CN103543516B - 一种长波红外广角镜头 - Google Patents

一种长波红外广角镜头 Download PDF

Info

Publication number
CN103543516B
CN103543516B CN201310445384.3A CN201310445384A CN103543516B CN 103543516 B CN103543516 B CN 103543516B CN 201310445384 A CN201310445384 A CN 201310445384A CN 103543516 B CN103543516 B CN 103543516B
Authority
CN
China
Prior art keywords
lens
long wave
wave infrared
infrared wide
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310445384.3A
Other languages
English (en)
Other versions
CN103543516A (zh
Inventor
任和齐
朱光春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO SHUNYU INFRARED TECHNOLOGY Co Ltd
Original Assignee
NINGBO SHUNYU INFRARED TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO SHUNYU INFRARED TECHNOLOGY Co Ltd filed Critical NINGBO SHUNYU INFRARED TECHNOLOGY Co Ltd
Priority to CN201310445384.3A priority Critical patent/CN103543516B/zh
Publication of CN103543516A publication Critical patent/CN103543516A/zh
Application granted granted Critical
Publication of CN103543516B publication Critical patent/CN103543516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

本发明提供一种长波红外广角镜头,沿光轴从物方至像方依次设置有第一透镜、第二透镜,所述第一透镜是凹面朝向物侧的具有负屈光力的弯月形透镜,所述第二透镜是凸面朝向物侧的具有正屈光力的透镜,所述镜头满足下列表达式:-4<f*(n2-1)/(FNO*R1)<-0.5,其中,f为所述镜头的焦距;n2为第二透镜的中心波长折射率;FNO为所述镜头的F数;R1为第一透镜的凹面近似曲率半径。本发明结构紧凑,成本低廉,适用批量生产,具有较好的应用效果。

Description

一种长波红外广角镜头
技术领域
本发明涉及一种长波红外广角镜头,尤其是适合于车载夜视、安防监控等应用领域的新型低成本的长波红外广角镜头。
背景技术
长波红外非制冷型探测器具有结构紧凑、功耗小、成本低等特点,可广泛应用于森林防火、道路监控,机场监察等安防领域。随着半导体技术的不断进步,非制冷探测器像元尺寸规格开始从25微米向17微米过渡,甚至向12微米发展,随着探测器像元的不断缩小,非制冷探测器的成本也将不断下降,为长波红外非制冷探测器大规模推广奠定基础。
现有公开技术中,长波红外广角镜头一般采用单片镜片或者3片以及3片以上镜片方案,材料上使用既稀缺,又昂贵的单晶锗,非球面镜片加工一直沿用传统的单点金刚石车削工艺,成本高,效率低。若要实现宽温度范围内的消热差功能,则需要采用更加复杂的光学结构。因此需要一种新的解决方案,材料上选用成本低廉的红外材料,整个光学系统具有明显的成本优势,像质上需要满足新型的17μm非制冷探测器应用要求,并且在宽温度范围内具有消热差功能,便于在安防监控领域的大规模推广。
发明内容
本发明提供了一种长波红外广角镜头,解决了上述问题,所述镜头采用两片透镜实现了高分辨率的成像品质和较广的水平视场角。所述镜头采用了一片单晶硅镜片和一片硫系玻璃镜片,单晶硅镜片在镜片厚度较薄时在8微米至12微米具有较好的透过率,而在材料成本上单晶硅材料较传统的单晶锗材料具有明显的优势。硫系玻璃除了在成本上较传统的单晶锗材料具有优势之外,最大的优势是具有精密模压的特点,利用这一特点,通过精密模压实现批量生产,能够大幅度降低光学系统的成本。
本发明的技术方案如下所述:
一种长波红外广角镜头,沿光轴从物方至像方依次设置有第一透镜、第二透镜,所述第一透镜是凹面朝向物侧的具有负屈光力的弯月形透镜,所述第二透镜是凸面朝向物侧的具有正屈光力的透镜,所述镜头满足下列表达式:
-4<f*(n2-1)/(FNO*R1)<-0.5
其中,f为所述镜头的焦距;n2为第二透镜的中心波长折射率;FNO为所述镜头的F数;R1为第一透镜的凹面近似曲率半径。
进一步的,所述镜头满足下列表达式:
-2<f1/f<-1
其中,f1为第一透镜的焦距;f为所述镜头的焦距。
进一步的,所述镜头满足下列表达式:
0<f2/f<1
其中,f2为第二透镜的焦距;f为所述镜头的焦距。
进一步的,所述第一透镜为球面或者非球面,其材料为单晶硅。
进一步的,所述第二透镜为非球面透镜,至少有一面为衍射面。
进一步的,所述第二透镜的物面前方设置有光阑。
进一步的,所述镜头的最大视场角2ω>40°。
所述第二透镜的材料为透红外硫系玻璃。
进一步的,所述第二透镜的衍射面满足下列表达式:
&phi; = &Sigma; N A i &rho; 2 i
其中ρ=r/r1,r1为衍射面归化半径,Ai为衍射面相位系数。
进一步的,所述第二透镜的非球面满足下列表达式:
Z ( Y ) = Y 2 / R 1 + 1 - ( 1 + K ) Y 2 / R 2 + AY 4 + BY 6 + CY 8
其中,Z为非球面沿光轴方向在高度为Y的位置时,距非球面顶点的距离矢高,R表示镜面的近轴曲率半径,k为圆锥系数,A、B、C为高次非球面系数。
本发明与现有技术相比,具有以下优势和有益效果:
首先,本发明通过采用二个透镜实现了镜头的高分辨率和较广的水平视场角,使得系统的结构变得更为紧凑,使得系统的装配变得更为简单;本发明采用单晶硅和硫系玻璃材料,在材料成本上具有明显的优势,更重要的,利用硫系玻璃具有精密模压的特点,通过精密模压实现批量生产,可大幅度降低光学元件的加工成本,进而使得光学系统的成本大幅度下降,便于大范围推广;本发明采用新型的红外材料硫系玻璃,利用硫系玻璃低温度折射率变化的特性,结合DOE技术应用,实现硫系玻璃和单晶硅镜片在-40°~85°宽温度范围内的消热差功能,可广泛应用于车载夜视、安防监控等应用领域。实践证明,该种技术方案具有较好的应用效果。
附图说明
通过下面结合附图对其示例性实施例进行的描述,本发明上述特征和优点将会变得更加清楚和容易理解。
图1是本发明所述的长波红外广角镜头的具体实施例1的结构示意图;
图2是具体实施例1的色差曲线图(mm);
图3是具体实施例1的像散曲线图(mm);
图4是具体实施例1的畸变曲线图(%);
图5是具体实施例1的MTF曲线图。
图6是本发明所述的长波红外广角镜头的具体实施例2的结构示意图;
图7是具体实施例2的色差曲线图(mm);
图8是具体实施例2的像散曲线图(mm);
图9是具体实施例2的畸变曲线图(%);
图10是具体实施例2的MTF曲线图。
具体实施方式
图1是本发明所述的长波红外广角镜头的具体实施例1的结构示意图,如图1所示,所述长波红外广角镜头沿光轴从物侧到像侧依次设置有:具有负屈光力的第一透镜L1,系统光阑St,具有正屈光力的第二透镜L2以及成像面100。入射光通过第一透镜L1跟系统光阑St进入第二透镜,并通过第二透镜L2的会聚,最后进入到成像面100之中。
其中,在所述长波红外广角镜头中,第一透镜L1为凹面朝向物侧的负弯月透镜;第二透镜L2为凸面朝向物侧的正弯月透镜。第一透镜L1的凹面R1和R2面均为球面,第二透镜L2的凸面R3为非球面,R4为衍射面。
所述第一透镜L1采用双球面,第二透镜L2采用双非球面,如此配置能够以最少的镜片数量达到令人满足的光学特性和较宽的水平视场角。第二透镜L2的凸面R4为衍射面,衍射面具有消色差的功能,采用衍射面技术将有效补偿光学系统中的色差。
所述第一透镜L1采用单晶硅,第二透镜L2采用硫系玻璃,硫系玻璃在3-14μm具有良好的透过率,透明区域覆盖三个大气窗口。硫系玻璃折射率随温度变化系数dn/dT较小,在光学系统中采用硫系玻璃加上合理的光焦度分配可以实现良好的消热差功能。在加工方式上硫系玻璃除了具有可抛光,可车削,最大特性还可以高精度模压,在批量生产时具有极大的成本优势。
本镜头在设计时,为达到160*12017微米探测器的高分辨率像质要求,镜头光阑放置在第二透镜L2的第一面上。所述第一透镜L1的凹面近似曲率半径与光学系统焦距需要满足下列公式:
-4<f*(n2-1)/(FNO*R1)<-0.5
其中,f为整个光学系统的焦距;
n2为第一透镜L2材料的中心波长折射率;
FNO为光学系统的F数;
R1为第一透镜L1的凹面近似曲率半径;
第一透镜L1和第二透镜L2的焦距分别为f1、f2,所述镜头的焦距为f,为了达到优良的光学特性,第一透镜L1和第二透镜L2的光焦度分配需要满足以下关系:-2<f1/f<-1,0<f2/f<1。
在本实施例1中,所述镜头的焦距f=3.5mm,光圈数FNO=1.0,最大视场角2ω=58°。第一透镜L1的凹面近似曲率半径R1=-2.999,第一透镜L1的焦距f1=-3.37mm,第二透镜L2的焦距为f2=2.76mm。
f*(n-1)/(FNO*R1)=-1.75;
f1/f=-1.34;
f2/f=0.89;
图2至图5为相应实施例1的光学特性曲线图,其中图2为色差曲线图,由8μm、10μm、12μm的三个波长来表示,单位为mm。图3为像散曲线图,同样由8μm、10μm、12μm的三个波长来表示,单位为mm。图4为畸变曲线图,标示不同视场角下的畸变大小值,单位为%。图5为MTF曲线图,代表光学系统的综合解像水平,最新的160*12017μm探测器要求达到30线对分辨率。由图可知,该长波红外光学系统已将各种像差补正足以满足实用要求。
其中D1是第一透镜的镜片厚度;D2是第一透镜和第二透镜之间的间距;D3是第二透镜的镜片厚度;D4是第二透镜和像面100之间的间距。
本发明光学系统参数请参见表一、表二、表三。
表一、光学元件参数表
非球面满足下列表达式:
Z ( Y ) = Y 2 / R 1 + 1 - ( 1 + K ) Y 2 / R 2 + AY 4 + BY 6 + CY 8
式中,Z为非球面沿光轴方向在高度为Y的位置时,距非球面顶点的距离矢高Sag,R表示镜面的近轴曲率半径,k为圆锥系数conic,A、B、C为高次非球面系数。
表二:非球面数据
非球面 K A B C
3 0 -1.0288110E-003 2.0914774E-005 0
4 0 1.4553939E-003 -4.7208996E-005 1.9341163E-006
衍射面满足下列表达式:
&phi; = &Sigma; N A i &rho; 2 i
其中ρ=r/r1,r1是衍射面归化半径,Ai是衍射面相位系数;
表三:衍射面数据
衍射面 规划半径 相位系数A1 相位系数A2 相位系数A3
4 4 -44.8830899 38.5830515 -28.3776981
图6是本发明所述的长波红外广角镜头的具体实施例2的结构示意图,如图6所示,所述长波红外广角镜头沿光轴从物侧到像侧依次设置有:具有负屈光力的第一透镜L1,系统光阑St,具有正屈光力的第二透镜L2以及成像面100。入射光通过第一透镜L1跟系统光阑St进入第二透镜,并通过第二透镜L2的会聚,最后进入到成像面100之中。
其中,在所述长波红外广角镜头中,第一透镜L1为凹面朝向物侧的负弯月透镜;第二透镜L2为凸面朝向物侧的正弯月透镜。第一透镜L1的凹面R1为球面,R2为非球面,第二透镜L2的凸面R3为非球面,R4为衍射面。
所述第一透镜L1采用单晶硅,第二透镜L2采用硫系玻璃,硫系玻璃在3-14μm具有良好的透过率,透明区域覆盖三个大气窗口。硫系玻璃折射率随温度变化系数dn/dT较小,在光学系统中采用硫系玻璃加上合理的光焦度分配可以实现良好的消热差功能。在加工方式上硫系玻璃除了具有可抛光,可车削,最大特性还可以高精度模压,在批量生产时具有极大的成本优势。
本镜头在设计时,为达到160*12017微米探测器的高分辨率像质要求,镜头光阑放置在第二透镜L2的第一面上。所述第一透镜L1的凹面近似曲率半径与光学系统焦距需要满足下列公式:
-4<f*(n2-1)/(FNO*R1)<-0.5
其中,f为整个光学系统的焦距;
n2为第一透镜L2材料的中心波长折射率;
FNO为光学系统的F数;
R1为第一透镜L1的凹面近似曲率半径;
第一透镜L1和第二透镜L2的焦距分别为f1、f2,所述镜头的焦距为f,为了达到优良的光学特性,第一透镜L1和第二透镜L2的光焦度分配需要满足以下关系:-2<f1/f<-1,0<f2/f<1。
在本实施例2中,所述镜头的焦距f=2.8mm,光圈数FNO=1.0,最大视场角2ω=78°。第一透镜L1的凹面近似曲率半径R1=-2.7,第一透镜L1的焦距f1=-3.37mm,第二透镜L2的焦距为f2=2.76mm。
f*(n-1)/(FNO*R1)=-1.55;
f1/f=-0.9;
f2/f=0.88;
图7至图10为相应实施例2的光学特性曲线图,其中图7为色差曲线图,由8μm、10μm、12μm的三个波长来表示,单位为mm。图8为像散曲线图,同样由8μm、10μm、12μm的三个波长来表示,单位为mm。图9为畸变曲线图,标示不同视场角下的畸变大小值,单位为%。图10为MTF曲线图,代表光学系统的综合解像水平,最新的160*12017μm探测器要求达到30线对分辨率。由图可知,该长波红外光学系统已将各种像差补正足以满足实用要求。
其中D1是第一透镜的镜片厚度;D2是第一透镜和第二透镜之间的间距;D3是第二透镜的镜片厚度;D4是第二透镜和像面100之间的间距。
本发明光学系统参数请参见表四、表五、表六。
表四、光学元件参数表
非球面满足下列表达式:
Z ( Y ) = Y 2 / R 1 + 1 - ( 1 + K ) Y 2 / R 2 + AY 4 + BY 6 + CY 8
式中,Z为非球面沿光轴方向在高度为Y的位置时,距非球面顶点的距离矢高Sag,R表示镜面的近轴曲率半径,k为圆锥系数conic,A、B、C为高次非球面系数。
表五:非球面数据
非球面 K A B C
2 0 3.012675E-004 0 2.372208E-005
3 0 -3.091929E-003 8.474522E-005 0
4 0 2.461257E-003 -1.219281E-004 6.035593E-006
衍射面满足下列表达式:
&phi; = &Sigma; N A i &rho; 2 i
其中ρ=r/r1,r1是衍射面归化半径,Ai是衍射面相位系数;
表六:衍射面数据
衍射面 规划半径 相位系数A1 相位系数A2 相位系数A3
4 4 -46.626939 30.798094 -22.093257
需要注意的是,上述表格中的具体参数仅仅是示例性的,各透镜的参数不限于由上述各数值实施例所示出的值,可以采用其他的值,都可以达到类似的技术效果。
虽然上面描述了本发明的原理以及具体实施方式,但是,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形落在本发明的保护范围内。本领域技术人员应该明白,上面的具体描述只是为了解释本发明的目的,并非用于限制本发明。本发明的保护范围由权利要求及其等同物限定。

Claims (9)

1.一种长波红外广角镜头,其特征在于:沿光轴从物方至像方依次设置有第一透镜、第二透镜,所述第一透镜是凹面朝向物侧的具有负屈光力的弯月形透镜,所述第二透镜是凸面朝向物侧的具有正屈光力的透镜,所述镜头满足下列表达式:
-4<f*(n2-1)/(FNO*R1)<-0.5
其中,f为所述镜头的焦距;n2为第二透镜的中心波长折射率;FNO为所述镜头的F数;R1为第一透镜的凹面近似曲率半径,
还满足:-2<f1/f<-1
其中,f1为第一透镜的焦距;f为所述镜头的焦距。
2.根据权利要求1所述的长波红外广角镜头,其特征在于:所述镜头满足下列表达式:
0<f2/f<1
其中,f2为第二透镜的焦距;f为所述镜头的焦距。
3.根据权利要求1所述的长波红外广角镜头,其特征在于:所述第一透镜为球面或者非球面,其材料为单晶硅。
4.根据权利要求1所述的长波红外广角镜头,其特征在于:所述第二透镜为非球面透镜,至少有一面为衍射面。
5.根据权利要求1所述的长波红外广角镜头,其特征在于:所述第二透镜的物面前方设置有光阑。
6.根据权利要求1所述的长波红外广角镜头,其特征在于:所述镜头的最大视场角2ω>40°。
7.根据权利要求4所述的长波红外广角镜头,其特征在于:所述第二透镜的材料为透红外硫系玻璃。
8.根据权利要求4所述的长波红外广角镜头,其特征在于:所述第二透镜的衍射面满足下列表达式:
&phi; = &Sigma; N A i &rho; 2 i
其中ρ=r/r1,r1为衍射面归化半径,Ai为衍射面相位系数。
9.根据权利要求4所述的长波红外广角镜头,其特征在于:所述第二透镜的非球面满足下列表达式:
Z ( Y ) = Y 2 / R 1 + 1 - ( 1 + K ) Y 2 / R 2 + AY 4 + BY 6 + CY 8
其中,Z为非球面沿光轴方向在高度为Y的位置时,距非球面顶点的距离矢高,R表示镜面的近轴曲率半径,k为圆锥系数,A、B、C为高次非球面系数。
CN201310445384.3A 2013-09-26 2013-09-26 一种长波红外广角镜头 Active CN103543516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310445384.3A CN103543516B (zh) 2013-09-26 2013-09-26 一种长波红外广角镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310445384.3A CN103543516B (zh) 2013-09-26 2013-09-26 一种长波红外广角镜头

Publications (2)

Publication Number Publication Date
CN103543516A CN103543516A (zh) 2014-01-29
CN103543516B true CN103543516B (zh) 2016-03-30

Family

ID=49967126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310445384.3A Active CN103543516B (zh) 2013-09-26 2013-09-26 一种长波红外广角镜头

Country Status (1)

Country Link
CN (1) CN103543516B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415351B (zh) * 2014-08-07 2018-07-03 大族激光科技产业集团股份有限公司 远红外成像透镜组、物镜及探测仪
EP3385768B1 (en) * 2015-12-03 2023-04-12 KYOCERA Corporation Infrared image-forming lens
CN111897117A (zh) * 2020-08-12 2020-11-06 长春理工大学 超薄中长波红外双波段成像系统
CN112965224B (zh) * 2021-01-12 2022-04-22 天津欧菲光电有限公司 光学系统、取像模组及电子设备
CN113777753A (zh) * 2021-09-10 2021-12-10 天津欧菲光电有限公司 红外光学镜头、摄像模组及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203502651U (zh) * 2013-09-26 2014-03-26 宁波舜宇红外技术有限公司 一种长波红外广角镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900648B2 (ja) * 1991-08-07 1999-06-02 セイコーエプソン株式会社 超解像光学素子及び光メモリ装置
JPH09236745A (ja) * 1995-12-26 1997-09-09 Ricoh Co Ltd 光走査用レンズ及び光走査装置
JP3588518B2 (ja) * 1996-04-22 2004-11-10 富士写真フイルム株式会社 クローズアップレンズ
CN103018884B (zh) * 2012-12-26 2015-05-27 宁波舜宇红外技术有限公司 一种长波红外光学系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203502651U (zh) * 2013-09-26 2014-03-26 宁波舜宇红外技术有限公司 一种长波红外广角镜头

Also Published As

Publication number Publication date
CN103543516A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
CN102289052B (zh) 一种超广角镜头
CN102213821B (zh) 一种近红外镜头
CN103543516B (zh) 一种长波红外广角镜头
CN202093231U (zh) 一种近红外镜头
CN103837963B (zh) 一种新型高通光量长波红外消热差镜头
CN101587232B (zh) 新型百万像素广角镜头
CN103941379B (zh) 一种新型长波红外定焦镜头
CN103018884B (zh) 一种长波红外光学系统
CN103543515B (zh) 一种新型长波红外广角镜头
CN103852863B (zh) 一种新型长波红外消热差镜头
CN202230237U (zh) 一种超广角镜头
CN203759344U (zh) 一种新型高通光量长波红外消热差镜头
CN102289053B (zh) 一种具有非球面胶合镜片的广角镜头
WO2016176911A1 (zh) 小型广角镜头
CN203275752U (zh) 一种极低温度漂移、高分辨率、红外共焦的光学系统
CN203759345U (zh) 一种新型长波红外消热差镜头
CN106547074B (zh) 一种红外鱼眼镜头
CN102360114A (zh) 监控镜头
CN203502651U (zh) 一种长波红外广角镜头
CN202256848U (zh) 一种具有非球面胶合镜片的广角镜头
CN205691846U (zh) 一种光学消热差、高像素、低成本热成像系统
CN207216117U (zh) 长波红外变焦镜头
CN203012226U (zh) 一种长波红外光学系统
CN204439916U (zh) 后置孔径光栏高清鱼眼视频摄像镜头
CN203502650U (zh) 一种新型长波红外广角镜头

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant