CN103528520A - Binocular vision-based synchronous operation lifting system detection system and method - Google Patents
Binocular vision-based synchronous operation lifting system detection system and method Download PDFInfo
- Publication number
- CN103528520A CN103528520A CN201310496912.8A CN201310496912A CN103528520A CN 103528520 A CN103528520 A CN 103528520A CN 201310496912 A CN201310496912 A CN 201310496912A CN 103528520 A CN103528520 A CN 103528520A
- Authority
- CN
- China
- Prior art keywords
- synchronous operation
- black
- digital ccd
- white digital
- artificial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 title abstract description 6
- 238000005259 measurement Methods 0.000 claims abstract description 32
- 238000003384 imaging method Methods 0.000 claims abstract description 21
- 238000006073 displacement reaction Methods 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 8
- 239000003550 marker Substances 0.000 abstract description 31
- 238000005516 engineering process Methods 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明涉及一种基于双目视觉的同步运行顶升系统的检测装置与方法,装置包括同步运行顶升系统,装置还包括两台CCD摄像机及其基座、多个人工标志点、两个辅助光源和计算机,在同步运行顶升系统上方安装两台CCD摄像机,多个人工标志点分别安装在同步顶升系统的不同位置上,两台CCD摄像机连续采集人工标志点的图像并传输到计算机。方法是:建立坐标系,两台摄像机各采集一幅人工标志点的数字图像并传输到计算机,综合两台摄像机的图像信息,利用双目视觉成像理论计算各标志点在世界坐标系下的三维坐标,再利用线性运算,解算出同步运行顶升系统各顶升轴的同步性和垂直度误差。实现对同步运行顶升系统的非接触、无扰动、高频率的测量。
The invention relates to a detection device and method for a synchronous operation jacking system based on binocular vision. The device includes a synchronous operation jacking system, and the device also includes two CCD cameras and their bases, multiple artificial marker points, Light source and computer, two CCD cameras are installed above the synchronous operation jacking system, and multiple artificial markers are installed on different positions of the synchronous jacking system, and the images of artificial markers are continuously collected by the two CCD cameras and transmitted to the computer. The method is: establish a coordinate system, each of the two cameras collects a digital image of an artificial marker point and transmits it to the computer, integrates the image information of the two cameras, and uses binocular vision imaging theory to calculate the three-dimensional image of each marker point in the world coordinate system. Coordinates, and then use linear operations to solve the synchronization and verticality errors of each jacking axis of the synchronous operation jacking system. Realize the non-contact, non-disturbance, high-frequency measurement of the synchronous operation jacking system.
Description
技术领域 technical field
本发明涉及测量技术,具体涉及一种基于双目视觉的同步运行顶升系统的检测装置与方法。 The invention relates to measurement technology, in particular to a detection device and method for a synchronous operation jacking system based on binocular vision. the
背景技术 Background technique
三轴气浮台系统是卫星地面仿真测试的关键设备,其中同步运行顶升系统是三轴气浮台系统的重要组成部分,通常由多台千斤顶组成多轴同步运行顶升系统,负责完成球轴承及仪表平台的辅助拆装、定位以及保护等功能。因为卫星试验对设备提出高可靠、高精度等要求,多轴同步运行顶升系统的同步性误差、垂直度误差等是其中两个关键技术指标,由于三轴气浮台系统在构建上的特殊性,其同步顶升系统的同步性、垂直度检测一直是困扰技术人员的一个难题。 The three-axis air bearing system is the key equipment for the satellite ground simulation test. The synchronous operation jacking system is an important part of the three-axis air bearing system. Usually, the multi-axis synchronous operation jacking system is composed of multiple jacks, which is responsible for completing the ball. Auxiliary disassembly, positioning and protection of bearings and instrument platforms. Because the satellite test puts forward high reliability and high precision requirements for the equipment, the synchronization error and verticality error of the multi-axis synchronous operation jacking system are two of the key technical indicators. Due to the special construction of the three-axis air bearing system The synchronization and verticality detection of its synchronous jacking system have always been a difficult problem for technicians. the
为了测量多个顶升轴的同步性,早期采用的方法是使用卡尺手动检测各顶升轴的位移,或者利用挡铁、行程开关、光电开关等元器件配合测量。目前为了提高精度和自动化程度主要使用接触式位移传感器(如增量或绝对量拉线式位移传感器)。 In order to measure the synchronization of multiple jacking shafts, the early method is to use calipers to manually detect the displacement of each jacking shaft, or use components such as stoppers, travel switches, and photoelectric switches to cooperate with the measurement. At present, contact displacement sensors (such as incremental or absolute pull wire displacement sensors) are mainly used in order to improve the accuracy and degree of automation. the
经检索文献发现,中国发明专利申请号:201110249263.2,专利名称为:同步顶升装置加载试验台,该专利设计了一种试验台用来测试同步顶升装置的同步精度时,在使用时需要将被测试装置加载在该试验台上,然后使用位移传感器检测同步顶升装置的同步精度。由于同步运行顶升系统的自身特定结构和重量,不适合使用这种测量方式测量。 After searching the literature, it is found that the Chinese invention patent application number is: 201110249263.2, and the patent name is: synchronous jacking device loading test bench. This patent designs a test bench to test the synchronization accuracy of the synchronous jacking device. The device to be tested is loaded on the test bench, and then the displacement sensor is used to detect the synchronization accuracy of the synchronous jacking device. Due to the specific structure and weight of synchronous jacking systems, this method of measurement is not suitable. the
中国发明专利申请号:200610019913.3,专利名称为:多点同步升降装置及其升降方法,该专利采用可编程控制器和变频调速技术同步控制液压升降装置,位移数据由独立安装的绝对型位移传感器提供。 Chinese invention patent application number: 200610019913.3, the patent name is: multi-point synchronous lifting device and its lifting method, the patent adopts programmable controller and frequency conversion speed regulation technology to control the hydraulic lifting device synchronously, and the displacement data is obtained by an independently installed absolute displacement sensor supply. the
在文献“闸门同步顶升系统”(发表于中文核心期刊《华中科技大学学报》(自然科学版)2008年第36卷第6期,7-9)中,陈柏金等介绍控制多个千斤顶同步动作实现闸门顶升的同步顶升系统。在这个系统中,在每个千斤顶上加装位移传感器,实现对顶升轴的位移检测。 In the document "Gate Synchronous Jacking System" (published in the Chinese core journal "Journal of Huazhong University of Science and Technology (Natural Science Edition) 2008, Vol. 36, No. 6, 7-9), Chen Baijin et al. introduced the control of multiple jacks synchronous action A synchronous jacking system for gate jacking. In this system, a displacement sensor is installed on each jack to realize the displacement detection of the jacking shaft. the
采用位移传感器检测同步位移,主要有以下缺点:一、属于接触式的测量方式,干扰被测运动部件的运动,不利于准确测量;二、位移传感器只能检测位 移,不能检测各个顶升轴的垂直度误差;三、位移传感器本身具有一定的非线性误差,在文献“液压同步顶升控制系统传感器误差标定”(《测控技术》2013年第32卷第1期,11-13)中,吕国芳等指出位移传感器自身的线性度问题,在现场使用过程中测量值与真实值之间存在一定的误差,必须对位移传感器进行在线标定。 The use of displacement sensors to detect synchronous displacement mainly has the following disadvantages: 1. It belongs to the contact measurement method, which interferes with the movement of the moving parts to be measured, which is not conducive to accurate measurement; 2. The displacement sensor can only detect displacement and cannot detect each jacking axis. 3. The displacement sensor itself has a certain nonlinear error. In the document "Sensor Error Calibration of Hydraulic Synchronous Jacking Control System" ("Measurement and Control Technology", Vol. 32, No. 1, 2013, 11-13), Lu Guofang and others pointed out that the linearity of the displacement sensor itself has a certain error between the measured value and the real value during field use, and the displacement sensor must be calibrated online. the
所以,以上测量方式不适用三轴气浮台使用的同步运行顶升系统的测量,需要考虑新的测量方法和装置。 Therefore, the above measurement methods are not suitable for the measurement of the synchronous operation jacking system used by the three-axis air bearing platform, and new measurement methods and devices need to be considered. the
发明内容 Contents of the invention
基于以上不足之处,本发明的目的在于提供一种基于双目视觉的同步运行顶升系统的检测装置与方法,能够动态测量同步运行顶升系统中各顶升轴在顶升过程中的同步性和垂直误差,并且不会对同步顶升系统产生干扰。 Based on the above deficiencies, the object of the present invention is to provide a detection device and method for a synchronous operation jacking system based on binocular vision, which can dynamically measure the synchronization of each jacking shaft in the synchronous operation jacking system during the jacking process. and vertical error, and will not interfere with the synchronous jacking system. the
本发明所采用的技术如下:一种同步运行顶升系统多轴同步运行双目视觉测量装置,采用同步运行顶升系统,本装置还包括两台黑白数字CCD摄像机及其基座、多个人工标志点、两个辅助光源和计算机,在同步运行顶升系统上方安装两台黑白数字CCD摄像机,黑白数字CCD摄像机安装在基座上,两台黑白数字CCD摄像机参数相同,且它们的成像面位于同一平面上,光轴平行,光心位于同一直线上,每个黑白数字CCD摄像机附近安装有一个辅助光源;多个人工标志点分为两组,一组安装在顶升系统的基座台面上,此组人工标志点大于等于三个,另一组安装在顶升系统的各顶升轴的表面上,黑白数字CCD摄像机通过数据线与转换器相连,转换器与计算机相连,黑白数字CCD摄像机的镜头为物方远心镜头;两台黑白数字CCD摄像机连续采集人工标志点的图像并传输到计算机,计算机将图像信息进行分析与处理。 The technology adopted in the present invention is as follows: a synchronous operation jacking system multi-axis synchronous operation binocular vision measurement device adopts a synchronous operation jacking system, and the device also includes two black and white digital CCD cameras and their bases, a plurality of artificial Marking points, two auxiliary light sources and computers, two black and white digital CCD cameras are installed above the synchronous operation jacking system, the black and white digital CCD cameras are installed on the base, the parameters of the two black and white digital CCD cameras are the same, and their imaging surfaces are located at On the same plane, the optical axes are parallel, and the optical centers are located on the same straight line. An auxiliary light source is installed near each black and white digital CCD camera; multiple artificial marker points are divided into two groups, and one group is installed on the base table of the jacking system , this group of artificial marker points is greater than or equal to three, and the other group is installed on the surface of each jacking shaft of the jacking system. The black and white digital CCD camera is connected to the converter through the data line, and the converter is connected to the computer. The black and white digital CCD camera The lens is an object-space telecentric lens; two black-and-white digital CCD cameras continuously collect images of artificial landmarks and transmit them to the computer, which analyzes and processes the image information. the
本发明还具有如下特征: The present invention also has the following features:
采用如上所述的一种同步运行顶升系统多轴同步运行双目视觉测量装置得出的一种同步运行顶升系统多轴同步运行双目视觉测量方法,如下: A kind of synchronous operation jacking system multi-axis synchronous operation binocular vision measurement method obtained by adopting a synchronous operation jacking system multi-axis synchronous operation binocular vision measurement device as described above is as follows:
(1)、安装在基座台面上的人工标志点,用于建立同步运行顶升系统的基座在世界坐标系中的平面方程;安装在各顶升轴的表面上的人工标志点,用来测量各顶升轴的运动位移,设定所涉及的世界坐标系与一台黑白数字CCD摄像机的成像面坐标系重合; (1) The artificial marker points installed on the base table are used to establish the plane equation of the base of the synchronous operation jacking system in the world coordinate system; the artificial marker points installed on the surface of each jacking shaft are used to To measure the movement displacement of each jacking axis, set the world coordinate system involved to coincide with the imaging plane coordinate system of a black and white digital CCD camera;
(2)、两台黑白数字CCD摄像机实时、连续地采集人工标志点的图像,并传输至计算机; (2), two black-and-white digital CCD cameras collect images of artificial marker points in real time and continuously, and transmit them to the computer;
(3)、计算机对来自两台黑白数字CCD摄像机的两幅图像分别进行特征提取,利用亚像素定位方法确定人工标志点分别在两幅图像中的坐标; (3), the computer carries out feature extraction respectively to two images from two black-and-white digital CCD cameras, utilizes the sub-pixel positioning method to determine the coordinates of the artificial marker points in the two images respectively;
(4)、利用双目视觉成像原理,计算各人工标志点在世界坐标系中的坐标; (4) Using the principle of binocular vision imaging, calculate the coordinates of each artificial marker point in the world coordinate system;
(5)、利用线性代数原理,建立基座台面在世界坐标系中的平面方程; (5), using the principle of linear algebra, establish the plane equation of the base table in the world coordinate system;
(6)、针对基座台面的平面方程和各顶升轴的表面上人工标志点在世界坐标系中的位置信息,利用线性代数原理,计算得到各顶升轴相对基座台面的运动位移数据; (6) According to the plane equation of the base table and the position information of the artificial marker points on the surface of each jacking axis in the world coordinate system, the motion displacement data of each jacking axis relative to the base table is calculated by using the principle of linear algebra ;
(7)、根据顶升轴上各人工标志点在世界坐标系中的位置信息,根据计算分解得到同步运行顶升系统各轴运行同步测量误差和垂直度误差。 (7) According to the position information of each artificial marker point on the jacking axis in the world coordinate system, the synchronous measurement error and verticality error of each axis of the synchronous operation jacking system are obtained according to the calculation decomposition. the
该装置的基本工作原理是: The basic working principle of the device is:
两台摄像机同时采集同步运行顶升系统的数字图像并传输到计算机进行分析与处理,计算机针对这些标志点完成特征提取、亚像素定位的处理。利用标志点的定位信息,根据双目视觉成像原理,计算各人工标志点的空间坐标信息。针对这些信息,应用线性计算理论可以计算得到各人工标志点的之间的几何关系,进而计算出同步误差和垂直度误差。通过这种方式实现对同步运行顶升系统的多轴同步顶升过程的非接触、无扰动、高频率的测量。 The digital images of the synchronous operation jacking system are collected by two cameras at the same time and transmitted to the computer for analysis and processing. The computer completes the processing of feature extraction and sub-pixel positioning for these marker points. Using the positioning information of the marker points, according to the principle of binocular vision imaging, the spatial coordinate information of each artificial marker point is calculated. Based on these information, the geometric relationship between each artificial marker point can be calculated by applying the linear calculation theory, and then the synchronization error and verticality error can be calculated. In this way, the non-contact, non-disturbance and high-frequency measurement of the multi-axis synchronous jacking process of the synchronous operation jacking system is realized. the
本发明提出的同步运行顶升系统测量装置及具体测量方法,具有以下优点: The synchronous operation jacking system measurement device and specific measurement method proposed by the present invention have the following advantages:
(1)、本发明采用非接触式视觉测量,同步运行测量过程不会对顶升系统各顶升轴的运动产生干扰; (1), the present invention adopts non-contact visual measurement, and the synchronous operation measurement process will not interfere with the movement of each jacking shaft of the jacking system;
(2)、本发明所涉及视觉测量技术,能够检测同步运行顶升系统的各个顶升轴的同步运行精度; (2), the visual measurement technology involved in the present invention can detect the synchronous operation accuracy of each jacking shaft of the synchronous operation jacking system;
(3)、本发明所涉及视觉测量技术,能够检测同步运行顶升系统的各个顶升轴的垂直度误差; (3), the visual measurement technology involved in the present invention can detect the verticality error of each jacking axis of the synchronous operation jacking system;
(4)、本发明采用黑白数字摄像机通过转换器向计算机传输数据,对同步顶升系统工作的电磁环境具有抗干扰能力; (4), the present invention adopts black-and-white digital video camera to transmit data to computer through converter, has anti-jamming ability to the electromagnetic environment that synchronous jacking system works;
(5)、本发明所涉及视觉测量技术,不需要进行在线误差标定,计算过程简洁、精度高、速度快。 (5) The visual measurement technology involved in the present invention does not require online error calibration, and the calculation process is simple, high in precision and fast in speed. the
附图说明 Description of drawings
图1为同步运行顶升系统多轴同步顶升测量装置组成主视图; Figure 1 is a front view of the composition of the multi-axis synchronous jacking measurement device of the synchronous operation jacking system;
图2为同步运行顶升系统俯视图; Figure 2 is a top view of the synchronous operation jacking system;
图3为双目视觉成像原理图; Figure 3 is a schematic diagram of binocular vision imaging;
图4为双目视觉三维坐标测量原理图; Fig. 4 is the schematic diagram of binocular vision three-dimensional coordinate measurement;
图5为同步运行顶升系统基座平面方程计算原理图; Figure 5 is a schematic diagram of the calculation principle of the base plane equation of the synchronous operation jacking system;
图6为同步运行顶升系统顶升轴运动位移测量原理图; Figure 6 is a schematic diagram of the displacement measurement of the jacking shaft of the synchronous operation jacking system;
图7为同步运行顶升系统多轴同步顶升测量流程图; Fig. 7 is a multi-axis synchronous jacking measurement flow chart of the synchronous operation jacking system;
图8为图像处理模块流程图。 Figure 8 is a flow chart of the image processing module. the
具体实施方式 Detailed ways
下面结合附图举例对本发明作进一步说明。 The present invention will be further described below with examples in conjunction with the accompanying drawings. the
实施例1 Example 1
参见图1,从本发明装置主要由以下部分组成:第一黑白数字CCD摄像机101、第二黑白数字CCD摄像机103、第一镜头102、第二镜头104、第一摄像机基座105、第二摄像机基座106、第一人工光源201、第二人工光源202、基座台面301、顶升轴302、电机及驱动装置303,底座304,人工标志点305、人工标志点306、转换器4、计算机5和控制柜6。两个黑白数字CCD摄像机101.103分别安装在第一和第二摄像机基座105.106上,两台黑白数字CCD摄像机参数相同,且它们的成像面位于同一平面上,光轴平行,光心位于同一直线上,每个黑白数字CCD摄像机附近安装有一个人工光源;多个人工标志点分别安装在同步顶升系统的不同位置上,黑白数字CCD摄像机通过数据线与转换器相连,转换器与计算机相连,抗干扰,黑白数字CCD摄像机的镜头为物方远心镜头;两台黑白数字CCD摄像机连续采集人工标志点的图像并传输到计算机,计算机将图像信息进行分析与处理。
Referring to Fig. 1, device of the present invention is mainly made up of following parts: the first black-and-white
摄像机选用黑白数字CCD摄像机,使用转换器4与计算机5相连,抗干扰。
The camera selects a black-and-white digital CCD camera, and uses a
第一镜头102和第二镜头104为物方远心镜头。
The
人工光源为图像采集提供恒定、可靠的照明。 Artificial light sources provide constant, reliable illumination for image acquisition. the
本发明利用双目摄像机采集人工标志点的图像,利用双目视觉测量原理测量同步运行顶升系统各顶升轴的同步性和垂直度,主要流程图示意图如图7所示,主要包括以下主要步骤: The present invention utilizes binocular cameras to collect images of artificial marker points, and utilizes binocular vision measurement principles to measure the synchronicity and verticality of each jacking axis of a synchronous operation jacking system. The schematic diagram of the main flow chart is shown in Figure 7, mainly including the following main steps:
(1)两台摄像机标定,确定摄像机的内部参数; (1) Two cameras are calibrated to determine the internal parameters of the cameras;
(2)将两台摄像机平行安装在摄像机基座上,要求摄像机光轴平行,光心在一条直线上,成像面在一个平面上,两光心的直线距离为B,如图3所示; (2) Two cameras are installed in parallel on the camera base, the optical axes of the cameras are required to be parallel, the optical centers are on a straight line, the imaging surface is on a plane, and the straight-line distance between the two optical centers is B, as shown in Figure 3;
(3)设定同步运行顶升系统测量过程中所涉及的世界坐标系与一台摄像机的成像面坐标系重合,在世界坐标系中,每一个人工标志点具有唯一的三维坐标; (3) Set the world coordinate system involved in the measurement process of the synchronous operation jacking system to coincide with the imaging surface coordinate system of a camera. In the world coordinate system, each artificial marker point has a unique three-dimensional coordinate;
(4)将一组人工标志点安装在基座台面上,作用是建立同步运行顶升系统的基座台面在世界坐标系中的平面方程; (4) Install a group of artificial marker points on the base table, the function is to establish the plane equation of the base table in the world coordinate system for the synchronous operation of the jacking system;
(5)将另外人工标志点安装在各轴的表面上,用来测量各顶升轴的运动位移; (5) Install another artificial marker point on the surface of each shaft to measure the movement displacement of each jacking shaft;
(6)图像处理程序对来自两台摄像机的两幅图像分别进行特征提取,然后利用亚像素定位技术确定人工标志点分别在两幅图像中的坐标。相关算法参见于起峰等的著作“基于图像的精密测量与运动测量”,科学出版社出版,2002年7月第一版;图像处理模块流程如图8; (6) The image processing program performs feature extraction on the two images from the two cameras, and then uses the sub-pixel positioning technology to determine the coordinates of the artificial marker points in the two images respectively. For related algorithms, please refer to the book "Image-Based Precision Measurement and Motion Measurement" by Yu Qifeng et al., published by Science Press, the first edition in July 2002; the flow chart of the image processing module is shown in Figure 8;
(7)利用双目视觉成像原理,计算各人工标志点在世界坐标系中的坐标; (7) Using the principle of binocular vision imaging, calculate the coordinates of each artificial marker point in the world coordinate system;
(8)利用线性代数原理,建立基座台面在世界坐标系中的平面方程; (8) Using the principle of linear algebra, establish the plane equation of the base table in the world coordinate system;
(9)针对基座台面的平面方程和轴上各人工标志点在世界坐标系中的位置信息,利用线性代数原理,计算得到各顶升轴相对基座台面的运动位移数据; (9) According to the plane equation of the base table and the position information of each artificial marker point on the axis in the world coordinate system, the motion displacement data of each jacking axis relative to the base table is calculated by using the principle of linear algebra;
(10)针对步骤9的计算结果,分解得到同步运行顶升系统各轴运行同步测量误差和垂直度误差; (10) For the calculation result of step 9, decompose and obtain the synchronous measurement error and verticality error of each axis of the synchronous operation jacking system;
实施例2 Example 2
如附图3所示,涉及到以下坐标系: As shown in Figure 3, the following coordinate systems are involved:
(1)世界坐标系Owxwywzw; (1) World coordinate system O w x w y w z w ;
(2)第一黑白数字CCD摄像机101成像面的图像像素坐标系O′x′y′;
(2) the image pixel coordinate system O'x'y' of the first black-and-white
(3)第二黑白数字CCD摄像机103成像面的图像物理坐标系Oxy;
(3) the image physical coordinate system Oxy of the second black-and-white
(4)面Owxwyw与面O′x′y′重合,zw轴与光轴重合。 (4) The plane O w x w y w coincides with the plane O'x'y', and the z w axis coincides with the optical axis.
本发明所述同步运行顶升系统双目视觉测量过程: The binocular vision measurement process of the synchronous operation jacking system described in the present invention:
1、双目视觉测量基本原理 1. The basic principle of binocular vision measurement
双目视觉成像可以获得同一场景的两幅不同的图像,双目成像的系统模型可以看作是由两个单目成像系统组合而成的。如图3所示,设定世界坐标系和第一台摄像机的摄像机坐标重合,物点分别在两台摄像机成像面上所成的像点为(x1,y1)、(x2,y2),两台摄像机的镜头中心之间的距离称为双目视觉系统的基线B,利用双目视觉成像系统可以确定具有三维空间中某物点W的世界坐标系坐标。 Binocular vision imaging can obtain two different images of the same scene, and the system model of binocular imaging can be regarded as a combination of two monocular imaging systems. As shown in Figure 3, it is assumed that the world coordinate system coincides with the camera coordinates of the first camera, and the image points formed by the object points on the imaging planes of the two cameras are (x 1 , y 1 ), (x 2 , y 2 ), the distance between the lens centers of the two cameras is called the baseline B of the binocular vision system, and the world coordinate system coordinates of a certain point W in three-dimensional space can be determined by using the binocular vision imaging system.
根据几何相似原理,如图4,三维空间W(xw,yw,zw)点在世界坐标系的xw轴坐标可表示为 According to the principle of geometric similarity, as shown in Figure 4, the xw axis coordinates of a point in the three-dimensional space W( xw , yw , zw ) in the world coordinate system can be expressed as
其中,f表示成像距离。由(1)、(2)式可解得, Among them, f represents the imaging distance. From (1), (2) can be solved,
其中,D=x2-x1。 Among them, D=x 2 −x 1 .
物点W在世界坐标系xw轴和yw轴上的坐标,计算得 The coordinates of the object point W on the world coordinate system x w axis and y w axis are calculated as
同理 in the same way
由(3)、(4)和(5),通过三维空间点在两台摄像机的成像视差,可求空间一点W在世界坐标系Owxwywzw中的三维坐标。 From (3), (4) and (5), through the imaging parallax of the three-dimensional space point in the two cameras, the three-dimensional coordinates of the space point W in the world coordinate system O w x w y w z w can be obtained.
2、建立基座台面的平面方程 2. Establish the plane equation of the base table
如图5所示,图1中基座上的3个人工标志点306分别表示为M1,M2,M3,它们在世界坐标系Owxwywzw中的坐标分别为(xw,1,yw,1,zw,1)、(xw,2,yw,2,zw,2)和(xw,3,yw,3,,zw,3)。 As shown in Figure 5, the three artificial marker points 306 on the base in Figure 1 are denoted as M 1 , M 2 , M 3 respectively, and their coordinates in the world coordinate system O w x w y w z w are ( x w, 1 , y w, 1 , z w, 1 ), (x w, 2 , y w, 2 , z w, 2 ) and (x w, 3 , y w, 3, , z w, 3 ) .
则可以得到矢量
则矢量和组成的平面方程为: Then the vector and The composed plane equation is:
a(xw-xw,1)+b(yw-yw,1)+c(zw-zw,1)=0, (6) a(xw - xw , 1 )+b( yw- yw, 1 )+c( zw - zw, 1 )=0, (6)
其中, in,
a=(u2v3,-u3v2),b=(u3v1,-u1v3),c=(u1v2,-u2v1) a=(u 2 v 3 ,-u 3 v 2 ), b=(u 3 v 1 ,-u 1 v 3 ), c=(u 1 v 2 ,-u 2 v 1 )
u1=xw,2-xw,1,u2=yw,2-yw,1,u2=zw,2-zw,1 (7) u 1 = x w, 2 - x w, 1 , u 2 = y w, 2 - y w, 1 , u 2 = z w, 2 - z w, 1 (7)
v1=xw,3-xw,1,v2=yw,3-yw,1,v2=u2=zw,3-zw,1 v 1 = x w, 3 - x w, 1 , v 2 = y w, 3 - y w, 1 , v 2 = u 2 = z w, 3 - z w, 1
3.各顶升轴的人工标志点与基座平面之间的距离测量原理 3. The principle of distance measurement between the artificial mark point of each jacking axis and the plane of the base
由公式(6)可知基座平面的法线向量为设Q=(x0,y0,z0)为基座平面上任意一点,Pi=(xi,yi,zi)为第i根轴上人工标志点的坐标,为向量 在法线方向上的投影向量,则D为Pi=(xi,yi,zi)与基座平面的距离,如 From the formula (6), it can be known that the normal vector of the base plane is Let Q=(x 0 , y 0 , z 0 ) be any point on the base plane, P i =(x i , y i , z i ) be the coordinates of the artificial marker point on the i-th axis, as a vector in normal The projection vector in the direction, then D is the distance between P i =(x i , y i , zi ) and the base plane, such as
3、垂直误差测量 3. Vertical error measurement
设第k时刻,第i根轴上的人工标志点坐标为Pi,k,第k-1时刻,该人工标志点坐标为Pi,k-1,则该人工标志点从第k-1时刻到第k时刻这段时间内的运动轨迹可以用矢量表示,则第i根轴的与法线之间的角度为 Assuming that at the kth moment, the coordinates of the artificial marker point on the i-th axis are P i, k , and at the k-1th moment, the coordinates of the artificial marker point are P i, k-1 , then the artificial marker point starts from k-1 The motion trajectory during the period from time to kth time can be used as vector means, then the i-th axis and normal The angle between
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310496912.8A CN103528520B (en) | 2013-10-08 | 2013-10-08 | Based on pick-up unit and the method for the synchronous operation jack-up system of binocular vision |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310496912.8A CN103528520B (en) | 2013-10-08 | 2013-10-08 | Based on pick-up unit and the method for the synchronous operation jack-up system of binocular vision |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103528520A true CN103528520A (en) | 2014-01-22 |
CN103528520B CN103528520B (en) | 2016-03-23 |
Family
ID=49930726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310496912.8A Active CN103528520B (en) | 2013-10-08 | 2013-10-08 | Based on pick-up unit and the method for the synchronous operation jack-up system of binocular vision |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103528520B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103852012A (en) * | 2014-03-31 | 2014-06-11 | 河海大学常州校区 | Adaptive binocular vision turbine blade detection device |
CN103954221A (en) * | 2014-05-08 | 2014-07-30 | 哈尔滨工业大学 | Binocular photogrammetry method of large flexible structure vibration displacement |
CN104581048A (en) * | 2014-09-30 | 2015-04-29 | 北京市建筑工程研究院有限责任公司 | Real-time image monitoring and recording system suitable for integrally hoisting roof structure synchronously |
CN104819690A (en) * | 2015-04-21 | 2015-08-05 | 上海瑞伯德智能系统科技有限公司 | Double-camera machine vision positioning method of surface mounted component |
CN105547389A (en) * | 2016-01-14 | 2016-05-04 | 中国航空动力机械研究所 | Lubricating oil nozzle flow two-CCD-camera measure system and method |
CN106441163A (en) * | 2016-10-13 | 2017-02-22 | 中国科学院上海技术物理研究所 | Non-contact column verticality detection method and device |
CN107179069A (en) * | 2017-07-06 | 2017-09-19 | 哈尔滨工业大学 | Satellite sun windsurfing flexible movement parameter measuring apparatus and method based on binocular stereo vision |
CN107655664A (en) * | 2017-08-29 | 2018-02-02 | 农业部南京农业机械化研究所 | Spraying machine spray lance dynamical property test system and method based on binocular image collection |
CN109060286A (en) * | 2018-09-30 | 2018-12-21 | 华南理工大学 | Unmanned plane low-frequency vibration detection device and method based on digital speckle |
CN111494853A (en) * | 2020-04-10 | 2020-08-07 | 中国矿业大学 | A multi-mode visual servo control fire protection system and its working method |
CN112444209A (en) * | 2019-08-27 | 2021-03-05 | 保定市天河电子技术有限公司 | Steel rail displacement monitoring system and detection method based on machine vision |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012056A1 (en) * | 2001-11-21 | 2005-01-20 | Esa Leikas | Method for determining corresponding points in three-dimensional measurement |
CN102426007A (en) * | 2011-08-29 | 2012-04-25 | 哈尔滨工业大学 | High-precision method for measuring attitude angle of triaxial air bearing table and measurement device thereof |
JP2013019704A (en) * | 2011-07-07 | 2013-01-31 | Toyota Motor East Japan Inc | Three-dimensional measurement system and three-dimensional measurement method |
CN103196374A (en) * | 2013-04-01 | 2013-07-10 | 哈尔滨工业大学 | Satellite air-floated platform two-dimensional moving posture parameter measurement device |
CN103308028A (en) * | 2013-05-27 | 2013-09-18 | 哈尔滨工业大学 | Binocular stereovision measuring device and method for attitude angle of triaxial air floating platform |
-
2013
- 2013-10-08 CN CN201310496912.8A patent/CN103528520B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012056A1 (en) * | 2001-11-21 | 2005-01-20 | Esa Leikas | Method for determining corresponding points in three-dimensional measurement |
JP2013019704A (en) * | 2011-07-07 | 2013-01-31 | Toyota Motor East Japan Inc | Three-dimensional measurement system and three-dimensional measurement method |
CN102426007A (en) * | 2011-08-29 | 2012-04-25 | 哈尔滨工业大学 | High-precision method for measuring attitude angle of triaxial air bearing table and measurement device thereof |
CN103196374A (en) * | 2013-04-01 | 2013-07-10 | 哈尔滨工业大学 | Satellite air-floated platform two-dimensional moving posture parameter measurement device |
CN103308028A (en) * | 2013-05-27 | 2013-09-18 | 哈尔滨工业大学 | Binocular stereovision measuring device and method for attitude angle of triaxial air floating platform |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103852012A (en) * | 2014-03-31 | 2014-06-11 | 河海大学常州校区 | Adaptive binocular vision turbine blade detection device |
CN103954221A (en) * | 2014-05-08 | 2014-07-30 | 哈尔滨工业大学 | Binocular photogrammetry method of large flexible structure vibration displacement |
CN103954221B (en) * | 2014-05-08 | 2016-08-17 | 哈尔滨工业大学 | The binocular photogrammetric survey method of large-size pliable structure vibration displacement |
CN104581048B (en) * | 2014-09-30 | 2018-05-01 | 北京市建筑工程研究院有限责任公司 | Suitable for the realtime graphic monitoring and control recording system of roof structure Integral synchronous lifting |
CN104581048A (en) * | 2014-09-30 | 2015-04-29 | 北京市建筑工程研究院有限责任公司 | Real-time image monitoring and recording system suitable for integrally hoisting roof structure synchronously |
CN104819690A (en) * | 2015-04-21 | 2015-08-05 | 上海瑞伯德智能系统科技有限公司 | Double-camera machine vision positioning method of surface mounted component |
CN104819690B (en) * | 2015-04-21 | 2017-05-31 | 上海瑞伯德智能系统股份有限公司 | A kind of double camera machine vision localization method of element pasted on surface |
CN105547389A (en) * | 2016-01-14 | 2016-05-04 | 中国航空动力机械研究所 | Lubricating oil nozzle flow two-CCD-camera measure system and method |
CN106441163A (en) * | 2016-10-13 | 2017-02-22 | 中国科学院上海技术物理研究所 | Non-contact column verticality detection method and device |
CN106441163B (en) * | 2016-10-13 | 2019-11-26 | 中国科学院上海技术物理研究所 | A kind of contactless column measuring for verticality method and device |
CN107179069A (en) * | 2017-07-06 | 2017-09-19 | 哈尔滨工业大学 | Satellite sun windsurfing flexible movement parameter measuring apparatus and method based on binocular stereo vision |
CN107179069B (en) * | 2017-07-06 | 2019-09-06 | 哈尔滨工业大学 | Device and method for measuring flexible motion parameters of satellite solar panels based on binocular stereo vision |
CN107655664A (en) * | 2017-08-29 | 2018-02-02 | 农业部南京农业机械化研究所 | Spraying machine spray lance dynamical property test system and method based on binocular image collection |
CN107655664B (en) * | 2017-08-29 | 2024-02-02 | 农业部南京农业机械化研究所 | System and method for testing dynamic characteristics of spray boom of sprayer based on binocular image acquisition |
CN109060286A (en) * | 2018-09-30 | 2018-12-21 | 华南理工大学 | Unmanned plane low-frequency vibration detection device and method based on digital speckle |
CN109060286B (en) * | 2018-09-30 | 2024-02-06 | 华南理工大学 | Digital speckle-based unmanned aerial vehicle low-frequency vibration detection device and method |
CN112444209A (en) * | 2019-08-27 | 2021-03-05 | 保定市天河电子技术有限公司 | Steel rail displacement monitoring system and detection method based on machine vision |
CN111494853A (en) * | 2020-04-10 | 2020-08-07 | 中国矿业大学 | A multi-mode visual servo control fire protection system and its working method |
CN111494853B (en) * | 2020-04-10 | 2021-05-11 | 中国矿业大学 | A multi-mode visual servo control fire protection system and its working method |
Also Published As
Publication number | Publication date |
---|---|
CN103528520B (en) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103528520B (en) | Based on pick-up unit and the method for the synchronous operation jack-up system of binocular vision | |
US10731967B2 (en) | System for quickly detecting tunnel deformation | |
CN103308028B (en) | Binocular stereovision measuring device and method for attitude angle of triaxial air floating platform | |
CN103575227B (en) | A kind of vision extensometer implementation method based on digital speckle | |
CN107085853B (en) | Monitoring method of headframe deformation in mining area with monocular stereo vision of guide rail | |
CN104990515B (en) | Large-sized object three-dimensional shape measure system and its measuring method | |
CN102519400B (en) | Large slenderness ratio shaft part straightness error detection method based on machine vision | |
CN102207371B (en) | Three-dimensional point coordinate measuring method and measuring apparatus thereof | |
CN109297413B (en) | Visual measurement method for large-scale cylinder structure | |
CN109269466B (en) | Target surface relative pose measuring method and system based on feature points | |
CN103340632B (en) | Human joint angle measuring method based on feature point space position | |
CN101419055A (en) | Space target position and pose measuring device and method based on vision | |
CN108759699A (en) | A kind of measurement method and system of big visual field masonry structure material three-dimensional whole field deformation | |
CN103712555A (en) | Automobile crossbeam assembly hole visual on-line measurement system and method thereof | |
CN102211597B (en) | Dynamic acquiring device and method for track marks | |
CN1971206A (en) | Calibration method for binocular vision sensor based on one-dimension target | |
CN206339207U (en) | A kind of path accuracy repetition measurement instrument | |
CN107816942A (en) | A kind of planar dimension measurement method based on cross structure light vision system | |
CN102914275A (en) | Three-dimensional profile measuring system of trinocular camera with two-dimensional laser profile scanning sensor | |
CN106092057A (en) | A kind of helicopter rotor blade dynamic trajectory measuring method based on four item stereo visions | |
CN105046715A (en) | Space analytic geometry-based line-scan camera calibration method | |
CN104881864A (en) | Human body head three dimensional scanner and three-dimensional modeling method | |
CN102506711A (en) | Line laser vision three-dimensional rotate scanning method | |
CN103697811B (en) | A kind of camera is combined the method obtaining contour of object three-dimensional coordinate with structure light source | |
CN201355241Y (en) | Vision-based space object pose measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |