CN103518344A - 处理层指示ri的方法、装置及系统 - Google Patents

处理层指示ri的方法、装置及系统 Download PDF

Info

Publication number
CN103518344A
CN103518344A CN201180069986.2A CN201180069986A CN103518344A CN 103518344 A CN103518344 A CN 103518344A CN 201180069986 A CN201180069986 A CN 201180069986A CN 103518344 A CN103518344 A CN 103518344A
Authority
CN
China
Prior art keywords
base station
abilities
bits
antenna port
port number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201180069986.2A
Other languages
English (en)
Inventor
孟祥涛
肖志宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN103518344A publication Critical patent/CN103518344A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种处理层指示(RI)的方法、装置及系统,涉及通信技术领域。该方法包括:用户设备(UE)接收基站发送的所述基站的天线端口数,UE根据所述UE的UE能力和所述基站的天线端口数确定RI的比特位数。本发明用于解决基站错误接收UE上报的RI参数,适用于自适应单双流切换领域。

Description

处理层指示 RI的方法、 装置及系统 技术领域
本发明涉及通信领域,尤其涉及一种处理层指示 RI的方法、装置及系统。 背景技术
层指示 ( Rank Indica t ion, RI )是用户终端 ( User Equipment , UE )在 进行单双流切换时向基站发送的、 用于指示基站进行数据传送的基本参数。 UE基于 RI比特( bi t )位数向基站上报 RI参数, 基站基于 RI比特位数接收 RI参数。 基站根据接收到的 RI参数可以获知 UE能够进行数据传送的最大层 数, 进而与 UE进行数据传送。 例如, 当 RI比特位数为 1时, UE的最大层数 为 2层, 即 RI参数分别为 0和 1时代表的 2层; 当 RI比特位数为 2时, UE 的最大层数为 4层, 即参数分别为 00、 01、 10、 以及 11时代表的 4层。 在进 行单双流切换时 UE需要向基站上报 RI参数。
现有处理层指示 RI的技术, 是 UE在 RI参数上报给基站后, 向基站上报 UE能力, 基站根据该 UE能力以及基站天线端口数确定 RI比特位数并根据确 定出的 RI比特位数接收 UE上报的 RI参数。 现有的处理层指示 RI的过程中, 基站在接收到 UE能力之前, 只能根据 UE的基本能力确定 RI比特位数, 而 UE 发送的 RI参数所基于的 RI比特位数却是 UE根据实际 UE能力确定出来的。 这种 UE与基站两侧确定出来的 RI比特位数不一致的情况会导致 RI参数的上 报错误, 进而导致 UE接入时延增大甚至无法接入。 发明内容
本发明提供一种处理层指示 RI 的方法、 装置及系统, 能够解决 RI参数 错误从而导致 UE接入时延增大甚至无法接入的问题。
一方面, 本发明提供了一种处理层指示 RI的上报方法, 包括:
用户设备 UE接收基站发送的所述基站的天线端口数;
所述 UE根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特 位数。
另一方面, 本发明又提供了一种处理层指示 RI的上报方法, 包括: 基站接收用户设备 UE上报的所述 UE的 UE能力;
所述基站根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特 位数。
另一方面, 本发明提供了一种用户设备 UE, 包括:
接收器, 用于接收基站发送的所述基站的天线端口数; 以及,
处理器, 用于根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的 比特位数。
另一方面, 本发明还提供了一种基站, 包括:
接收器, 用于接收用户设备 UE上报的所述 UE的 UE能力; 以及, 处理器, 用于根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的 比特位数。
再一方面, 本发明提供了一种处理层指示 RI的系统, 包括: 基站和用户 设备 UE, 其中:
所述基站用于发送所述基站的天线端口数, 接收所述 UE的 UE能力, 并 根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数;
所述 UE用于接收所述基站的天线端口数, 发送所述 UE的 UE能力, 并根 据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数。
本发明实施例提供的处理层指示 RI 的方法、 装置及系统, 能够在 UE向 基站上报 RI参数之前向基站上报 UE能力, 由基站根据基站的天线端口数和 UE上报的 UE能力确定 RI比特位数。解决了现有技术中基站确定 RI比特位数 不准确的问题, 进而解决了由于 UE与基站两侧确定出的 RI 比特位数不一致 造成的 RI参数错误引起的 UE接入时延增大甚至无法接入的问题。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中处理层指示 RI的方法的流程图;
图 2为本发明另一个实施例中处理层指示 RI的方法的流程图;
图 3为本发明实施例中 RI比特位数确定表;
图 4为本发明另一个实施例中处理层指示 RI的方法的流程图;
图 5为本发明另一个实施例中处理层指示 RI的方法的流程图;
图 6为本发明另一个实施例中 UE的结构示意图;
图 7为本发明实施例中 UE的结构示意图;
图 8为本发明另一个实施例中基站的结构示意图;
图 9为本发明实施例中基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
本发明实施例提供了一种处理层指示 RI的方法, 如图 1所示, 所述方法 包括如下步骤:
101、 UE接收基站发送的基站的天线端口数。
本发明实施例中基站能够使用的天线端口数为 2端口和 4端口, 实际应 用中, 对于基站可用其他数量的天线端口数的情况, 其处理 RI的方式同样可 以参考本发明实施例实现。
102、 UE根据 UE的 UE能力和基站的天线端口数确定 RI的比特位数。 可选的, 在所述步骤 101和 102的基础上, UE还可以将 UE的能力上 ^艮给 基站, 以便基站根据基站自身的天线端口数和所述 UE能力确定 RI比特位数。
UE可以在步骤 101接收基站发送的基站的天线端口数之前向基站上报 UE能 力, 也可以在步骤 101之后向基站上报 UE能力, 或者在步骤 102之后在向基 站上报 UE能力, 本发明对 UE向基站上报 UE能力与步骤 101和步骤 102的先 后顺序不作限制。
UE向基站上报 UE能力后,基站就可以根据 UE上报的 UE能力和基站的天 线端口数确定 RI比特位数。 由于 UE和基站 于相同的 UE能力以及相同的 天线端口数确定 RI比特位数, 所以能够保证 UE和基站两侧确定出的 RI比特 位数一致。
可选的, UE在向基站发上报 UE能力之前, 接收基站发送的查询请求, 该查询请求用于查询 UE的 UE能力。
可选的, 当基站需要切换 UE的传输模式, 或者当 UE获知基站的天线端 口数发生变化, 再或者当 UE的 UE能力发生变化时, UE根据 UE的 UE能力和 基站的天线端口数确定 RI的比特位数, 以便 UE向基站上报 RI参数。 需要说 明的是, UE确定 RI的比特位数所基于的 UE能力为基站需要切换 UE的传输模 式时刻的 UE能力, 如果 UE的 UE能力发生变化, 则 UE确定 RI的比特位数所 基于的 UE能力为变化后的 UE能力, 以保证 UE能够根据有效的 UE能力确定 RI比位数。
当 UE需要向基站上报 RI参数时, UE可以获取到基站的新的天线端口数, 并以此和自身新的 UE能力确定新的比特位数, 以保证根据正确的 RI 比特位 数上报 RI参数。
可选的, UE在接收基站发送的基站的天线端口数之前, 还可以接收该基 站为 UE配置的传输模式, 该传输模式为单流传输模式。 协议规定 UE在单流 传输模式下不向基站上报 RI参数, UE和基站不用确定 RI比特位数, 避免了 当基站未获取到 UE的 UE能力时, 只能基于 UE的基本 UE能力确定 RI比特位 数导致的 UE和基站两侧确定的 RI比特位数不一致的问题, 保证了 UE和基站 两侧确定 RI比特位数的一致。
可选的, 在 UE根据 UE的 UE能力和基站的天线端口数确定 RI的比特位 数之后, UE可以上报携带 RI参数的消息给基站, 所述 RI参数占用该消息中 的比特位数为 RI的比特位数。 由于 UE和基站基于相同的 UE能力以及相同的 天线端口数确定出了一致的 RI 比特位数, 所以可以保证基站正确接收 UE上 报的携带 RI参数的消息。
可选的, UE的 UE能力包括 UE能够支持的最大通信层数。
可选的, UE确定 RI比特位数的过程可以是: 首先根据基站的天线端口数 确定 RI比特位数可能的取值集合, 然后再根据 UE的 UE能力在所述 RI比特 位数可能的取值集合中确定 RI比特位数。具体的如果基站的天线端口数为 2 , 则 RI的比特位数为 1 , 如果基站的天线端口数为 4 , 则 RI的比特位数可以为 1或 2。 当基站的天线端口数为 4时, 进一步根据 UE的 UE能力确定 RI比特 位数。 当 UE的 UE能力为 2、 3或 4时, UE对应能够支持的最大通信层数为 2 层, 则 RI的比特位数为 1 ; 当 UE的 UE能力为 5时, UE对应能够支持的最大 通信层数为 4层, 则 RI的比特位数为 1。 或者也可以是首先根据 UE的 UE能 力确定 RI比特位数可能的取值集合,然后再根据基站的天线端口数在所述 RI 比特位数可能的取值集合中确定 RI比特位数。 此种确定方式的步骤过程与上 述确定方式的步骤过程相反, 可反向参考上述确定方式的步骤过程, 此处不 再赘述。
本发明实施例提供的处理层指示 RI的方法, 能够在 UE向基站上报 RI参 数之前向基站上报 UE能力, 由基站根据基站的天线端口数和 UE上报的 UE能 力确定 RI比特位数。 解决了现有技术中基站确定 RI比特位数不准确的问题, 进而解决了由于 UE与基站两侧确定出的 RI比特位数不一致造成的 RI参数错 误引起的 UE接入时延增大甚至无法接入的问题。
本发明实施例提供了另一种处理层指示 RI的方法, 如图 2所示, 所述方 法是对图 1所示实施例的进一步扩展。 所述方法包括如下步骤:
201、 UE接收基站配置的基本传输模式。
所述基本传输模式为单流传输模式, 在物理单天线传输中配置模式 1 ( Transmi s s ion Mode 1 , TM1 ), 在物理多天线传输中配置 TM2。 TM1 与 TM2 为协议中规定的初始传输模式配置, UE在初始传输模式下与基站的数据交互 为单流传输。 由于 UE与基站通过单流模式进行数据传输时不涉及切换到双流传输模式 的问题, 所以 UE不向基站上报携带 RI的消息。
202、 UE接收基站发送的天线端口数。
所述天线端口数为基站与 UE进行数据交互时基站能够使用的天线端口数 目, UE和基站根据该天线端口数以及 UE能力确定 RI比特位数。
本发明实施例中基站能够使用的天线端口数为 2端口和 4端口, 实际应 用中, 对于基站可用其他数量的天线端口数的情况, 其处理 RI的方式同样可 以参考本发明实施例实现。
203、 UE根据 UE的 UE能力和基站的天线端口数确定 RI的比特位数。 具体的, 如图 3所示, 如果基站的天线端口数为 2 , 则 RI的比特位数为
1 , 如果基站的天线端口数为 4 , 则 RI的比特位数可以为 1或 2。 当基站的天 线端口数为 4时, 进一步根据 UE的 UE能力确定 RI比特位数。 当 UE的 UE能 力为 2、 3或 4时, UE对应能够支持的最大通信层数为 1层, 则 RI的比特位 数为 1 ; 当 UE的 UE能力为 5时, UE对应能够支持的最大通信层数为 4层, 则 RI的比特位数为 1。或者也可以是首先根据 UE的 UE能力确定 RI比特位数 可能的取值集合, 然后再根据基站的天线端口数在所述 RI比特位数可能的取 值集合中确定 RI比特位数。 此种确定方式的步骤过程与图 3所示的确定方式 的步骤过程相反, 可反向参考图 3 所示的确定方式的步骤过程, 此处不再赘 述。
可选的, UE还可以向基站上报 UE能力。 UE可以在接收基站的天线端口 数之前向基站上报 UE能力, 也可以在接收基站的天线端口数之后向基站上报 UE能力, 对此本发明实施例不作限制。
基站根据 UE上报的 UE能力以及基站的天线端口数确定 RI比特位数。 具 体的, 如图 3所示, 如果基站的天线端口数为 2 , 则 RI的比特位数为 1 , 如 果基站的天线端口数为 4 , 则 RI的比特位数可以为 1或 2。 当基站的天线端 口数为 4时, 进一步根据 UE的 UE能力确定 RI比特位数。 当 UE的 UE能力为
2、 3或 4时, UE对应能够支持的最大通信层数为 1层,则 RI的比特位数为 1 ; 当 UE的 UE能力为 5时, UE对应能够支持的最大通信层数为 4层, 则 RI的比 特位数为 1。 或者也可以是首先根据 UE的 UE能力确定 RI比特位数可能的取 值集合, 然后再根据基站的天线端口数在所述 RI比特位数可能的取值集合中 确定 RI比特位数。 此种确定方式的步骤过程与图 3所示的确定方式的步骤过 程相反, 可反向参考图 3所示的确定方式的步骤过程, 此处不再赘述。
可选的, 本发明实施例中以 UE支持的最大通信层数代表 UE能力。 实际 应用中, UE能力并不仅限于通过 UE能力代表, 并且 UE支持的最大通信层数 并不仅限于 2层和 4层。
需要说明的是, UE与基站进行数据交互的 RI参数是由基站天线端口数和 UE能力两者的较小值决定,例如当基站天线端口数为 4并且 UE能够使用的最 大层数为 2层时, UE与基站进行数据交互的层数(即 RI参数)为 2。 由此确 定出的 RI比特位数为 Ib i t (比特), 该 Ib i t的 0和 1两种状态可以分别代表 进行通信的 2层。 当基站天线端口数为 4并且 UE能够使用的最大层数为 4层 时, UE与基站进行数据交互的层数为 4。 由此确定出的 RI比特位数为 2bi t , 2bi t有 00、 01、 10以及 11四种状态, 这四种状态可以分别代表进行通信的 4层。
进一步的, 当 UE需要进行单双流模式切换时, UE根据 UE能力和基站的 天线端口数确定 RI比特位数。
当基站向 UE请求获取 UE能力后, UE就可以根据信道质量或频谱利用率 进行单双流传输模式的切换。 当 UE需要从基本传输模式(单流传输模式)切 换到双流模式时, UE根据步骤 202中接收到的基站天线端口数以及自身的 UE 能力确定 RI比特位数, 确定过程与图 3所示基站的确定过程相同, 此处不再 赘述。
可选的, 当 UE获知基站的天线端口数发生变化, 或者当 UE的 UE能力发 生变化时, UE根据 UE的 UE能力和基站的天线端口数确定 RI的比特位数, 以 便 UE向基站上报 RI参数。 需要说明的是, UE确定 RI的比特位数所基于的 UE能力为基站需要切换 UE的传输模式时刻的 UE能力, 如果 UE的 UE能力发 生变化, 则 UE确定 RI的比特位数所基于的 UE能力为变化后的 UE能力, 以 保证 UE能够根据有效的 UE能力确定 RI比位数。 当 UE需要向基站上报 RI参 数时, UE可以获取到基站的新的天线端口数, 并以此和自身新的 UE能力确定 新的比特位数, 以保证根据正确的 RI比特位数上报 RI参数。
可选的, UE可以上报携带 RI参数的消息给基站, 所述 RI参数占用该消 息中的比特位数为 RI的比特位数。 由于基站确定的 RI比特位数与 UE确定的 RI比特位数 于相同的 UE能力和相同天线端口数, 所以两 RI比特位数一 致。 现有技术中, 如果 UE确定的 RI比特位数是 2bi t,基站确定的 RI比特位 数是 lbi t , 则 UE支持的最大通信层数为 4层, 基站支持的最大通信层数为 2 层。 当 UE上报消息中的 RI参数为 11时(即 UE请求进行 4层通信), 由于基 站最多只能支持 2层通信(即基站接收 RI参数的格式为 l bi t ), 所以导致基 站接收的 RI参数与 UE发送的 RI参数不一致, 进而导致 UE和基站进行通信 的层数不一致。 而基于相同 RI 比特位数所上报和接收的 RI参数就不会出现 不一致的问题。
需要说明的是, UE向基站上报 RI参数的目的在于使双方获取一个能够进 行通信的最大层数。 例如当 RI参数是 11时, UE和基站就可以最多进行 4层 通信, RI参数为 11仅代表使用通信层数的上限值, UE与基站也可以使用 4 层中的 1层、 2层或者 3层进行通信。
以下举例说明本发明实施例的一个应用场景: UE发起无线资源控制协议 (Radio Resource Control, RRC)连接请求 RRC Connect ion Reques t后, 基站 为 UE配置基本传输模式。 在 UE接收基站发送的天线端口数后, 接收基站发 送的 UE能力查询 RRC Capabi l i ty Enqui ry信令, 并通过 UE能力信息 RRC Capabi l i ty Inf orma t ion信令向基站上报 UE能力。 当 UE需要进行单双流切 换时, 根据天线端口数和 UE能力确定 RI比特位数, 并将占用确定的 RI比特 位数将 RI参数上报给基站。
现有技术中, 在 UE发起 RRC连接请求后, UE先向基站上报 RI参数再上 报 UE能力, 在基站接收到 RI参数但未接收到 UE能力这段时间内, 基站只能 根据 UE的基本能力和天线端口数确定 RI 比特位数, 由此导致 UE上报的 RI 参数与基站接收 RI参数所基于 RI 比特位数格式不一致。 由于 UE确定的 RI 比特位数与基站确定的 RI 比特位数不一致, 所以 UE与基站之间无法以相同 的通信层数进行通信, 后续 UE 上报的信道质量指示符 (Channel Qua l i ty Indica tor , CQI )会被解错, 需要对 CQI进行重传, 从而增加了 UE的接入时 延。 对于时分双工(Time Div i s ion Duplexing, TDD)系统来说, 混合自动重传 请求 ( Hybr id Automa t ic Repea t Reques t , HARQ ) 的重传时间间隔为 10TTI , 如果 CQI的重传时间间隔恰好也为 10TTI , 则将导致 HARQ重传全错, UE无法 接入网络。
本发明实施例提供的处理层指示 RI的方法, 能够在 UE向基站上报 RI参 数之前向基站上报 UE能力, 由基站根据基站的天线端口数和 UE上报的 UE能 力确定 RI比特位数。 解决了现有技术中基站确定 RI比特位数不准确的问题, 进而解决了由于 UE与基站两侧确定出的 RI比特位数不一致造成的 RI参数错 误引起的 UE接入时延增大甚至无法接入的问题。
此外, 本发明实施例提供的处理层指示 RI的方法, 还能够在基站未接收 到 UE能力之前为 UE配置基本传输模式, UE在基本传输模式下以单流模式与 基站进行通信, 无需进行单双流切换。 由于 UE是基于单双流切换上报 RI参 数的, 所以在基站获取到 UE能力之前, 无需接收 UE上报 RI参数, 从而避免 了 RI比特位数不一致导致的 RI参数上报出错的问题。
本发明实施例提供了一种处理层指示 RI的方法, 如图 4所示, 所述方法 包括如下步骤:
401、 基站接收 UE上报的 UE的 UE能力。
402、 基站根据 UE的 UE能力和基站的天线端口数确定 RI的比特位数。 进一步的, 基站向 UE发送基站的天线端口数, 以便 UE根据基站的天线 端口数和 UE的 UE能力确定 RI比特位数。
进一步的, 基站在接收 UE上报的 UE的 UE能力之前, 向 UE发送查询请 求, 该查询请求用于查询 UE的 UE能力。 进一步的, 当基站需要切换 UE的传输模式, 或者当基站的天线端口数发 生变化, 再或者基站获知 UE的 UE能力发生变化时, 基站根据 UE的 UE能力 和基站的天线端口数确定 RI的比特位数, 以便接收 UE上报的 RI参数。 需要 说明的是, 基站确定 RI的比特位数所基于的 UE能力为需要切换 UE的传输模 式时刻的 UE能力, 如果 UE的 UE能力发生变化, 则基站确定 RI的比特位数 所基于的 UE能力为变化后的 UE能力, 如果基站的天线端口数发生变化, 则 基站确定 RI的比特位数所基于的天线端口数为变化后的天线端口数, 以保证 基站能够根据有效的 UE能力和天线端口数确定 RI比位数。
当基站接收 UE上报 RI参数时, 基站可以获取到 UE的新的 UE能力, 并 以此和自身新的天线端口数确定新的比特位数, 以保证根据正确的 R I比特位 数接收 RI参数。
可选的, 基站在向 UE发送基站的天线端口数之前, 还可以为 UE配置的 传输模式, 该传输模式为单流传输模式。 协议规定 UE在单流传输模式下不向 基站上报 RI参数, UE和基站不用确定 RI比特位数, 避免了当基站未获取到 UE的 UE能力时,只能基于 UE的基本 UE能力确定 RI比特位数导致的 UE和基 站两侧确定的 RI比特位数不一致的问题, 保证了 UE和基站两侧确定 RI比特 位数的一致。
可选的, 在基站根据 UE的 UE能力和基站的天线端口数确定 RI的比特位 数之后, 基站可以接收 UE上报的携带 RI参数的消息, 所述 RI参数占用该消 息中的比特位数为 RI的比特位数。 由于 UE和基站基于相同的 UE能力以及相 同的天线端口数确定出了一致的 RI比特位数,所以可以保证基站正确接收 UE 上报的携带 RI参数的消息。
可选的, 基站确定 RI比特位数的过程可以是: 首先根据基站的天线端口 数确定 RI比特位数可能的取值集合, 然后再根据 UE的 UE能力在所述 RI比 特位数可能的取值集合中确定 RI比特位数。 具体的如果基站的天线端口数为 2 , 则 RI的比特位数为 1 , 如果基站的天线端口数为 4 , 则 RI的比特位数可 以为 1或 2。 当基站的天线端口数为 4时, 进一步根据 UE的 UE能力确定 RI 比特位数。 当 UE的 UE能力为 2、 3或 4时, UE对应能够支持的最大通信层数 为 2层, 则 RI的比特位数为 1 ; 当 UE的 UE能力为 5时, UE对应能够支持的 最大通信层数为 4层, 则 RI的比特位数为 1。 或者也可以是首先根据 UE的 UE能力确定 RI比特位数可能的取值集合,然后再根据基站的天线端口数在所 述 RI 比特位数可能的取值集合中确定 RI 比特位数。 此种确定方式的步骤过 程与上述确定方式的步骤过程相反, 可反向参考上述确定方式的步骤过程, 此处不再赘述。
本发明实施例提供的处理层指示 RI的方法, 能够在基站接收 UE上报的 RI参数之前向 UE获取 UE能力, 由基站根据基站的天线端口数和获取到的 UE 能力确定 RI 比特位数。 解决了现有技术中基站确定 RI 比特位数不准确的问 题, 进而解决了由于 UE与基站两侧确定出的 RI比特位数不一致造成的 RI参 数错误引起的 UE接入时延增大甚至无法接入的问题。
本发明实施例提供了另一种处理层指示 RI的方法, 如图 5所示, 所述方 法是对图 4所示实施例的进一步扩展。 所述方法包括如下步骤:
501、 基站为 UE配置基本传输模式。
所述基本传输模式为单流传输模式, 在物理单天线传输中配置 TM1 , 在物 理多天线传输中配置 TM2。 TM1与 TM2为协议中规定的初始传输模式配置, UE 在初始传输模式下与基站的数据交互为单流传输。
由于 UE与基站通过单流模式进行数据传输时不涉及切换到双流传输模式 的问题, 所以 UE不向基站上报携带 RI的消息。
502、 基站向 UE发送基站的天线端口数。
所述天线端口数为基站与 UE进行数据交互时基站能够使用的天线端口数 目, UE和基站根据该天线端口数以及 UE能力确定 RI比特位数。
本发明实施例中基站能够使用的天线端口数为 2端口和 4端口, 实际应 用中, 对于基站可用其他数量的天线端口数的情况, 其处理 RI的方式同样可 以参考本发明实施例实现。
503、 基站根据 UE的 UE能力和基站的天线端口数确定 RI的比特位数。 基站根据 UE上报的 UE能力以及基站的天线端口数确定 RI比特位数。 具 体的, 如图 3所示, 如果基站的天线端口数为 2 , 则 RI的比特位数为 1 , 如 果基站的天线端口数为 4 , 则 RI的比特位数可以为 1或 2。 当基站的天线端 口数为 4时, 进一步根据 UE的 UE能力确定 RI比特位数。 当 UE的 UE能力为 2、 3或 4时, UE对应能够支持的最大通信层数为 1层,则 RI的比特位数为 1 ; 当 UE的 UE能力为 5时, UE对应能够支持的最大通信层数为 4层, 则 RI的比 特位数为 1。 或者也可以是首先根据 UE的 UE能力确定 RI比特位数可能的取 值集合, 然后再根据基站的天线端口数在所述 RI比特位数可能的取值集合中 确定 RI比特位数。 此种确定方式的步骤过程与图 3所示的确定方式的步骤过 程相反, 可反向参考图 3所示的确定方式的步骤过程, 此处不再赘述。
可选的, 基站还可以向 UE发送查询请求, 请求接收 UE上报的 UE能力。 基站可以在向 UE发送天线端口数之前接收 UE上报的 UE能力, 基站也可以在 向 UE发送天线端口数之后接收 UE上报的 UE能力, 对此本发明实施例不作限 制。
优选的, 本发明实施例中以 UE支持的最大通信层数代表 UE能力。 实际 应用中, UE能力并不仅限于通过 UE能力代表, 并且 UE支持的最大通信层数 并不仅限于 2层和 4层。
需要说明的是, UE与基站进行数据交互的 RI参数是由基站天线端口数和 UE能力两者的较小值决定,例如当基站天线端口数为 4并且 UE能够使用的最 大层数为 2层时, UE与基站进行数据交互的层数(即 RI参数)为 2。 由此确 定出的 RI比特位数为 lbi t , 该 lbi t的 0和 1两种状态可以分别代表进行通 信的 2层。 当基站天线端口数为 4并且 UE能够使用的最大层数为 4层时, UE 与基站进行数据交互的层数为 4。 由此确定出的 RI比特位数为 2bi t , 2bi t有 00、 01、 10以及 11四种状态, 这四种状态可以分别代表进行通信的 4层。
可选的, 当需要进行单双流模式切换时, 基站根据 UE能力和基站的天线 端口数确定 RI比特位数。
当需要从基本传输模式(单流传输模式)切换到双流模式时, 基站根据 步骤 502中接收到的 UE能力以及自身的天线端口数确定 RI比特位数, 确定 过程与图 3所示基站的确定过程相同, 此处不再赘述。
可选的, 当基站获知 UE的 UE能力发生变化, 或者当基站的天线端口数 发生变化时,基站根据 UE的 UE能力和基站的天线端口数确定 RI的比特位数, 以便基站接收 UE上报的 RI参数。 需要说明的是, 基站确定 RI的比特位数所 基于的 UE能力为基站需要切换 UE的传输模式时刻的 UE能力, 如果 UE的 UE 能力发生变化, 则基站确定 RI的比特位数所基于的 UE能力为变化后的 UE能 力, 以保证基站能够根据有效的 UE能力确定 RI比位数。 当基站需要接收 UE 上 ·艮的 RI参数时, 基站可以获取到 UE的新的 UE能力, 并以此和自身新的天 线端口数确定新的比特位数, 以保证根据正确的 RI比特位数接收 RI参数。
可选的, 基站可以接收 UE上报的携带 RI参数的消息, 所述 RI参数占用 该消息中的比特位数为 RI的比特位数。 由于基站确定的 RI比特位数与 UE确 定的 RI比特位数 于相同的 UE能力和相同天线端口数, 所以两 RI比特位 数一致。 现有技术中, 如果 UE确定的 RI比特位数是 2bi t,基站确定的 RI比 特位数是 lbi t , 则 UE支持的最大通信层数为 4层,基站支持的最大通信层数 为 2层。 当 UE上 ^艮消息中的 RI参数为 11时(即 UE请求进行 4层通信), 由 于基站最多只能支持 2层通信(即基站接收 RI参数的格式为 1 bi t ), 所以导 致基站接收的 RI参数与 UE发送的 RI参数不一致, 进而导致 UE和基站进行 通信的层数不一致。 而基于相同 RI 比特位数所上报和接收的 RI参数就不会 出现不一致的问题。
需要说明的是, 基站接收 UE上报的 RI参数的目的在于使双方获取一个 能够进行通信的最大层数。 例如当 RI参数是 11时, UE和基站就可以最多进 行 4层通信, RI参数为 11仅代表使用通信层数的上限值, UE与基站也可以 使用 4层中的 1层、 2层或者 3层进行通信。
以下举例说明本发明实施例的一个应用场景: UE发起无线资源控制协议 (Radio Resource Control, RRC)连接请求 RRC Connect ion Reques t后, 基站 为 UE配置基本传输模式。 在 UE接收基站发送的天线端口数后, 接收基站发 送的 UE能力查询 RRC Capabi l i ty Enqui ry信令, 并通过 UE能力信息 RRC Capabi l i ty Inf orma t ion信令向基站上报 UE能力。 当 UE需要进行单双流切 换时, 根据天线端口数和 UE能力确定 RI比特位数, 并将占用确定的 RI比特 位数将 RI参数上报给基站。
现有技术中, 在 UE发起 RRC连接请求后, 基站先接收 UE上报的 RI参数 再接收 UE上报的 UE能力, 在基站接收到 RI参数但未接收到 UE能力这段时 间内, 基站只能根据 UE的基本能力和天线端口数确定 RI 比特位数, 由此导 致 UE上报的 RI参数与基站接收 RI参数所基于 RI比特位数格式不一致。 由 于 UE确定的 RI比特位数与基站确定的 RI比特位数不一致, 所以 UE与基站 之间无法以相同的通信层数进行通信, 后续 UE上报的 CQI会被解错, 需要对 CQI进行重传, 从而增加了 UE的接入时延。 对于 TDD系统来说, HARQ的重传 时间间隔为 10TTI , 如果 CQI的重传时间间隔恰好也为 10TTI , 则将导致 HARQ 重传全错, UE无法接入网络。
本发明实施例提供的处理层指示 RI的方法, 能够在基站接收 UE上报是 RI参数之前接收 UE上报的 UE能力,由基站根据基站的天线端口数和 UE上报 的 UE能力确定 RI比特位数。 解决了现有技术中基站确定 RI比特位数不准确 的问题, 进而解决了由于 UE与基站两侧确定出的 RI 比特位数不一致造成的 RI参数错误引起的 UE接入时延增大甚至无法接入的问题。
此外, 本发明实施例提供的处理层指示 RI的方法, 还能够在基站未接收 到 UE能力之前为 UE配置基本传输模式, UE在基本传输模式下以单流模式与 基站进行通信, 无需进行单双流切换。 由于 UE是基于单双流切换上报 RI参 数的, 所以在基站获取到 UE能力之前, 无需接收 UE上报 RI参数, 从而避免 了 RI比特位数不一致导致的 RI参数上报出错的问题。
参考图 2所示方法实施例的实现, 本发明实施例提供了一种 UE, 如图 6 所示, 用以实现图 2所示的方法实施例。 所述 UE包括: 接收器 61和处理器 62 , 其中,
所述接收器 61 , 用于接收基站发送的基站的天线端口数。 本发明实施例中基站能够使用的天线端口数为 2端口和 4端口, 实际应 用中, 对于基站可用其他数量的天线端口数的情况, 其处理 RI的方式同样可 以参考本发明实施例实现。
所述处理器 62 ,用于根据 UE的 UE能力和基站的天线端口数确定 RI的比 特位数。
如果基站的天线端口数为 2 , 则 RI 的比特位数为 1 , 如果基站的天线端 口数为 4 , 则 RI的比特位数可以为 1或 2。 当基站的天线端口数为 4时, 进 一步根据 UE的 UE能力确定 RI比特位数。 当 UE的 UE能力为 2、 3或 4时, UE对应能够支持的最大通信层数为 1层, 则 RI的比特位数为 1 ; 当 UE的 UE 能力为 5时, UE对应能够支持的最大通信层数为 4层, 则 RI的比特位数为 1。 或者也可以是首先根据 UE的 UE能力确定 RI比特位数可能的取值集合, 然后再根据基站的天线端口数在所述 RI比特位数可能的取值集合中确定 RI 比特位数。 此种确定方式的步骤过程与上述确定方式的步骤过程相反, 可反 向参考上述确定方式的步骤过程, 此处不再赘述。
可选的, 如图 7所示, 所述 UE可以包括:
传输器 71 , 用于向基站上报 UE的 UE能力, 以供基站根据该 UE的 UE能 力和基站的天线端口数确定 RI的比特位数。
可选的, 所述接收器 61还用于接收基站发送的查询请求, 该查询请求用 于查询 UE的 UE能力。
可选的, 所述接收器 61还用于接收基站为 UE配置的传输模式, 该传输 模式为单流传输模式。
所述基本传输模式为单流传输模式, 在物理单天线传输中配置 TM1 , 在物 理多天线传输中配置 TM2。 TM1与 TM2为协议中规定的初始传输模式配置, UE 在初始传输模式下与基站的数据交互为单流传输。
由于 UE与基站通过单流模式进行数据传输时不涉及切换到双流传输模式 的问题, 所以 UE不向基站上报携带 RI的消息。
可选的, 所述传输器 71还用于发送携带 RI的消息给基站, 该 RI 占用所 述消息中的比特位数为所述处理器 62确定的 RI的比特位数。
由于基站确定的 RI 比特位数与 UE确定的 RI 比特位数是基于相同的 UE 能力和相同天线端口数, 所以两 RI比特位数一致。
本发明实施例提供的 UE , 能够在向基站上报 RI参数之前向基站上报 UE 能力, 由基站根据基站的天线端口数和 UE上报的 UE能力确定 RI比特位数。 解决了现有技术中基站在未接收到 UE的 UE能力之前只能根据基站的天线端 口数和 UE的基本能力确定 RI比特位数的问题, 进而解决了由于 UE与基站两 侧确定出的 RI比特位数不一致造成的 RI参数上报错误的问题。
此外, 本发明实施例提供的 UE , 还能够在基站未接收到 UE能力之前配置 基本传输模式, UE在基本传输模式下以单流模式与基站进行通信, 无需进行 单双流切换。 由于 UE是基于单双流切换上报 RI参数的, 所以在基站获取到 UE能力之前, 无需接收 UE上报 RI参数, 从而避免了 RI比特位数不一致导 致的 RI参数上报出错的问题。
参考图 5所示方法实施例的实现, 本发明实施例提供了一种基站, 如图 8 所示, 用以实现图 5所示的方法实施例。 所述基站包括: 接收器 81和处理 器 82 , 其中,
所述接收器 81 , 用于接收 UE上报的 UE的 UE能力。
所述 UE的 UE能力用于基站确定 RI比特位数。
所述处理器 82 ,用于根据 UE的 UE能力和基站的天线端口数确定 RI的比 特位数。
基站根据 UE上报的 UE能力以及基站的天线端口数确定 RI比特位数。 具 体的, 如果基站的天线端口数为 2 , 则 RI的比特位数为 1 , 如果基站的天线 端口数为 4 , 则 RI的比特位数可以为 1或 2。 当基站的天线端口数为 4时, 进一步根据 UE的 UE能力确定 RI比特位数。 当 UE的 UE能力为 2、 3或 4时, UE对应能够支持的最大通信层数为 1层, 则 RI的比特位数为 1 ; 当 UE的 UE 能力为 5时, UE对应能够支持的最大通信层数为 4层, 则 RI的比特位数为 1。 或者也可以是首先根据 UE的 UE能力确定 RI比特位数可能的取值集合, 然后再根据基站的天线端口数在所述 RI比特位数可能的取值集合中确定 RI 比特位数。 此种确定方式的步骤过程与上述确定方式的步骤过程相反, 可反 向参考上述确定方式的步骤过程, 此处不再赘述。
可选的, 如图 9所示, 所述基站可以包括:
传输器 91 , 用于向 UE发送基站的天线端口数, 以供 UE根据 UE的 UE能 力和基站的天线端口数确定 RI的比特位数。
所述天线端口数为基站与 UE进行数据交互时基站能够使用的天线端口数 目, UE和基站根据该天线端口数以及 UE能力确定 RI比特位数。
本发明实施例中基站能够使用的天线端口数为 2端口和 4端口, 实际应 用中, 对于基站可用其他数量的天线端口数的情况, 其处理 RI 的方式同样 可以参考本发明实施例实现。
可选的, 所述传输器 91还用于向 UE发送查询请求, 该查询请求用于查 询 UE的 UE能力。
基站可以在向 UE发送天线端口数之前接收 UE上报的 UE能力, 基站也可 以在向 UE发送天线端口数之后接收 UE上报的 UE能力, 对此本发明实施例 不作限制。
可选的, 所述传输器 91还用于向 UE发送为 UE配置的传输模式。
所述基本传输模式为单流传输模式, 在物理单天线传输中配置 TM1 , 在物 理多天线传输中配置 TM2。 TM1与 TM2为协议中规定的初始传输模式配置, UE在初始传输模式下与基站的数据交互为单流传输。
由于 UE与基站通过单流模式进行数据传输时不涉及切换到双流传输模式 的问题, 所以 UE不向基站上报携带 RI的消息。
可选的, 所述接收器 81还用于接收 UE发送的携带 RI的消息, 并根据 RI 的比特位数读取消息中的 RI。
本发明实施例提供的基站, 能够在接收 UE上报是 RI参数之前接收 UE上 报的 UE能力, 然后根据基站的天线端口数和 UE上报的 UE能力确定 RI比特 位数。 解决了现有技术中基站在未接收到 UE的 UE能力之前只能根据基站的 天线端口数和 UE的基本能力确定 RI比特位数的问题, 进而解决了由于 UE与 基站两侧确定出的 RI比特位数不一致造成的 RI参数上报错误的问题。
此外, 本发明实施例提供的基站, 还能够在未接收到 UE 能力之前为 UE 配置基本传输模式, UE在基本传输模式下以单流模式与基站进行通信, 无需 进行单双流切换。 由于 UE是基于单双流切换上报 RI参数的, 所以在基站获 取到 UE能力之前, 无需接收 UE上报 RI参数, 从而避免了 RI比特位数不一 致导致的 RI参数上报出错的问题。
进一步的, 本发明实施例提供了一种处理层指示 RI的系统, 所述系统涵 盖了上述方法和装置实施例的实现。 所述系统包括:
基站, 用于发送所述基站的天线端口数, 接收所述 UE的 UE能力, 并根 据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数;
UE, 用于接收所述基站的天线端口数, 发送所述 UE的 UE能力, 并根据 所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘 等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 权利要求 书
    1、 一种处理层指示 RI方法, 其特征在于, 包括:
    用户设备 UE接收基站发送的所述基站的天线端口数;
    所述 UE根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位 数。
  2. 2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
    所述 UE向所述基站上^艮所述 UE的 UE能力, 以供所述基站根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数。
  3. 3、 根据权利要求 2所述的方法, 其特征在于, 在所述 UE向所述基站上报 所述 UE的 UE能力之前, 还包括:
    所述 UE接收所述基站发送的查询请求, 所述查询请求用于查询所述 UE的 UE能力。
  4. 4、 根据权利要求 1至 3中任意一项所述的方法, 其特征在于, 当需要切换 传输模式时, 或者当所述 UE获知所述基站的天线端口数发生变化时, 或者当所 述 UE的 UE能力发生变化时, 所述 UE根据所述 UE的 UE能力和所述基站的天线 端口数确定 RI的比特位数。
  5. 5、 根据权利要求 4所述的方法, 其特征在于, 在所述 UE接收基站发送的 基站的天线端口数之前, 还包括:
    所述 UE接收所述基站为所述 UE配置的传输模式, 所述传输模式为单流传 输模式。
  6. 6、 根据权利要求 1至 5 中任意一项所述的方法, 其特征在于, 在所述 UE 根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数之后, 还包 括:
    所述 UE发送携带 RI的消息给所述基站, 所述 RI 占用所述消息中的比特位 数为所述 RI的比特位数。
  7. 7、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 所述 UE的 UE能 力包括所述 UE支持的最大通信层数。 8、 根据权利要求 7所述的方法, 其特征在于, 所述根据所述 UE的 UE能力 和所述基站的天线端口数确定 RI的比特位数包括:
    如果所述基站的天线端口数为 2 , 则所述 RI的比特位数为 1 ; 或
    如果所述基站的天线端口数为 4 , 所述 UE支持的最大通信层数为 2 , 则所 述 RI的比特位数为 1 ; 或
    如果所述基站的天线端口数为 4 , 所述 UE支持的最大通信层数为 4 , 则所 述 RI的比特位数为 2。
  8. 9、 一种处理层指示 RI方法, 其特征在于, 包括:
    基站接收用户设备 UE上报的所述 UE的 UE能力;
    所述基站根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位 数。
  9. 10、 根据权利要求 9所述的方法, 其特征在于, 还包括:
    所述基站向所述 UE发送所述基站的天线端口数, 以供所述 UE根据所述 UE 的 UE能力和所述基站的天线端口数确定 RI的比特位数。
  10. 11、 根据权利要求 10 所述的方法, 其特征在于, 在所述基站接收所述 UE 的 UE能力之前, 还包括:
    所述基站向所述 UE发送查询请求, 所述查询请求用于查询所述 UE的 UE能 力。
  11. 12、 根据权利要求 9至 11中任意一项所述的方法, 其特征在于, 当需要切 换传输模式时, 或者当所述基站获知所述 UE的 UE能力发生变化时, 或者当所 述基站的天线端口数发生变化时, 所述基站根据所述 UE的 UE能力和所述基站 的天线端口数确定 RI的比特位数。
  12. 13、 根据权利要求 12所述的方法, 其特征在于, 在所述基站接收用户设备 UE上报的所述 UE的 UE能力之前, 还包括:
    所述基站向所述 UE发送为所述 UE配置的传输模式, 所述传输模式为单流 传输模式。
  13. 14、 根据权利要求 9至 13中任意一项所述的方法, 其特征在于, 在所述基 站根据所述 UE的 UE能力和所述基站的天线端口数确定层指示 RI的比特位数之 后, 还包括:
    所述基站接收所述 UE发送的携带 RI的消息, 并根据所述 RI的比特位数读 取所述消息中的 RI。
  14. 15、 根据权利要求 9至 14 中任意一项所述的方法, 其特征在于, 所述 UE 的 UE能力包括所述 UE支持的最大通信层数。
  15. 16、 根据权利要求 15所述的方法, 其特征在于, 所述根据所述 UE的 UE能 力和基站的天线端口数确定 RI的比特位数包括:
    如果所述基站的天线端口数为 2 , 则所述 RI的比特位数为 1 ; 或
    如果所述基站的天线端口数为 4 , 所述 UE支持的最大通信层数为 2 , 则所 述 RI的比特位数为 1 ; 或
    如果所述基站的天线端口数为 4 , 所述 UE支持的最大通信层数为 4 , 则所 述 RI的比特位数为 2。
    17、 一种用户设备 UE, 其特征在于, 包括:
    接收器, 用于接收基站发送的所述基站的天线端口数; 以及,
    处理器, 用于根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比 特位数。
    18、 根据权利要求 17所述的 UE, 其特征在于, 还包括:
    传输器, 用于向所述基站上报所述 UE的 UE能力, 以供所述基站根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数。
    19、 根据权利要求 18所述的 UE, 其特征在于, 所述接收器还用于接收所述 基站发送的查询请求, 所述查询请求用于查询所述 UE的 UE能力。
    20、 根据权利要求 17至 19中任意一项所述的 UE, 其特征在于, 所述接收 器还用于接收所述基站为所述 UE配置的传输模式, 所述传输模式为单流传输模 式。
    21、 根据权利要求 17至 20中任意一项所述的 UE, 其特征在于, 所述传输 器还用于发送携带 RI 的消息给所述基站, 所述 RI 占用所述消息中的比特位数 为所述 RI的比特位数。
  16. 22、 一种基站, 其特征在于, 包括:
    接收器, 用于接收用户设备 UE上报的所述 UE的 UE能力; 以及, 处理器, 用于根据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比 特位数。
  17. 23、 根据权利要求 22所述的基站, 其特征在于, 还包括:
    传输器, 用于向所述 UE发送所述基站的天线端口数, 以供所述 UE根据所 述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数。
  18. 24、 根据权利要求 23所述的基站, 其特征在于, 所述传输器还用于向所述 UE发送查询请求, 所述查询请求用于查询所述 UE的 UE能力。
  19. 25、 根据权利要求 22至 24 中任意一项所述的基站, 其特征在于, 所述传 输器还用于向所述 UE发送为所述 UE配置的传输模式, 所述传输模式为单流传 输模式。
  20. 26、 根据权利要求 22至 25 中任意一项所述的基站, 其特征在于, 所述接 收器还用于接收所述 UE发送的携带 RI的消息, 并根据所述 RI的比特位数读取 所述消息中的 RI。
    27、 一种处理层指示 RI的系统, 其特征在于, 包括基站和用户设备 UE, 其 中:
    所述基站用于发送所述基站的天线端口数, 接收所述 UE的 UE能力, 并根 据所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数;
    所述 UE用于接收所述基站的天线端口数, 发送所述 UE的 UE能力, 并根据 所述 UE的 UE能力和所述基站的天线端口数确定 RI的比特位数。
CN201180069986.2A 2011-12-23 2011-12-23 处理层指示ri的方法、装置及系统 Pending CN103518344A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084517 WO2013091231A1 (zh) 2011-12-23 2011-12-23 处理层指示ri的方法、装置及系统

Publications (1)

Publication Number Publication Date
CN103518344A true CN103518344A (zh) 2014-01-15

Family

ID=48667679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180069986.2A Pending CN103518344A (zh) 2011-12-23 2011-12-23 处理层指示ri的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN103518344A (zh)
WO (1) WO2013091231A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142570A (ja) * 2010-01-08 2011-07-21 Ntt Docomo Inc 移動通信システムにおけるユーザ装置、基地局及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082636B (zh) * 2010-08-16 2013-05-08 电信科学技术研究院 一种信道状态信息csi反馈指示方法和基站及系统
CN102082637B (zh) * 2010-09-16 2015-03-25 电信科学技术研究院 一种码本子集约束的处理方法及设备
CN102025450B (zh) * 2010-11-29 2015-06-03 中兴通讯股份有限公司 一种进行信道信息编码反馈的方法及移动终端

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142570A (ja) * 2010-01-08 2011-07-21 Ntt Docomo Inc 移動通信システムにおけるユーザ装置、基地局及び方法

Also Published As

Publication number Publication date
WO2013091231A1 (zh) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5199223B2 (ja) Ack/nackバンドリングを改善する方法及び通信装置
RU2605472C2 (ru) Способ беспроводной связи, поддерживающий harq, пользовательское оборудование и базовая станция
KR20190058605A (ko) 데이터 전송 방법 및 장치
EP3585093A1 (en) Method for transmitting data, terminal device, and network device
JP2016530761A (ja) Fdd−tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
CN109644431B (zh) 上行信息传输方法、装置及系统
EP3598682B1 (en) Method and apparatus for uplink data transmission
CN105379156A (zh) Fdd小区和tdd小区的聚合
JP7297773B2 (ja) 指示方法、ネットワークデバイス、及びユーザ装置
EP3907916B1 (en) Harq-ack/pucch transmissions
EP3050236B1 (en) Bundling harq feedback in a time division duplexing communication system
CN103875274A (zh) 内存分配方法及系统、用户设备、网络设备
US20220191890A1 (en) Method and apparatus for uplink information transmission and user equipment
US20210385142A1 (en) Method and device for data transmission
CN107211339B (zh) 一种数据传输方法、用户设备和基站
US20220022191A1 (en) Method and apparatus for transmitting information
CN110149612B (zh) 波束确定方法及第一通信设备、第二通信设备
CN108076521A (zh) 一种反馈上行数据应答信息的方法、网络设备及终端
CN103703847A (zh) 实现辅小区的时分双工配置的方法、基站及系统
CN110380827A (zh) 信息传输方法及装置
WO2018170907A1 (zh) 通信方法、终端和网络设备
CN103518344A (zh) 处理层指示ri的方法、装置及系统
CN105264808A (zh) 一种信息传输方法及设备
KR102287370B1 (ko) 단말 및 그것의 자원 할당 방법
CN107005369A (zh) 一种数据重传方法、设备及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140115