CN103532010B - 基于高折射率对比度光栅结构的单光子发射器及其制作方法 - Google Patents

基于高折射率对比度光栅结构的单光子发射器及其制作方法 Download PDF

Info

Publication number
CN103532010B
CN103532010B CN201310509314.XA CN201310509314A CN103532010B CN 103532010 B CN103532010 B CN 103532010B CN 201310509314 A CN201310509314 A CN 201310509314A CN 103532010 B CN103532010 B CN 103532010B
Authority
CN
China
Prior art keywords
refractive index
high refractive
gaas
grating
index contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310509314.XA
Other languages
English (en)
Other versions
CN103532010A (zh
Inventor
王莉娟
喻颖
査国伟
徐建星
倪海桥
牛智川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201310509314.XA priority Critical patent/CN103532010B/zh
Publication of CN103532010A publication Critical patent/CN103532010A/zh
Application granted granted Critical
Publication of CN103532010B publication Critical patent/CN103532010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明公开了一种基于高折射率对比度光栅结构的单光子发射器及其制作方法。该单光子发射器包括:GaAs衬底;在该GaAs衬底上制备的外延片,该外延片由下至上依次包括GaAs缓冲层(1)、DBR(4)和(6)、InAs量子点有源区(5)和高折射率对比度光栅(低折射率(7)和高折射率材料(8))。在该外延片上采用标准光刻技术及ICP技术刻蚀露出GaAs缓冲层作为N型欧姆欧姆接触层,然后分别在高折射率材料和GaAs缓冲层上蒸发合金作为P型电极和N型电极。利用电子束曝光和ICP刻蚀技术在高折射率材料上制作亚微米级光栅,利用腐蚀液选择性腐蚀光栅下层的材料,得到低折射率的空气层。

Description

基于高折射率对比度光栅结构的单光子发射器及其制作方法
技术领域
本发明涉及半导体技术、量子计算和量子信息处理技术领域,尤其是涉及一种基于高折射率对比度光栅结构的单光子发射器及其制作方法。
背景技术
随着社会对信息量需求的巨大膨胀,人们对信息的获取与处理已经从一维的时空轴向二维化发展。除了信息的大量传送以外,军事上更注重信息的绝对安全,量子信息处理也成为国际上的前沿课题。对信息传输要求大容量,并且要求信息的绝对安全,对于信息光源来说是一个巨大的挑战。单光子源是实现单光子量子比特、光量子密码(quantumcryptog raphy)和量子密钥传输(quantum key distribut ion,QKD)、光量子计算和量子网络(quantum internet)的关键器件。由于量子点的三维受限特点,使其具有可以高速发射谱线宽度非常窄的单光子脉冲;可以用光脉冲泵浦或电脉冲产生稳定的单光子流;波长可以在较大范围内变化等特点,成为最有应用前途的单光子源,并成为近十年来研究的热点。
量子计算和量子传输都以单光子的单个量子态为基础。例如单光子的偏振态或相位作为信息编码,根据量子力学的测不准原理,任何窃听者(Eve)的存在将摇动原有量子态的信息,被发射端和接收端所了解,从而实现量子密码传递的绝对安全。CharlesH.Bennett与Gilles Brassard1984年发表的BB84协议是最早描述如何利用光子的偏振态来传输信息的。国际上相关方面的研究人员和研究机构已经通过在器件上DBR上打孔和制备椭圆微柱结构来达到控制单光子偏振的目的。但是通常这种通过改变光在介质中分布的方法只能将线性偏振劈裂为亚毫电子伏特量级。控制温度、泵浦光和驱动电压改变腔膜和偏振光分量的耦合和分离来达不同的偏振态输出。也就是说,当外界条件改变,此类器件的偏振态输出会受到影响。因此迫切需要研发一种新型微腔的单光子发射器,在得到稳定偏振态输出的同时,还要保证器件的高效收集率,高Q值。
发明内容
本发明的目的是提供一种与高折射率对比光栅相结合的单光子发射器。其可具有高效收集率,高Q值,稳定偏振态输出的特点。改变有源区量子点的生长条件并且相应匹配高折射率对比光栅的特征参数可以得到波长在860nm-1550nm波段的单光子发射器。
为此,本发明提出了一种基于高折射率对比度光栅结构的单光子发射器,其包括:GaAs衬底;在该GaAs衬底上制备的外延片,该外延片由下至上依次包括GaAs缓冲层、下GaAs/AlxGa1-xAs DBR层和上GaAs/AlxGa1-xAs DBR层、InAs量子点有源区和高折射率对比度光栅;分别在高折射率材料(8)和GaAs缓冲层(1)上制作的P型电极和N型电极;利用电子束曝光和ICP刻蚀技术在高折射率材料上制作的亚微米级光栅,利用腐蚀液选择性腐蚀光栅下层的材料,得到的低折射率的空气层。
本发明还提供了一种基于高折射率对比度光栅结构的单光子发射器制作方法,其包括:
步骤1:利用分子束外延技术在GaAs衬底上由下至上依次生长GaAs缓冲层、下DBR层、InAs量子点有源区、上DBR层、GaAs牺牲层和高折射率AlxGa1-xAs层。
步骤2:采用标准光刻技术及ICP技术刻蚀露出GaAs缓冲层作为N型欧姆接触层,然后分别在高折射率层和N型欧姆接触层上蒸发合金作为P型电极和N型电极;
步骤3:利用电子束曝光和ICP刻蚀技术在高折射率层上制作光栅;
步骤4:在恒温30℃条件下,采用柠檬酸和双氧水腐蚀制作有光栅的高折射率层下的GaAs牺牲层材料,得到低折射率空气层;
步骤5:解离单个器件,并将解离的单个器件压焊在热沉上,用金线拉出引线,完成器件制备。
从上述技术方案可以看出,本发明的有益效果是:
本发明提供的基于高折射率对比度光栅结构的单光子发射器,利用高折射率对比度光栅替代多对DBR作为上反射镜。相对几十层结构的DBR来说,高折射率对比度光栅的材料结构只有两层,因此大大降低了材料生长的难度、节约了生长源材料、减少了器件材料生长时间。
本发明提供的基于高折射率对比度光栅结构的单光子发射器,利用高折射率对比度光栅替代多对DBR作为上反射镜。对于DBR来说,反射率大于99%的高反带可以达到Δλ/λ=3%-9%,而HCG结构反射率大于99%的高反带可以达到Δλ/λ>30%。这可以大大提高单光子发射器件的性能,比如提单光子发射器的收集效率,增强出射光,提高单光子发射器的波长调节范围。
本发明提供的基于高折射率对比度光栅结构的单光子发射器,利用高折射率对比度光栅替代多对DBR作为上反射镜。相对于DBR来说,将高折射率对比度光栅引入单光子发射器作为上反射镜,可以在引入非常少的噪声的情况很确定的控制出射光的偏振情况。
本发明提供的基于高折射率对比度光栅结构的单光子发射器,利用高折射率对比度光栅替代多对DBR作为上反射镜。相对于以上下DBR为基础的微柱结构,高折射率对比度光栅引入单光子发射器作为上反射镜,可以大大简化单光子发射器的电致器件的工艺复杂性。由于微柱结构的竖直尺寸通常在5—11微米,而水平方向的直径在0.5-2微米之间,因此其电致器件的工艺通常较复杂且成品率不高。通常要先用绝缘介质(BCB、二氧化硅等)填平微柱周围,再刻蚀绝缘介质,使其与微柱成一个平面。然后在此平面上,利用电子束曝光套刻金属剥离技术得到上电极。而基于高折射率对比度光栅结构的单光子发射器的上下电极都只需要普通光刻技术即可,大大降低了工艺复杂性,增加了成品率。
附图说明
图1是本发明提供的基于高折射率对比度光栅结构的单光子发射器的结构示意图。
图2是本发明提供的制作基于高折射率对比度光栅结构的单光子发射器的工艺流程。
图3(a)~图3(d)是本发明提供的两种不同偏振态出射的高折射率对比度光栅的结构示意图和反射率模拟图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明提供的基于高折射率对比度光栅结构的单光子发射器是用分子束外延技术在GaAs衬底上先生长出高质量的器件外延片,再利用面发射工艺技术制作电极,最后利用电子束曝光制作光栅结构。
图1是本发明提供的基于高折射率对比度光栅结构的单光子发射器的结构示意图。如图1所示,该单光子发射器包括:GaAs缓冲层1、N型电极2、二氧化硅钝化层3、下DBR4、InAs量子点有源区5、上DBR6、高折射率对比度光栅7和8、P性电极9。
其中,高折射率对比度光栅由低折射率层7和高折射率层8组成,所述低折射率层7的材料可以是空气,而所述高折射率层8的材料可以是GaAs或AlxGa1-xAs,所述低折射率层和高折射率层的折射率差越大越好,最小等于2,所述光栅刻蚀在所述高折射率层的表面,其为亚微米级光栅,周期数可以是5-30个。
所述钝化层3为300nm厚的Si02材料制作。所述InAs量子点有源区5采用梯度生长法,淀积2.5ML InAs形成。
所述结构中下DBR4和上DBR6的两层材料为GaAs和AlxGa1-xAs,每层的厚度由单光子发射器的中心波长决定。下DBR层4的周期数为20-32个,而上DBR层6的周期数为2—5个。
图2示出了本发明提出的基于高折射率对比度光栅结构的单光子发射器制作方法流程图。如图2所示,该方法包括:
步骤1:根据图1所示结构,利用分子束外延技术生长得到GaAs基器件外延片。
步骤2:在该外延片上采用标准光刻技术及ICP技术刻蚀露出GaAs缓冲层1作为N型欧姆接触层,然后分别在高折射率层8的上表面和GaAs缓冲层1露出的位置上蒸发合金作为P型电极9和N型电极2。P型欧姆接触电极9为铬金合金,各层的厚度为N型欧姆接触电极2为金鍺镍合金,各层的厚度为
步骤3:利用电子束曝光和ICP刻蚀技术在高折射率层8上表面未制作P型电极9的位置制作亚微米级光栅,光栅的宽度、厚度、占空比由单光子发射器的波长和偏振态决定,周期数可以为5—30个。
步骤4:在恒温30℃条件下,采用柠檬酸和双氧水以1:2的比例将高折射率层下的GaAs层全部腐蚀掉,得到低折射率空气层。然后采用乙醇稀释腐蚀液,采用丙酮溶解乙醇,之后将样品置放于60-70℃的热板之上,使丙酮挥发。
步骤5:解离单个器件后,将器件压焊在热沉上,用金线拉出引线。
图3示出了本发明提供的两种不同偏振态出射的高折射率对比度光栅结构示意图和反射率模拟图。其中,图3(a)为偏振态TE光栅,其条宽在210nm一310nm之间,占空比在30%-50%之间,图3(b)为偏振态TE光栅对应计算反射率。图3(c)为偏振态TM光栅,其条宽在100nm一200nm之间,占空比在20%-40%之间,图3(d)为偏振态TM光栅对应计算反射率。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种基于高折射率对比度光栅结构的单光子发射器制作方法,其包括:
步骤1:利用分子束外延技术在GaAs衬底上制作GaAs基器件外延片,该外延片由下至上依次包括GaAs缓冲层(1)、下GaAs/AlxGal-xAs DBR(4)、InAs量子点有源区(5)、上GaAs/AlxGal-xAs DBR(6)和高折射率对比度光栅,高折射率对比度光栅由低折射率材料(7)和高折射率材料(8)组成;
步骤2:采用标准光刻技术及ICP技术刻蚀露出GaAs缓冲层上表面的两端部作为N型欧姆接触层,然后分别在高折射率层的上表面和GaAs缓冲层露出的N型欧姆接触层位置上蒸发合金作为P型电极和N型电极;
步骤3:利用电子束曝光和ICP刻蚀技术在高折射率层上表面未制作P型电极的位置制作光栅;
步骤4:在恒温30℃条件下,采用柠檬酸和双氧水腐蚀制作有光栅的高折射率层下的材料,得到低折射率层,所述低折射率层由空气构成;
步骤5:解离单个器件,并将解离的单个器件压焊在热沉上,用金线拉出引线,完成器件制备。
CN201310509314.XA 2013-10-25 2013-10-25 基于高折射率对比度光栅结构的单光子发射器及其制作方法 Active CN103532010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310509314.XA CN103532010B (zh) 2013-10-25 2013-10-25 基于高折射率对比度光栅结构的单光子发射器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310509314.XA CN103532010B (zh) 2013-10-25 2013-10-25 基于高折射率对比度光栅结构的单光子发射器及其制作方法

Publications (2)

Publication Number Publication Date
CN103532010A CN103532010A (zh) 2014-01-22
CN103532010B true CN103532010B (zh) 2016-09-14

Family

ID=49933810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310509314.XA Active CN103532010B (zh) 2013-10-25 2013-10-25 基于高折射率对比度光栅结构的单光子发射器及其制作方法

Country Status (1)

Country Link
CN (1) CN103532010B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099642A (zh) * 2016-06-30 2016-11-09 中国科学院半导体研究所 一种电致单光子源器件及其制备方法
CN108919399B (zh) * 2018-06-11 2020-10-16 中山大学 高折射率对比度光栅及其制备方法与应用
CN111525005B (zh) * 2020-01-17 2021-06-18 中国科学院半导体研究所 量子点单光子源、制备方法及其器件的制备方法
CN114421280B (zh) * 2022-03-29 2022-08-09 武汉云岭光电有限公司 半导体激光器及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667715A (zh) * 2008-09-03 2010-03-10 中国科学院半导体研究所 一种单模高功率垂直腔面发射激光器及其制作方法
CN101867153A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 环形腔光子晶体垂直腔面发射激光器
CN101894831A (zh) * 2009-05-20 2010-11-24 中国科学院半导体研究所 紫外-红外双波段探测器及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654812B2 (en) * 2011-01-25 2014-02-18 Hewlett-Packard Development Company, L.P. Q-switched grating vertical-cavity surface-emitting laser system and method for fabricating the same
WO2013110004A1 (en) * 2012-01-20 2013-07-25 The Regents Of The University Of California Short cavity surface emitting laser with double high contrast gratings with and without airgap

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667715A (zh) * 2008-09-03 2010-03-10 中国科学院半导体研究所 一种单模高功率垂直腔面发射激光器及其制作方法
CN101867153A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 环形腔光子晶体垂直腔面发射激光器
CN101894831A (zh) * 2009-05-20 2010-11-24 中国科学院半导体研究所 紫外-红外双波段探测器及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High-Index-Contrast Grating(HCG) and Its Applications in Optoelectronic Devices;Ye Zhou et. al.;《IEEE Journal of Selected Topics in Quantum Electronics》;20090529;第15卷(第5期);1-15 *
半导体InAs量子点单光子发射器件;牛智川 等;《物理》;20101130;第39卷(第11期);1-15 *

Also Published As

Publication number Publication date
CN103532010A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
da Silva et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources
CN105765742B (zh) 包括阳极氧化铝层的异质结构
Lu et al. Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths
Dalacu et al. Nanowire-based sources of non-classical light
CN108736316B (zh) 制作垂直腔面发射激光器的方法及垂直腔面发射激光器
Wang et al. Shape engineering of InP nanostructures by selective area epitaxy
Unrau et al. Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection
CN103532010B (zh) 基于高折射率对比度光栅结构的单光子发射器及其制作方法
CN103022892B (zh) 波长为808nm的大功率激光器芯片结构及其制作方法
CN103872580B (zh) 介质薄膜电流限制型垂直腔面发射激光器及其制作方法
CN102013633B (zh) 桥式-纳米光栅可调谐垂直腔面发射激光器及其制备方法
CN103259190A (zh) 一种垂直耦合结构的半导体环形激光器及其制备方法
CN101345393B (zh) 单面金属波导太赫兹量子级联激光器的制作方法
Lee et al. Semiconductor III–V lasers monolithically grown on Si substrates
Shang et al. Low-threshold epitaxially grown 1.3-μm InAs quantum dot lasers on patterned (001) Si
Kim et al. Room‐Temperature InGaAs Nanowire Array Band‐Edge Lasers on Patterned Silicon‐on‐Insulator Platforms
Yu et al. Nanowire quantum dot surface engineering for high temperature single photon emission
Saifaddin et al. Impact of roughening density on the light extraction efficiency of thin-film flip-chip ultraviolet LEDs grown on SiC
US20210013357A1 (en) Photodiode
Su et al. Elimination of bimodal size in InAs/GaAs quantum dots for preparation of 1.3-μm quantum dot lasers
Pandey et al. Strain-engineered N-polar InGaN nanowires: towards high-efficiency red LEDs on the micrometer scale
CN107026390A (zh) 一种1.55微米波长GaAs基微腔激光器制备方法及装置
Ko et al. Monolithic growth of GaAs laser diodes on Si (001) by optimal AlAs nucleation with thermal cycle annealing
Sanchez et al. Selective lateral etching of InAs/GaSb tunnel junctions for mid-infrared photonics
CN105280763B (zh) 一种超辐射发光二极管的制作方法及制得的发光二极管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Lijuan

Inventor after: Niu Zhichuan

Inventor after: Ni Haiqiao

Inventor after: Yu Ying

Inventor after: Cha Guowei

Inventor after: Xu Jianxing

Inventor before: Wang Lijuan

Inventor before: Yu Ying

Inventor before: Cha Guowei

Inventor before: Xu Jianxing

Inventor before: Ni Haiqiao

Inventor before: Niu Zhichuan