堆叠,该磁性结堆叠包括自由层膜、被钉扎层膜和对称性过滤器膜,所述对称性过滤器膜传输具有第一对称性的电荷载流子并阻止具有第二对称性的电荷载流子,所述对称性过滤器层位于所述自由层膜和所述被钉扎层膜之间,所述自由层膜和所述被钉扎层膜中的至少一个在自旋通道中具有在费米能级处的第一对称性的电荷载流子,而在另一个自旋通道中没有在费米能级处的所述第一对称性的电荷载流子,基本上位于平面中,并具有基本上垂直于该平面的非零磁矩分量,所述对称性过滤器与所述自由层和所述被钉扎层中的至少一个具有小于百分之七的晶格失配;A magnetic junction stack is provided that includes a free layer film, a pinned layer film, and a symmetry filter film that transports charge carriers having a first symmetry and blocks charge carriers having a second symmetry. positive charge carriers, the symmetry filter layer is located between the free layer film and the pinned layer film, at least one of the free layer film and the pinned layer film is In a spin channel with charge carriers of the first symmetry at the Fermi level, while in the other spin channel there are no charge carriers of said first symmetry at the Fermi level, essentially lying in a plane with a non-zero magnetic moment component substantially perpendicular to the plane, the symmetry filter having less than seven percent crystallization with at least one of the free layer and the pinned layer case mismatch; 限定所述磁性结使得所述磁性结包括由所述自由层膜限定的自由层、由所述自旋过滤器层限定的自旋过滤器和由所述被钉扎层膜限定的被钉扎层,所述自由层具有第一磁矩,所述被钉扎层具有第二磁矩;defining the magnetic junction such that the magnetic junction includes a free layer defined by the free layer film, a spin filter defined by the spin filter layer, and a pinned layer defined by the pinned layer film. layer, the free layer has a first magnetic moment, and the pinned layer has a second magnetic moment; 设定所述被钉扎层的所述第二磁矩为被钉扎在特定的方向上;setting the second magnetic moment of the pinned layer to be pinned in a specific direction; 其中所述磁性结构造为当写电流流过所述磁性结时允许所述第一磁矩可在多个稳定的磁状态之间转换。Wherein the magnetic structure is configured to allow the first magnetic moment to be switchable between a plurality of stable magnetic states when a write current flows through the magnetic junction. 24.如权利要求23所述的方法,其中所述晶格失配小于百分之四。24. The method of claim 23, wherein the lattice mismatch is less than four percent. 25.如权利要求20所述的方法,其中所述自由层膜和所述被钉扎层膜的至少一个基本上位于平面中,并包括具有基本上垂直于该平面的(001)轴的AlMn。25. The method of claim 20, wherein at least one of the free layer film and the pinned layer film lies substantially in a plane and comprises AlMn having a (001) axis substantially perpendicular to the plane . 26.如权利要求20所述的方法,其中所述对称性过滤器包括Ge、GaAs和ZnSe中的至少一个。26. The method of claim 20, wherein the symmetry filter comprises at least one of Ge, GaAs, and ZnSe. 27.如权利要求19所述的方法,其中提供所述磁性结堆叠的步骤还包括:27. The method of claim 19, wherein the step of providing the magnetic junction stack further comprises: 沉积间隔层膜;以及depositing a spacer film; and 沉积用于另外的被钉扎层的另外的被钉扎层膜,该间隔层位于所述另外的被钉扎层膜和所述自由层膜之间,所述另外的被钉扎层具有第三磁矩。depositing an additional pinned layer film for an additional pinned layer, the spacer layer being between said additional pinned layer film and said free layer film, said additional pinned layer having a first Three magnetic moments.
CN201310302503.XA 2012-07-13 2013-07-15 Method and system for providing a magnetic tunnel junction usable in magnetic memory Active CN103544985B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/549,331 2012-07-13
US13/549,331 US9130151B2 (en) 2010-01-11 2012-07-13 Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories

Publications (2)

Publication Number Publication Date
CN103544985A true CN103544985A (en) 2014-01-29
CN103544985B CN103544985B (en) 2017-08-01

Family

ID=49968369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310302503.XA Active CN103544985B (en) 2012-07-13 2013-07-15 Method and system for providing a magnetic tunnel junction usable in magnetic memory

Country Status (3)

Country Link
JP (1) JP6339327B2 (en)
KR (1) KR102042769B1 (en)
CN (1) CN103544985B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028313A (en) * 2015-09-25 2018-05-11 英特尔公司 PSTTM device with multi-layer filter stack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716616A (en) * 2004-07-01 2006-01-04 王知行 Non-volatile memory unit and its array
US20080026253A1 (en) * 2006-07-27 2008-01-31 National Institute Of Advanced Industrial Science And Technology Cpp type giant magneto-resistance element and magnetic sensor
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
CN101546807A (en) * 2008-03-27 2009-09-30 株式会社东芝 Magnetoresistive element and magnetic memory
US7826258B2 (en) * 2008-03-24 2010-11-02 Carnegie Mellon University Crossbar diode-switched magnetoresistive random access memory system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028362A (en) * 2006-06-22 2008-02-07 Toshiba Corp Magnetoresistive element and magnetic memory
JP2008252018A (en) * 2007-03-30 2008-10-16 Toshiba Corp Magnetoresistive element and magnetic random access memory using the same
JP5491757B2 (en) * 2009-03-27 2014-05-14 株式会社東芝 Magnetoresistive element and magnetic memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716616A (en) * 2004-07-01 2006-01-04 王知行 Non-volatile memory unit and its array
US20080026253A1 (en) * 2006-07-27 2008-01-31 National Institute Of Advanced Industrial Science And Technology Cpp type giant magneto-resistance element and magnetic sensor
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
US7826258B2 (en) * 2008-03-24 2010-11-02 Carnegie Mellon University Crossbar diode-switched magnetoresistive random access memory system
CN101546807A (en) * 2008-03-27 2009-09-30 株式会社东芝 Magnetoresistive element and magnetic memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028313A (en) * 2015-09-25 2018-05-11 英特尔公司 PSTTM device with multi-layer filter stack
CN108028313B (en) * 2015-09-25 2022-04-15 英特尔公司 PSTTM device with multi-layer filter stack

Also Published As

Publication number Publication date
JP2014022735A (en) 2014-02-03
KR20140009071A (en) 2014-01-22
KR102042769B1 (en) 2019-11-08
JP6339327B2 (en) 2018-06-06
CN103544985B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US8254162B2 (en) Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories
CN103887423B (en) For providing the method and system of the magnetic junction with design perpendicular magnetic anisotropic
US8422285B2 (en) Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
CN103069602B (en) There is the magnetic tunneling junction element of biaxial anisotropy
US9130155B2 (en) Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions
KR102198032B1 (en) Method and system for providing magnetic junctions having improved polarization enhancement and reference layers
US8456882B2 (en) Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
US8766383B2 (en) Method and system for providing a magnetic junction using half metallic ferromagnets
KR101893908B1 (en) Method and system for providing hybrid magnetic tunneling junction elements with improved switching
CN103855297B (en) Magnetic junction and its offer method and the magnetic memory comprising the magnetic junction
CN105244436A (en) Magnetic junctions using asymmetric free layers and suitable for use in spin transfer torque memories
US20160043301A1 (en) Method and system for providing magnetic junctions including heusler multilayers
CN103928607B (en) There is provided with the method and system for easily boring anisotropic magnetic tunnel junction element
WO2005079348A2 (en) Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US8780665B2 (en) Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy
US9792971B2 (en) Method and system for providing magnetic junctions with rare earth-transition metal layers
US8987006B2 (en) Method and system for providing a magnetic junction having an engineered barrier layer
CN103544985B (en) Method and system for providing a magnetic tunnel junction usable in magnetic memory
US9130151B2 (en) Method and system for providing magnetic tunneling junctions usable in spin transfer torque magnetic memories

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant