CN103539266A - 可用于处理底泥清淤尾水中重金属的构筑物及其施工方法 - Google Patents

可用于处理底泥清淤尾水中重金属的构筑物及其施工方法 Download PDF

Info

Publication number
CN103539266A
CN103539266A CN201310528021.6A CN201310528021A CN103539266A CN 103539266 A CN103539266 A CN 103539266A CN 201310528021 A CN201310528021 A CN 201310528021A CN 103539266 A CN103539266 A CN 103539266A
Authority
CN
China
Prior art keywords
water
cylinder mould
structures
column
grid cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310528021.6A
Other languages
English (en)
Other versions
CN103539266B (zh
Inventor
黄丹莲
罗湘颖
许飘
曾光明
赖萃
汤琳
黄超
李芳玲
王聪
徐娟娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201310528021.6A priority Critical patent/CN103539266B/zh
Publication of CN103539266A publication Critical patent/CN103539266A/zh
Application granted granted Critical
Publication of CN103539266B publication Critical patent/CN103539266B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

本发明公开了一种可用于处理底泥清淤尾水中重金属污染物的构筑物,包括沉淀池和反应池,反应池包括调节柱和至少一根的吸附柱,调节柱和吸附柱均采用格栅网笼作为框架,调节柱中填充固体颗粒填充物,吸附柱中填充Fe3O4-海藻酸钙-黄孢原毛平革菌微球组成的复合物;且调节柱和吸附柱依次沿水流方向布置。该构筑物的施工包括以下步骤:建好沉淀池和反应池,在反应池中开挖出两条以上的沟槽,使格栅网笼垂直水流方向放置于各沟槽中;向最上游沟槽中填充固体颗粒填充物,其余各沟槽中则填充复合型生物吸附材料,并保证填充物高出反应池的水位线。本发明具有成本低廉、制备工艺简单、吸附效率高等优点,且可用于处理底泥清淤尾水中重金属污染物。

Description

可用于处理底泥清淤尾水中重金属的构筑物及其施工方法
技术领域
本发明属于水体净化及水污染防治领域,尤其涉及一种可用于处理底泥清淤尾水中重金属的构筑物及其施工方法。
背景技术
随着工业的迅猛发展和人类活动的急剧增加,工业污水和工业垃圾、城乡生活污水及农业生产中化肥农药的残留物稍做处理或根本不处理就直接排人湖泊河道中,致使水体污染严重`。与人们生活联系紧密的城市水系,重金属、富营养化及其他有害化学物质的含量远远超过允许值,给城市环境和人们的生活健康造成很大的威胁。 国内外治理污染水系的经验表明:在外污染源基本得到控制的条件下,必须彻底清除内污染源——污染底泥,恢复重建水体生态系统,才能达到理想的治理效果。目前,世界上多采用环保疏浚的方法清除污染底泥。 
环保疏浚是治理湖泊、港口及河道内源污染物的重要手段,疏浚过程中,污染底泥被泥泵叶轮打成泥浆输送到底泥堆场,经堆场自然沉淀后污泥留存于堆场,多余的水从堆场溢流排放,被称为尾水。堆场尾水中含有氮、磷、有机污染物及重金属污染物,这些污染物大部分粘附在悬浮颗粒上并随余水排入受纳水体中,将造成受纳水体的二次污染,这些悬浮颗粒比重小,短时间内难以沉淀去除,并且疏浚工程的单位产量大,以及堆场空间的限制,尾水处理已经成为环保疏浚工程正常运行的制约因素。
采用传统的尾水处理方法时 ,尾水处理效果较差,弃土场容量不足时,冲填的淤泥会随尾水大量直排,造成环境污染,后期无法正常连续施工,并将增加大量的格埂修筑费用。同时会对周边养殖及河道造成污染,政策处理费用大。 
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种成本低廉、制备工艺简单、吸附效率高、经济环保、且可用于处理底泥清淤尾水中重金属的构筑物,还相应提供该构筑物的施工方法。
为解决上述技术问题,本发明提出的技术方案为一种可用于处理底泥清淤尾水中重金属的构筑物,所述构筑物主要包括沉淀池和反应池,沉淀池与底泥清淤尾水输送系统连通,底泥清淤尾水经抽水泵抽到沉淀池中进行初步的沉淀分离,沉淀池的出水口通过抬升泵与反应池连通,其上层尾水经抬升泵继续流至反应池中进行处理,所述反应池中包括调节柱和至少一根的吸附柱,所述调节柱和吸附柱均采用格栅网笼作为框架,且格栅网笼的周向侧面均设有网状物,所述调节柱的格栅网笼中填充固体颗粒填充物,所述吸附柱的格栅网笼中填充复合型生物吸附材料,所述复合型生物吸附材料为Fe3O4-海藻酸钙-黄孢原毛平革菌微球组成的复合物;且调节柱和吸附柱依次沿水流方向进行布置(调节柱调节水中含氧量和pH等,使复合型生物吸附材料的吸附处于较优态)。
上述的构筑物中,优选的,所述固体颗粒填充物主要由CaO2、水泥、砂石、膨润土、水、(NH42SO4、NaH2PO4混合造粒而成,所述CaO2、水泥、砂石、膨润土、水、(NH4)2SO4、NaH2PO4的质量比优选为(0.5~1.0):(0.9~1.5):(0.8~1.2):(0.6~1):(0.9~1.2):(2.1~4.0):(1.4~3.5)。该优选的调节柱可更好地调节水中的含氧量和pH值,以为后续吸附柱的吸附反应提供更好的前提条件和准备工作。
上述的构筑物中,所述复合型生物吸附材料优选是以黄孢原毛平革菌球为载体,所述黄孢原毛平革菌球由菌丝缠绕而成,所述菌球内部包埋Fe3O4纳米粒子和海藻酸钙。
上述的构筑物中,所述复合型生物吸附材料优选主要通过以下步骤制备得到:无菌条件下,在无菌Fe3O4粒子和海藻酸钠的混合液中接种浓度为1.0×106个/mL~2.0×106个/mL的黄孢原毛平革菌的孢子悬浮液,每毫升混合液中的接种量为0.2ml~1.0ml,充分混合均匀后得混合溶液;将1体积的所述混合溶液逐滴滴加到4~10体积的0.1M~0.2M的无菌CaCl2溶液中,于室温下静置后得到含Fe3O4-海藻酸钙-黄孢原毛平革菌微球的反应液,再对所述Fe3O4-海藻酸钙-黄孢原毛平革菌微球进行固定化培养(即在Kirk培养基中,35℃~37℃、120rpm~150rpm条件下恒温振荡培养4~5天),培养完成后得到复合型生物吸附材料。
上述的构筑物中,所述的无菌Fe3O4粒子和海藻酸钠的混合液主要通过以下方法配制得到:将Fe3O4纳米粒子加入到浓度为20 g/L~60 g/L的海藻酸钠溶液中,所述Fe3O4纳米粒子的添加量为0.05g/mL~0.20g/mL,然后在105℃~115℃条件下灭菌30min~60min,最后在无菌条件下冷却60min~90min,制得无菌Fe3O4粒子和海藻酸钠的混合液。
上述的构筑物中,吸附柱的根数可根据实际情况增设,优选包括有两根以上的吸附柱,所述调节柱与吸附柱之间、以及各吸附柱之间均间隔有距离。
作为一个总的技术构思,本发明还提供一种上述构筑物的施工方法,包括以下步骤:
(1)在拟定位置建好沉淀池和反应池;
(2)在反应池的拟定位置开挖出两条以上的沟槽,各沟槽之间留有空隙;
(3)按各沟槽的宽度、深度和厚度分别制作格栅网笼,格栅网笼的周向侧面均设有网状物,将制作好的各格栅网笼分别置放在相应的沟槽内,并使格栅网笼的前、后侧面尽可能垂直于水流方向;
(4)向位于反应池水流方向最上游的沟槽中填充所述固体颗粒填充物,其余各沟槽中则填充所述复合型生物吸附材料,并保证填充物的高度高出反应池的水位线,完成构筑物的施工。
本发明的上述技术方案主要基于以下原理和思路:生物吸附技术是环境领域近年来迅速发展起来的处理污染废水的新技术,具有吸附容量大、选择性强、效率高、能耗低、操作简单等优点,能有效处理和净化含重金属离子的废水;而固定化的生物技术是利用生物或化学的多聚体材料将微生物包埋起来,其具有通透性好、微生物密度高、反应迅速、微生物流失少、产物易分离、反应过程易控制等优点,是一种高效低耗、运转管理容易和有广阔应用前景的废水处理技术。通过利用前述两种技术的相对优势,并进一步将其与构筑物的施工制作联系起来,使复合型生物吸附材料作为构筑物的填充材料,这不仅实现了三种技术的优势互补,而且大大延拓了生物吸附技术的应用领域,提升了构筑物对污染物的处理效果。
本发明提供的构筑物在进行应用时,由于调节柱位于水流上游,吸附柱位于水流下游,当受重金属污染的清淤尾水流过时,在调节柱中CaO2遇水后释放出氧气,(NH4)2SO4、NaH2PO4作为弱酸盐起到了缓冲清淤尾水水中pH的作用;继续流过吸附柱时,复合型生物吸附材料对重金属进行降解,由于吸附柱的通透性好,且复合型生物吸附材料对重金属进行降解时,不产生絮状沉淀物,可有效解决构筑物的墙体堵塞的弊端。本发明提供的构筑物能处理的清淤尾水中重金属污染物的总浓度可达10mg/L~500mg/L。
与现有技术相比,本发明的优点在于:
1. 本发明是直接将制备好的固体颗粒填充物和复合型生物吸附材料填充到构筑物中,以去除清淤尾水中的重金属,整个处理工艺成本较低,操作条件相对简单且容易实施。
2. 本发明制备的复合型生物吸附材料通透性好、吸附容量大、吸附速度快、清洁无污染,对含重金属废水有很好的处理效果,能有效降低废水处理运行成本,可以广泛采用。
3. 本发明能够有效处理底泥清淤尾水中重金属污染物,具有良好的环境效益,有利于保障底泥清淤过程中重金属污染问题的解决。
4. 本发明还可根据污染场地的实际的情况,调整复合型生物吸附材料的使用量,调整构筑物的渗透系数,增设构筑物中吸附柱的根数,制成满足污染场地实际需要的各种构筑物,具有良好的适应性。
附图说明
图1为本发明实施例1中构筑物的工作原理图。
图2为本发明实施例2中构筑物的工作原理图。
图3为本发明实施例1中构筑物对清淤尾水中不同浓度铅的处理效果图。
图例说明:
1、水泵;2、调节柱;3、吸附柱;3’、第二吸附柱。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
实施例1
某一清淤尾水重金属铅污染场地,根据现场清淤尾水的污染范围、程度调查及模拟预测结果,按照本发明的施工方法制作安设一可用于处理清淤尾水中重金属污染物的构筑物,具体步骤如下:
(1)在拟定位置建好沉淀池和反应池;
(2)在反应池的拟定位置开挖出两条沟槽,各沟槽之间留有空隙;
(3)按各沟槽的宽度、深度和厚度分别制作格栅网笼,格栅网笼的周向侧面均设有网状物,将制作好的各格栅网笼分别置放在相应的沟槽内,并使格栅网笼的前、后侧面尽可能垂直于水流方向;
(4)向位于反应池水流方向最上游的沟槽中填充所述固体颗粒填充物,其余沟槽中则填充复合型生物吸附材料,并保证填充物的高度高出反应池的水位线,完成构筑物的施工。
本实施例施工得到的构筑物如图1所示,该构筑物包括沉淀池和反应池,底泥清淤尾水经抽水泵抽到沉淀池中,进行初步的沉淀分离,上层尾水经抬升泵继续流至反应池中进行处理。反应池包括调节柱2和吸附柱3,调节柱2和吸附柱3均采用格栅网笼作为框架,且格栅网笼的周向侧面均设有网状物,调节柱2的格栅网笼中填充固体颗粒填充物,吸附柱3的格栅网笼中填充复合型生物吸附材料,复合型生物吸附材料为Fe3O4-海藻酸钙-黄孢原毛平革菌微球组成的复合物;且调节柱2和吸附柱3依次沿水流方向进行布置。
本实施例中,固体颗粒填充物主要由CaO2、水泥、砂石、膨润土、水、(NH4)2SO4、NaH2PO4混合造粒而成,CaO2、水泥、砂石、膨润土、水、(NH4)2SO4、NaH2PO4的质量比为0.9:1.0:1.0:0.9:1.2:3:2。
本实施例中,复合型生物吸附材料是以黄孢原毛平革菌球为载体,黄孢原毛平革菌球由菌丝缠绕而成,菌球内部包埋Fe3O4纳米粒子和海藻酸钙。复合型生物吸附材料主要通过以下步骤制备得到:
(1)将Fe3O4纳米粒子加入到浓度为30 g/L的海藻酸钠溶液中,Fe3O4纳米粒子的添加量为0.1g/mL,然后在110℃条件下灭菌30min,最后在无菌条件下冷却90min,制得无菌Fe3O4粒子和海藻酸钠的混合液;
(2)将购自中国典型培养物保藏中心(CCTCC)的黄孢原毛平革菌(BKMF-1767),保藏号为:CCTCC AF96007,从保藏的斜面培养基上刮取,使孢子在无菌水中均匀分散,用浊度计将其浊度调至60%(每毫升有数量级为2×106个孢子),形成孢子悬液;
(3)无菌条件下,在无菌Fe3O4粒子和海藻酸钠的混合液中接种浓度为2.0×106个/mL的黄孢原毛平革菌的孢子悬浮液,每毫升混合液中的接种量为0.2ml,充分混合均匀后得混合溶液;将1体积的所述混合溶液逐滴滴加到6体积0.2M的无菌CaCl2溶液中,于室温下静置4h后得到含Fe3O4-海藻酸钙-黄孢原毛平革菌微球的反应液,再对Fe3O4-海藻酸钙-黄孢原毛平革菌微球进行固定化培养,即在Kirk培养基中(Kirk培养基的主要成分为:2.0g/L KH2PO4,0.71g/LMgSO4·7H2O,0.01g/L维生素B1,0.2g/L酒石酸铵,10g/L葡萄糖,100mL/L的微量元素液,20mmol/L酒石酸钠缓冲液),37℃、150rpm条件下恒温振荡培养4天,培养完成后得到复合型生物吸附材料。
如图1所示,本实施例提供的构筑物在进行应用时,由于调节柱2位于水流上游,反应柱3位于水流下游,当受重金属污染的清淤尾水穿过构筑物时,在调节柱2中CaO2遇水后释放出氧气,(NH4)2SO4、NaH2PO4作为弱酸盐起到了缓冲清淤尾水水中pH的作用;继续流过吸附柱时,复合型生物吸附材料对重金属进行降解,由于吸附柱3的通透性好,且复合型生物吸附材料对重金属进行降解时,不产生絮状沉淀物,可有效解决构筑物的墙体堵塞的弊端。如图3所示的实验结果表明,铅浓度可由原来的11.56mg/L,降为0.88mg/L,满足国家第一类污染物的最高允许排放浓度标准(<1.0mg/L),去除率可高达92.38%。本发明提供的构筑物能处理的清淤尾水中重金属污染物的总浓度可达10mg/L~500mg/L。
实施例2: 
某一清淤尾水重金属铅污染场地,根据现场清淤尾水的污染范围、程度调查及模拟预测结果,按照本发明的施工方法制作安设一可用于处理清淤尾水中重金属污染物的构筑物,具体步骤如下:
(1)在拟定位置建好沉淀池和反应池;
(2)在在反应池的拟定位置开挖出三条沟槽,各沟槽之间留有空隙;
(3)按各沟槽的宽度、深度和厚度分别制作格栅网笼,格栅网笼的周向侧面均设有网状物,将制作好的各格栅网笼分别置放在相应的沟槽内,并使格栅网笼的前、后侧面尽可能垂直于水流方向;
(4)向位于反应池水流方向最上游的沟槽中填充所述固体颗粒填充物,其余各沟槽中则填充复合型生物吸附材料,并保证填充物的高度高出反应池的水位线,完成构筑物的施工。
本实施例施工得到的构筑物如图2所示,该构筑物包括沉淀池和反应池,底泥清淤尾水经抽水泵抽到沉淀池中,进行初步的沉淀分离,上层尾水经抬升泵继续流至反应池中进行处理。反应池包括调节柱2、吸附柱3和第二吸附柱3’,调节柱2、吸附柱3和第二吸附柱3’均采用格栅网笼作为框架,且格栅网笼的周向侧面均设有网状物,调节柱2的格栅网笼中填充固体颗粒填充物,吸附柱3和第二吸附柱3’的格栅网笼中填充复合型生物吸附材料,复合型生物吸附材料为Fe3O4-海藻酸钙-黄孢原毛平革菌微球组成的复合物;且调节柱2、吸附柱3和第二吸附柱3’依次沿水流方向进行布置。
本实施例中,固体颗粒填充物主要由CaO2、水泥、砂石、膨润土、水、(NH4)2SO4、NaH2PO4混合造粒而成,CaO2、水泥、砂石、膨润土、水、(NH4)2SO4、NaH2PO4的质量比为0.8:0.9:1.1:1.0:1.2:2.5:2.5。
本实施例中,复合型生物吸附材料是以黄孢原毛平革菌球为载体,黄孢原毛平革菌球由菌丝缠绕而成,菌球内部包埋Fe3O4纳米粒子和海藻酸钙。本实施例复合型生物吸附材料的制备与实施例1中的步骤相同。实验结果表明,铅浓度由原来的212.67mg/L,在经过吸附柱3后,降为12.97mg/L,去除率为93.9%;当经过第二吸附柱3’后,浓度降为0.97mg/L,满足国家第一类污染物的最高允许排放浓度标准(<1.0mg/L),去除率为92.52%;所以经过整个构筑物后,总去除率达到99.54%。 

Claims (7)

1.一种可用于处理底泥清淤尾水中重金属污染物的构筑物,其特征在于:所述构筑物包括沉淀池和反应池,沉淀池与底泥清淤尾水输送系统连通,沉淀池的出水口通过抬升泵与反应池连通,所述反应池包括调节柱和至少一根的吸附柱,所述调节柱和吸附柱均采用格栅网笼作为框架,且格栅网笼的周向侧面均设有网状物,所述调节柱的格栅网笼中填充固体颗粒填充物,所述吸附柱的格栅网笼中填充复合型生物吸附材料,所述复合型生物吸附材料为Fe3O4-海藻酸钙-黄孢原毛平革菌微球组成的复合物;且调节柱和吸附柱依次沿水流方向进行布置。
2.根据权利要求1所述的构筑物,其特征在于,所述固体颗粒填充物主要由CaO2、水泥、砂石、膨润土、水、(NH4)2SO4、NaH2PO4混合造粒而成,所述CaO2、水泥、砂石、膨润土、水、(NH4)2SO4、NaH2PO4的质量比为(0.5~1.0):(0.9~1.5):(0.8~1.2):(0.6~1):(0.9~1.2):(2.1~4.0):(1.4~3.5)。
3.根据权利要求1或2所述的构筑物,其特征在于,所述吸附柱中填充的复合型生物吸附材料是以黄孢原毛平革菌球为载体,所述黄孢原毛平革菌球由菌丝缠绕而成,所述菌球内部包埋Fe3O4纳米粒子和海藻酸钙。
4.根据权利要求3所述的构筑物,其特征在于,所述复合型生物吸附材料主要通过以下步骤制备得到:无菌条件下,在无菌Fe3O4粒子和海藻酸钠的混合液中接种浓度为1.0×106个/mL~2.0×106个/mL的黄孢原毛平革菌的孢子悬浮液,每毫升混合液中的接种量为0.2ml~1.0ml,充分混合均匀后得混合溶液;将1体积的所述混合溶液逐滴滴加到4~10体积的0.1M~0.2M的无菌CaCl2溶液中,于室温下静置后得到含Fe3O4-海藻酸钙-黄孢原毛平革菌微球的反应液,再对所述Fe3O4-海藻酸钙-黄孢原毛平革菌微球进行固定化培养,培养完成后得到复合型生物吸附材料。
5.根据权利要求4所述的构筑物,其特征在于,所述的无菌Fe3O4粒子和海藻酸钠的混合液主要通过以下方法配制得到:将Fe3O4纳米粒子加入到浓度为20 g/L~60 g/L的海藻酸钠溶液中,所述Fe3O4纳米粒子的添加量为0.05g/mL~0.20g/mL,然后在105℃~115℃条件下灭菌30min~60min,最后在无菌条件下冷却60min~90min,制得无菌Fe3O4粒子和海藻酸钠的混合液。
6.根据权利要求1或2所述的构筑物,其特征在于,所述构筑物包括两根以上的吸附柱,所述调节柱与吸附柱之间、以及各吸附柱之间均间隔有距离。
7.一种如权利要求1~6中任一项所述构筑物的施工方法,包括以下步骤:
(1)在拟定位置建好沉淀池和反应池;
(2)在反应池的拟定位置开挖出两条以上的沟槽,各沟槽之间留有空隙;
(3)按各沟槽的宽度、深度和厚度分别制作格栅网笼,格栅网笼的周向侧面均设有网状物,将制作好的各格栅网笼分别置放在相应的沟槽内,并使格栅网笼的前、后侧面尽可能垂直于水流方向;
(4)向位于反应池水流方向最上游的沟槽中填充所述固体颗粒填充物,其余各沟槽中则填充所述复合型生物吸附材料,并保证填充物的高度高出反应池的水位线,完成构筑物的施工。
CN201310528021.6A 2013-10-31 2013-10-31 可用于处理底泥清淤尾水中重金属的构筑物及其施工方法 Expired - Fee Related CN103539266B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310528021.6A CN103539266B (zh) 2013-10-31 2013-10-31 可用于处理底泥清淤尾水中重金属的构筑物及其施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310528021.6A CN103539266B (zh) 2013-10-31 2013-10-31 可用于处理底泥清淤尾水中重金属的构筑物及其施工方法

Publications (2)

Publication Number Publication Date
CN103539266A true CN103539266A (zh) 2014-01-29
CN103539266B CN103539266B (zh) 2015-04-22

Family

ID=49963188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310528021.6A Expired - Fee Related CN103539266B (zh) 2013-10-31 2013-10-31 可用于处理底泥清淤尾水中重金属的构筑物及其施工方法

Country Status (1)

Country Link
CN (1) CN103539266B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107555735A (zh) * 2017-10-30 2018-01-09 佛山市宝粤美科技有限公司 一种废水中悬浮物吸附装置
CN107585947A (zh) * 2017-10-30 2018-01-16 佛山市宝粤美科技有限公司 一种含有多种污染成分的废水净化装置
CN107619129A (zh) * 2017-10-30 2018-01-23 佛山市宝粤美科技有限公司 一种电镀废水处理装置
CN107759030A (zh) * 2017-11-23 2018-03-06 泰州市泰港动力机械有限公司 一种工业污水生物处理系统
CN109012621A (zh) * 2016-12-07 2018-12-18 天津市金鳞水处理科技有限公司 一种重金属离子吸附和检测型复合水凝胶纤维
CN117228905A (zh) * 2023-11-15 2023-12-15 成都嘉德数源环保科技有限公司 一种基于重金属污染的污水处理装置及其处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066809A (zh) * 2007-04-17 2007-11-07 天津大学 污染地下水修复的生物固定式渗透反应墙系统及填充物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066809A (zh) * 2007-04-17 2007-11-07 天津大学 污染地下水修复的生物固定式渗透反应墙系统及填充物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
许飘: ""磁性纳米固定化黄孢原毛平革菌对铅离子的吸附及其机理研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012621A (zh) * 2016-12-07 2018-12-18 天津市金鳞水处理科技有限公司 一种重金属离子吸附和检测型复合水凝胶纤维
CN107555735A (zh) * 2017-10-30 2018-01-09 佛山市宝粤美科技有限公司 一种废水中悬浮物吸附装置
CN107585947A (zh) * 2017-10-30 2018-01-16 佛山市宝粤美科技有限公司 一种含有多种污染成分的废水净化装置
CN107619129A (zh) * 2017-10-30 2018-01-23 佛山市宝粤美科技有限公司 一种电镀废水处理装置
CN107759030A (zh) * 2017-11-23 2018-03-06 泰州市泰港动力机械有限公司 一种工业污水生物处理系统
CN117228905A (zh) * 2023-11-15 2023-12-15 成都嘉德数源环保科技有限公司 一种基于重金属污染的污水处理装置及其处理方法
CN117228905B (zh) * 2023-11-15 2024-01-23 成都嘉德数源环保科技有限公司 一种基于重金属污染的污水处理装置及其处理方法

Also Published As

Publication number Publication date
CN103539266B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN103539266B (zh) 可用于处理底泥清淤尾水中重金属的构筑物及其施工方法
CN110550829B (zh) 一种小城镇生活污水塔式生态净化一体化装置
CN103803762B (zh) 一种有机复合土壤高效生态净水系统
CN1673122A (zh) 一种高效废水生态处理装置及其方法
CN110272167A (zh) 一种基于碳纤维的矿山废水处理系统及地下水去污工艺
CN102276110B (zh) 一种修复微污染水体的方法及潜流人工湿地系统
WO2021057555A1 (zh) 一种人工湿地水环境修复系统和方法
CN104591490A (zh) 多介质潮汐流人工湿地装置及方法
CN109574233B (zh) 一种添加沸石负载纳米零价铁的人工湿地系统
CN107915392A (zh) 城镇中小河道污泥生态处理系统
CN104556392A (zh) 浮动式生态净水厂
CN108996814B (zh) 一种城市污水与雨水联合处理工艺
CN109437484A (zh) 一种适用于河流型水源地水体的生物预处理系统及方法
CN103193316A (zh) 一种生物处理含镉废水的方法
CN103755108A (zh) 一种城市生活污水的净化处理方法
CN106348507A (zh) 城市河道黑臭水体治理方法及其含铁粉墙或含锰砂墙结构
CN204737846U (zh) 一种处理农业面源污染的上升流垂直人工湿地系统
CN104773898A (zh) 一种强化处理氟和砷污染水的物化-人工湿地组合工艺
CN105254130A (zh) 一种湿地污水处理系统及其方法
CN210012715U (zh) 一种漩涡固化地下水修复系统
CN105036450A (zh) 一种三级环流式人工湿地处理农村生活污水的方法及装置
CN204661500U (zh) 一种三级环流式人工湿地处理农村生活污水的装置
CN108996813B (zh) 一种城市污水与雨水联合处理装置
CN201704174U (zh) 一种强化潜流人工湿地
CN107777769A (zh) 一种生物强化型河道湖泊原位生态修复方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20171031