CN103514374A - 电力系统在线滚动调度中不可行传输断面约束的辨识方法 - Google Patents

电力系统在线滚动调度中不可行传输断面约束的辨识方法 Download PDF

Info

Publication number
CN103514374A
CN103514374A CN201310439186.6A CN201310439186A CN103514374A CN 103514374 A CN103514374 A CN 103514374A CN 201310439186 A CN201310439186 A CN 201310439186A CN 103514374 A CN103514374 A CN 103514374A
Authority
CN
China
Prior art keywords
overbar
omega
formula
lambda
transmission section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310439186.6A
Other languages
English (en)
Other versions
CN103514374B (zh
Inventor
吴文传
张伯明
孙宏斌
李志刚
郭庆来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310439186.6A priority Critical patent/CN103514374B/zh
Priority to US14/143,474 priority patent/US9721313B2/en
Publication of CN103514374A publication Critical patent/CN103514374A/zh
Application granted granted Critical
Publication of CN103514374B publication Critical patent/CN103514374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Public Health (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Algebra (AREA)
  • Marketing (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种电力系统在线滚动调度中不可行传输断面约束的辨识方法,属于电力系统运行和控制技术领域。该方法包括:设置时段个数,各台发电机的发电成本系数;建立及求解含传输断面安全约束的在线滚动调度模型;辨识在线滚动调度中的不可行传输断面安全约束;将得到的各台发电机在各个时段发出的有功功率下发到各个发电厂并进行在线滚动调度;将不可行传输断面安全约束输出并提示电网调度运行人员。本发明可以克服现有在线滚动调度方法中无法辨识和处理不可行传输断面安全约束的缺陷,并且方便地集成到现有的基于拉格朗日对偶松弛框架的在线滚动调度方法中,提高在线滚动调度方法的鲁棒性和实用性。

Description

电力系统在线滚动调度中不可行传输断面约束的辨识方法
技术领域
本发明涉及一种电力系统在线滚动调度中不可行传输断面约束的辨识方法,属于电力系统运行和控制技术领域。
背景技术
多时间尺度的调度方法可以有效地应对电力系统运行状态的不确定性,在线滚动调度是这种调度方法的一个重要的环节。在线滚动调度根据电力系统当前运行的状况以及未来时刻的负荷预测数据,对发电调度计划进行滚动式的修正,以消除发电调度计划与实际负荷之间的偏差,从而保证电力系统运行的经济性与安全性。
传统的在线滚动调度方法采用的是经典的动态经济调度。经典的动态经济调度在考虑电力系统发电负荷平衡、发电机的输出功率限制以及发电机输出的爬坡速率等约束的情况下,在处于开机状态的发电机之间分配各自承担的负荷功率,以达到发电成本最小的目标。在实际应用的在线滚动调度中,除了需要考虑物理约束外,还需要考虑安全约束,传输断面安全约束就是其中一类重要的安全约束。为了确保电力系统的安全稳定运行,电网调度运行人员在设定传输断面的有功潮流限制时往往留有较大的裕度,因此在电力系统调度中所用的传输断面有功潮流限值是偏于保守的。随着大规模可再生能源发电的集中式接入电网,电力系统规模不断扩大,过于保守的传输断面安全约束会限制可再生能源的利用,妨碍电力系统的经济运行,甚至会导致不可行运行方式的出现。
发明内容
本发明的目的是克服已有技术的不足之处,提出一种在线滚动调度中不可行传输断面安全约束的辨识方法,在在线滚动调度中及时地辨识出不可行的传输断面安全约束,并进行校正,以快速准确地辨识出在线滚动调度中存在的不可行传输断面安全约束,提高在线滚动调度方法的鲁棒性和实用性。
本发明提出的电力系统在线滚动调度中不可行传输断面约束的辨识方法,包括以下步骤:
(1)设电力系统在线滚动调度时间段长度为Tspan,Tspan的取值范围为1~4小时,并设相邻两个调度时间段的间隔为Tspace,Tspace的取值范围为5~15分钟,滚动调度的调度时段个数T为: T = T span T space - - - ( 1 )
(2)计算电力系统中所有发电机的发电成本的二次系数为:a={ai,t|i=1,2,...,Ng,t=1,2,...,T},发电成本的一次系数为:b={bi,t|i=1,2,...,Ng,t=1,2,...,T},发电成本的常数系数为:c={ci,t|i=1,2,...,Ng,t=1,2,...,T},其中ai,t、bi,t和ci,t分别为第i台发电机在第t个调度时段的发电成本二次系数、一次系数和常数系数,ai,t、bi,t和ci,t的取值分别为对第i台发电机在第t个调度时段的发电成本函数的泰勒展开式中的二次项系数、一次项系数和常数项系数,Ng为电力系统中所有发电机的个数;计算发电机对传输断面的输出功率转移分布因子,具体过程如下:
(2-1)用电力系统中支路电抗的倒数作为支路参数建立节点电纳矩阵B0,并计算节点电抗矩阵X,
Figure BDA0000386582740000022
(2-2)设置k=1;
(2-3)设置i=1;
(2-4)遍历第k个传输断面的编号为l的传输线路,l∈ILk,ILk为组成第k个传输断面的传输线路的下标集合;记第i台发电机连接的节点编号为ng(i),第l条传输线路的首端点为nbi(l),第l条传输线路的末端点为nbj(l);计算第i台发电机对第l条传输线路的输出功率转移分布因子γl-i,如式(2)所示:
γ l - i = X ng ( i ) , nbi ( l ) - X ng ( i ) , nbj ( l ) x l - - - ( 2 )
其中,Xng(i),nbi(l)表示节点电抗矩阵X中在第ng(i)行第nbi(l)列的元素,Xng(i),nbj(l)表示节点电抗矩阵X中在第ng(i)行第nbj(l)列的元素;xl表示第l条传输断面的电抗;
(2-5)计算第i台发电机对第k个传输断面的输出功率转移分布因子Gk-i,如式(3)所示:
G k - i = Σ l ∈ IL k γ l - i - - - ( 3 )
(2-6)使i=i+1,根据Ng对i进行判断:若i≤Ng,则返回步骤(2-4);若i>Ng,则执行步骤(2-7);
(2-7)使k=k+1,根据K对k进行判断:若k≤K,则返回步骤(2-3);若k>K,则执行步骤(3);
(3)建立电力系统考虑传输断面安全约束的滚动调度模型,如式(3)所示:
min p C ( p ) = Σ t = 1 T Σ i = 1 N g ( a i , t · p i , t 2 + b i , t · p i , t + c i , t )
subjectto.
Σ i = 1 N g p i , t = D t , ∀ t = 1,2 , . . . , T ( a )
L ‾ k , t ≤ Σ i = 1 N g G k , i · p i , t ≤ L ‾ k , t , ∀ k = 1,2 , . . . , K , t = 1,2 , . . . , T ( b )
H i ( p i ) ≤ 0 , ∀ i = 1,2 , . . . , N g ( c ) - - - ( 3 )
其中,p为决策向量,
Figure BDA00003865827400000310
其中pi=[pi,1,pi,2,...,pi,t,...,pi,T]为第i台发电机发出的有功功率向量,pi,t为第i台发电机在第t个调度时段发出的有功功率,C(p)为电力系统总发电成本,Dt为在第t个调度时段的系统负荷预测值,传输断面为一组传输线路的集合,L k,t为第k个传输断面在第t个调度时段的有功潮流下限值,
Figure BDA0000386582740000036
为第k个传输断面在第t个调度时段的有功潮流上限值,Gk,i为第i台发电机对第k个传输断面的输出功率转移分布因子,输出功率转移分布因子计算方法为:
式(3)中的Hi(pi)≤0为物理约束条件,Hi(pi)≤0表示第i台发电机需要满足的物理约束,包括:第i台发电机在各个调度时段发出的有功功率限制约束和有功功率爬坡速率约束,其中的有功功率限制约束如式(4)所示:
- p i , t ≤ - p i , t min p i , t ≤ p i , t min , ∀ t = 1,2 , . . . , T - - - ( 4 )
式(4)中,
Figure BDA0000386582740000038
为第i台发电机在第t个调度时段发出的有功功率下限值,为第i台发电机在第t个调度时段发出的有功功率上限值;
其中的有功功率爬坡速率约束如式(5)所示:
- p i , t + p i , t - 1 - RD i , t - 1 ≤ 0 p i , t - p i , t - 1 - RU i , t - 1 ≤ 0 , ∀ t = 1,2 , . . . , T - - - ( 5 )
式(5)中,RDi,t为第i台发电机在第t个调度时段的最大向下调节量,RUi,t为第i台发电机在第t个调度时段的最大向上调节量;
(4)构造上述式(3)所示的滚动调度模型的拉格朗日对偶问题,如式(6)所示:
max λ , ω ‾ , ω ‾ q ( λ , ω ‾ , ω ‾ )
subjectto.
ω ‾ , ω ‾ ≥ 0 - - - ( 6 )
式(6)中,ω分别为拉格朗日乘子向量,λ=[λ12,...,λT]、ω=[ω 1,1,ω 1,2,...,ω 1,T,...,ω K,1,ω K,2,...,ω K,T]和
Figure BDA0000386582740000045
Figure BDA0000386582740000046
为拉格朗日对偶函数,表达式如式(7)为:
q ( λ , ω ‾ , ω ‾ ) = Σ i = 1 N g q i ( λ , ω ‾ , ω ‾ ) + K ( λ , ω ‾ , ω ‾ ) - - - ( 7 )
式(7)中,
Figure BDA0000386582740000048
为与第i台发电机相关的拉格朗日对偶函数子项,
Figure BDA0000386582740000049
等于如式(8)所示的优化子问题的最优值:
q i ( λ , ω ‾ , ω ‾ ) = min p i { L i ( p i , λ , ω ‾ , ω ‾ ) | p i is subject to H i ( p i ) ≤ 0 } - - - ( 8 )
式(8)中,
Figure BDA00003865827400000411
为与第i台发电机相关的拉格朗日函数子项,表达式如式(9)所示:
L i ( p i , λ , ω ‾ , ω ‾ ) = Σ t = 1 T { a i , t · p i , t 2 + [ b i , t - λ t + Σ k = 1 K G k , i · ( ω ‾ k , t - ω ‾ k , t ) ] } - - - ( 9 )
其中ai,t和bi,t分别为第i台发电机在第t个调度时段的发电成本二次系数和一次系数,Gk,i为第i台发电机对第k个传输断面的输出功率转移分布因子,
式(7)中,
Figure BDA00003865827400000413
的表达式如式(10)所示:
K ( λ , ω ‾ , ω ‾ ) = Σ t = 1 T [ λ t · D t + Σ k = 1 K ( ω ‾ k , t · L ‾ k , t - ω ‾ k , t · L ‾ k , t ) ] - - - ( 10 )
(5)计算上述步骤(2)的滚动调度模型的拉格朗日对偶函数的上界
Figure BDA00003865827400000415
如式(11)所示:
C ‾ = Σ t = 1 T Σ i = 1 N g [ a i , t · ( P i , t max ) 2 + b i , t · P i , t max + c i , t ] - - - ( 11 )
(6)对上述步骤(4)中如式(6)所示的滚动调度模型的拉格朗日对偶问题求解,并进行不可行传输断面安全约束的辨识,具体过程如下:
(6-1)初始化时设置迭代次数m=0,设置迭代收敛误差判据ε,ε的取值为0.001,设置最大迭代次数M,M的取值为1000~10000,设置拉格朗日乘子向量λ,ω的修正步长为α,α的取值为0.8~0.9995,设置一个电力系统传输断面安全约束的可行性标志为f,f=[f1,f2,...,fK],初始化时,f=[0,0,...,0];
(6-2)设置拉格朗日乘子向量λ、ω
Figure BDA0000386582740000053
的初始值,分别记为λ(0)ω (0)
Figure BDA0000386582740000054
λ(0)=0,
Figure BDA0000386582740000055
构造一个近似矩阵B,近似矩阵B的初始值为B(0),B(0)为一个与拉格朗日乘子向量
Figure BDA0000386582740000056
有相同列数的单位矩阵;
(6-3)遍历电力系统的所有发电机,i=1,2,...,Ng,求解步骤(4)的式(8)所示的优化子问题,得到最优解
Figure BDA0000386582740000057
并根据最优解
Figure BDA0000386582740000058
和式(8),计算
Figure BDA0000386582740000059
的值;
(6-4)根据步骤(4)的式(7)计算得到拉格朗日对偶函数
Figure BDA00003865827400000510
的值;
(6-5)利用下式(12)计算拉格朗日对偶函数对拉格朗日乘子向量的次梯度 g λ ( 0 ) = [ g λ 1 ( 0 ) , g λ 2 ( 0 ) , . . . , g λ T ( 0 ) ] , g ω ‾ ( 0 ) = [ g ω ‾ 1,1 ( 0 ) , g ω ‾ 1,2 ( 0 ) , . . . , g ω ‾ 1 , T ( 0 ) , . . . , g ω ‾ K , T ( 0 ) ] g ω ‾ ( 0 ) = [ g ω ‾ 1,1 ( 0 ) , g ω ‾ 1,2 ( 0 ) , . . . , g ω ‾ 1 , T ( 0 ) , . . . , g ω ‾ K , T ( 0 ) ] ,
g λ t ( 0 ) = D t - Σ i = 1 N g p i , t ( 0 ) , ∀ t = 1,2 , . . . , T g ω ‾ k , t ( 0 ) = L ‾ k , t - Σ i = 1 N g G k , i · p i , t ( 0 ) , ∀ k = 1,2 , . . . K , t = 1,2 , . . . , T g ω ‾ k , t ( 0 ) = Σ i = 1 N g G k , i · p i , t ( 0 ) - L ‾ k , t , ∀ k = 1,2 , . . . , K , t = 1,2 , . . . T - - - ( 12 )
(6-6)计算拉格朗日对偶函数对拉格朗日乘子次梯度的无穷范数
Figure BDA00003865827400000514
如式(13)所示:
g ∞ ( m ) = max { | g λ t ( m ) | , | g ω ‾ k , t ( m ) | , | g ω ‾ k , t ( m ) | | ∀ t = 1,2 , . . . , T , k = 1,2 , . . . , K } - - - ( 13 )
(6-7)根据迭代收敛误差判据ε,对上述次梯度的无穷范数
Figure BDA00003865827400000516
进行判断,若
Figure BDA00003865827400000517
则进行步骤(7);若
Figure BDA0000386582740000061
则进行步骤(6-8);
(6-8)根据滚动调度模型的拉格朗日对偶函数的上界
Figure BDA0000386582740000062
对拉格朗日对偶函数值
Figure BDA00003865827400000618
进行判断,若则进行步骤(6-9);若 q ( &lambda; ( m ) , &omega; &OverBar; ( m ) , &omega; &OverBar; ( m ) ) < C &OverBar; , 则进行步骤(6-12);
(6-9)设定一个不可行传输断面安全约束的存在性标志flag=0,并进行不可行传输断面安全约束的辨识,具体步骤如下:
(6-9-1)设置循环次数k=1;
(6-9-2)根据上述步骤(4)的式(7),计算一个中间参数
Figure BDA0000386582740000065
其中Ek(ω (m))、
Figure BDA0000386582740000066
的表达式如式(14)所示:
E k ( &omega; &OverBar; ( m ) ) = [ 0,0 , . . . , 0 , &omega; &OverBar; k , 1 ( m ) , &omega; &OverBar; k , 2 ( m ) , . . . , &omega; &OverBar; k , T ( m ) , 0 , . . . , 0 ] E k ( &omega; &OverBar; ( m ) ) = [ 0,0 , . . . , 0 , &omega; &OverBar; k , 1 ( m ) , &omega; &OverBar; k , 2 ( m ) , . . . , &omega; &OverBar; k , T ( m ) , 0 , . . . , 0 ] - - - ( 14 )
(6-9-3)对上述中间参数q′k进行判断,若
Figure BDA0000386582740000068
则使电力系统传输断面安全约束的可行性标志fk=1,不可行传输断面安全约束的存在性标志flag=1,并执行步骤(6-10);若则执行步骤(6-9-4);
(6-9-4)设置k=k+1,并对k进行判断:若k≤K,则执行步骤(6-9-2);若k>K,则执行步骤(6-10);
(6-10)对不可行传输断面安全约束的存在性标志flag进行判断,若flag=1,则执行步骤(6-11);若flag=0,则执行步骤(6-12);
(6-11)遍历k=1,2,...,K,对fk进行判断:若fk=1,则使第k个传输断面在第t个调度时段的有功潮流下限值L k,t和上限值分别为L k,t=-∞和
Figure BDA00003865827400000611
返回步骤(6-2);若fk=0,则保持L k,t
Figure BDA00003865827400000612
的值不变,返回步骤(6-2);
(6-12)计算拉格朗日乘子向量的修正方向
Figure BDA00003865827400000613
d &omega; &OverBar; ( m ) = [ d &omega; &OverBar; 1,1 ( m ) , d &omega; &OverBar; 1,2 ( m ) , . . . , d &omega; &OverBar; 1 , T ( m ) , . . . , d &omega; &OverBar; K , T ( m ) ] d &omega; &OverBar; ( m ) = [ d &omega; &OverBar; 1,1 ( m ) , d &omega; &OverBar; 1,2 ( m ) , . . . , d &omega; &OverBar; 1 , T ( m ) , . . . , d &omega; &OverBar; K , T ( m ) ] , 如式(15)所示:
[ d &lambda; ( m ) , d &omega; &OverBar; ( m ) , d &omega; &OverBar; ( m ) ] = B ( m ) &CenterDot; [ g &lambda; ( m ) , g &omega; &OverBar; ( m ) , g &omega; &OverBar; ( m ) ] - - - ( 15 )
(6-13)计算拉格朗日乘子向量λ(m+1),ω (m+1),
Figure BDA0000386582740000072
如式(16)所示:
&lambda; t ( m + 1 ) = &lambda; t ( m ) + &alpha; &CenterDot; d &lambda; t ( m ) , &ForAll; t = 1,2 , . . . , T &omega; &OverBar; k , t ( m + 1 ) = max { &omega; &OverBar; k , t ( m ) + &alpha; &CenterDot; d &omega; &OverBar; k , t ( m ) , 0 } , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T &omega; &OverBar; k , t ( m + 1 ) = max { &omega; &OverBar; k , t ( m ) + &alpha; &CenterDot; d &omega; &OverBar; k , t ( m ) , 0 } , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T - - - ( 16 )
(6-14)遍历电力系统中所有发电机,i=1,2,...,Ng,求解步骤(4)的式(8)所示的优化子问题,得到最优解
Figure BDA0000386582740000074
并根据最优解
Figure BDA0000386582740000075
和式(8),计算
Figure BDA0000386582740000076
的值;
(6-15)根据步骤(4)的式(7)计算得到拉格朗日对偶函数
Figure BDA0000386582740000077
的值;
(6-16)利用下式(17)计算拉格朗日对偶函数对拉格朗日乘子向量的次梯度 g &lambda; ( m + 1 ) = [ g &lambda; 1 ( m + 1 ) , g &lambda; 2 ( m + 1 ) , . . . , g &lambda; T ( m + 1 ) ] , g &omega; &OverBar; ( m + 1 ) = [ g &omega; &OverBar; 1,1 ( m + 1 ) , g &omega; &OverBar; 1,2 ( m + 1 ) , . . . , g &omega; &OverBar; 1 , T ( m + 1 ) , . . . , g &omega; &OverBar; K , T ( m + 1 ) ] g &omega; &OverBar; ( m + 1 ) = [ g &omega; &OverBar; 1,1 ( m + 1 ) , g &omega; &OverBar; 1,2 ( m + 1 ) , . . . , g &omega; &OverBar; 1 , T ( m + 1 ) , . . . , g &omega; &OverBar; K , T ( m + 1 ) ] ,
g &lambda; t ( m + 1 ) = D t - &Sigma; i = 1 N g p i , t ( m + 1 ) , &ForAll; t = 1,2 , . . . , T g &omega; &OverBar; k , t ( m + 1 ) = L &OverBar; k , t - &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( m + 1 ) , &ForAll; k = 1,2 , . . . K , t = 1,2 , . . . , T g &omega; &OverBar; k , t ( m + 1 ) = &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( m + 1 ) - L &OverBar; k , t , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . T - - - ( 17 )
(6-17)计算拉格朗日乘子向量的增量向量u(m)和上述次梯度的增量向量v(m),如式(18)所示:
u ( m ) = [ &lambda; ( m + 1 ) - &lambda; ( m ) , &omega; &OverBar; ( m + 1 ) - &omega; &OverBar; ( m ) , &omega; &OverBar; ( m + 1 ) - &omega; &OverBar; ( m ) ] T v ( m ) = [ g &lambda; ( m + 1 ) - g &lambda; ( m ) , g &omega; &OverBar; ( m + 1 ) - g &omega; &OverBar; ( m ) , g &omega; &OverBar; ( m + 1 ) - g &omega; &OverBar; ( m ) ] T - - - ( 18 )
(6-18)利用以下式(19)计算近似矩阵B(m+1)
B ( m + 1 ) = B ( m ) + ( 1 + v ( m ) T B ( m ) v ( m ) T u ( m ) T v ( m ) ) u ( m ) u ( m ) T u ( m ) T v ( m ) - u ( m ) v ( m ) T B ( m ) + B ( m ) v ( m ) u ( m ) T u ( m ) T v ( m ) - - - ( 19 )
(6-19)使m=m+1,若m≤M,则执行步骤(6-6);若m>M,则执行步骤(7);
(7)将电力系统中各台发电机在各个时段发出的有功功率
Figure BDA0000386582740000081
下发到各个发电厂,进行在线滚动调度;
(8)遍历电力系统中所有传输断面k,k=1,2,...,K,根据步骤(6-11)的判定结果,若fk=1,则输出第k个传输断面的安全约束是不可行的,若fk=0,则输出第k个传输断面的安全约束是可行的,输出不可行传输断面安全约束,提示电网调度运行人员。
本发明提出的电力系统在线滚动调度中不可行传输断面约束的辨识方法,其优点是:
1、本发明提出的电力系统在线滚动调度中不可行传输断面约束的辨识方法,可以克服现有的在线滚动调度方法无法辨识和处理不可行传输断面安全约束的缺陷,避免出现因传输断面安全约束不可行导致在线滚动调度方法无法给出在线滚动调度计划的情况,提高在线滚动调度方法的鲁棒性和实用性。
2、本发明方法采用基于弱对偶定理的判据对不可行传输断面安全约束进行辨识,只需很小的计算量,能够准确快速地辨识出不可行传输断面安全约束,缩短了电力系统在线滚动调度的时间。
3、本发明的不可行传输断面安全约束辨识方法,可以方便地集成到已有的基于拉格朗日对偶松弛的在线滚动调度方法中,而不需要对该类方法的框架进行大幅度的调整,因此降低了运行成本。
附图说明
图1是本发明提出的电力系统在线滚动调度中不可行传输断面约束的辨识方法的流程框图。
具体实施方式
本发明提出的电力系统在线滚动调度中不可行传输断面约束的辨识方法,其流程框图如图1所示,包括以下步骤:
(1)设电力系统在线滚动调度时间段长度为Tspan,Tspan的取值范围为1~4小时,并设相邻两个调度时间段的间隔为Tspace,Tspace的取值范围为5~15分钟,滚动调度的调度时段个数T为: T = T span T space - - - ( 1 )
(2)计算电力系统中所有发电机的发电成本的二次系数为:a={ai,t|i=1,2,...,Ng,t=1,2,...,T},发电成本的一次系数为:b={bi,t|i=1,2,...,Ng,t=1,2,...,T},发电成本的常数系数为:c={ci,t|i=1,2,...,Ng,t=1,2,...,T},其中ai,t、bi,t和ci,t分别为第i台发电机在第t个调度时段的发电成本二次系数、一次系数和常数系数,ai,t、bi,t和ci,t的取值分别为对第i台发电机在第t个调度时段的发电成本函数的泰勒展开式中的二次项系数、一次项系数和常数项系数,Ng为电力系统中所有发电机的个数;计算发电机对传输断面的输出功率转移分布因子,具体过程如下:
(2-1)用电力系统中支路电抗的倒数作为支路参数建立节点电纳矩阵B0,并计算节点电抗矩阵X,
(2-2)设置k=1;
(2-3)设置i=1;
(2-4)遍历第k个传输断面的编号为l的传输线路,l∈ILk,ILk为组成第k个传输断面的传输线路的下标集合;记第i台发电机连接的节点编号为ng(i),第l条传输线路的首端点为nbi(l),第l条传输线路的末端点为nbj(l);计算第i台发电机对第l条传输线路的输出功率转移分布因子γl-i,如式(2)所示:
&gamma; l - i = X ng ( i ) , nbi ( l ) - X ng ( i ) , nbj ( l ) x l - - - ( 2 )
其中,Xng(i),nbi(l)表示节点电抗矩阵X中在第ng(i)行第nbi(l)列的元素,Xng(i),nbj(l)表示节点电抗矩阵X中在第ng(i)行第nbj(l)列的元素;xl表示第l条传输断面的电抗;
(2-5)计算第i台发电机对第k个传输断面的输出功率转移分布因子Gk-i,如式(3)所示:
G k - i = &Sigma; l &Element; IL k &gamma; l - i - - - ( 3 )
(2-6)使i=i+1,根据Ng对i进行判断:若i≤Ng,则返回步骤(2-4);若i>Ng,则执行步骤(2-7);
(2-7)使k=k+1,根据K对k进行判断:若k≤K,则返回步骤(2-3);若k>K,则执行步骤(3);
(3)建立电力系统考虑传输断面安全约束的滚动调度模型,如式(3)所示:
min p C ( p ) = &Sigma; t = 1 T &Sigma; i = 1 N g ( a i , t &CenterDot; p i , t 2 + b i , t &CenterDot; p i , t + c i , t )
subjectto.
&Sigma; i = 1 N g p i , t = D t , &ForAll; t = 1,2 , . . . , T ( a )
L &OverBar; k , t &le; &Sigma; i = 1 N g G k , i &CenterDot; p i , t &le; L &OverBar; k , t , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T ( b )
H i ( p i ) &le; 0 , &ForAll; i = 1,2 , . . . , N g ( c ) - - - ( 3 )
其中,p为决策向量,
Figure BDA00003865827400001010
其中pi=[pi,1,pi,2,...,pi,t,...,pi,T]为第i台发电机发出的有功功率向量,pi,t为第i台发电机在第t个调度时段发出的有功功率,C(p)为电力系统总发电成本,Dt为在第t个调度时段的系统负荷预测值,传输断面为一组传输线路的集合,L k,t为第k个传输断面在第t个调度时段的有功潮流下限值,
Figure BDA0000386582740000105
为第k个传输断面在第t个调度时段的有功潮流上限值,Gk,i为第i台发电机对第k个传输断面的输出功率转移分布因子,输出功率转移分布因子计算方法为:
式(3)中的Hi(pi)≤0为物理约束条件,Hi(pi)≤0表示第i台发电机需要满足的物理约束,包括:第i台发电机在各个调度时段发出的有功功率限制约束和有功功率爬坡速率约束,其中的有功功率限制约束如式(4)所示:
- p i , t &le; - p i , t min p i , t &le; p i , t min , &ForAll; t = 1,2 , . . . , T - - - ( 4 )
式(4)中,
Figure BDA0000386582740000107
为第i台发电机在第t个调度时段发出的有功功率下限值,
Figure BDA0000386582740000108
为第i台发电机在第t个调度时段发出的有功功率上限值;
其中的有功功率爬坡速率约束如式(5)所示:
- p i , t + p i , t - 1 - RD i , t - 1 &le; 0 p i , t - p i , t - 1 - RU i , t - 1 &le; 0 , &ForAll; t = 1,2 , . . . , T - - - ( 5 )
式(5)中,RDi,t为第i台发电机在第t个调度时段的最大向下调节量,RUi,t为第i台发电机在第t个调度时段的最大向上调节量;
传输断面是指电网中一组传输线路的集合,传输断面安全约束是指传输断面的有功潮流值不能超过规定的有功潮流限值,即为式(3)模型约束条件中的第二组方程(b);不可行传输断面安全约束是指满足以下条件的传输断面安全约束:当该传输断面安全约束存在于式(3)所示的模型中时,式(3)所示的模型不存在可行解,而当该传输断面安全约束不存在于式(3)所示的模型中时,式(3)所示的模型存在可行解。
(4)构造上述式(3)所示的滚动调度模型的拉格朗日对偶问题,如式(6)所示:
max &lambda; , &omega; &OverBar; , &omega; &OverBar; q ( &lambda; , &omega; &OverBar; , &omega; &OverBar; )
subjectto.
&omega; &OverBar; , &omega; &OverBar; &GreaterEqual; 0 - - - ( 6 )
式(6)中,λ,
Figure BDA0000386582740000113
ω分别为拉格朗日乘子向量,λ=[λ12,...,λT]、ω=[ω 1,1,ω 1,2,...,ω 1,T,...,ω K,1,ω K,2,...,ω K,T]和
Figure BDA0000386582740000114
是式(6)所示优化问题的决策变量;
Figure BDA0000386582740000115
为拉格朗日对偶函数,表达式如式(7)为:
q ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = &Sigma; i = 1 N g q i ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) + K ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) - - - ( 7 )
式(7)中,
Figure BDA0000386582740000117
为与第i台发电机相关的拉格朗日对偶函数子项,
Figure BDA0000386582740000118
等于如式(8)所示的优化子问题的最优值:
q i ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = min p i { L i ( p i , &lambda; , &omega; &OverBar; , &omega; &OverBar; ) | p i is subject to H i ( p i ) &le; 0 } - - - ( 8 )
式(8)中,为与第i台发电机相关的拉格朗日函数子项,表达式如式(9)所示:
L i ( p i , &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = &Sigma; t = 1 T { a i , t &CenterDot; p i , t 2 + [ b i , t - &lambda; t + &Sigma; k = 1 K G k , i &CenterDot; ( &omega; &OverBar; k , t - &omega; &OverBar; k , t ) ] } - - - ( 9 )
其中ai,t和bi,t分别为第i台发电机在第t个调度时段的发电成本二次系数和一次系数,Gk,i为第i台发电机对第k个传输断面的输出功率转移分布因子,
式(7)中,
Figure BDA00003865827400001112
的表达式如式(10)所示:
K ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = &Sigma; t = 1 T [ &lambda; t &CenterDot; D t + &Sigma; k = 1 K ( &omega; &OverBar; k , t &CenterDot; L &OverBar; k , t - &omega; &OverBar; k , t &CenterDot; L &OverBar; k , t ) ] - - - ( 10 )
(5)计算上述步骤(2)的滚动调度模型的拉格朗日对偶函数的上界
Figure BDA00003865827400001114
如式(11)所示:
C &OverBar; = &Sigma; t = 1 T &Sigma; i = 1 N g [ a i , t &CenterDot; ( P i , t max ) 2 + b i , t &CenterDot; P i , t max + c i , t ] - - - ( 11 )
(6)对上述步骤(4)中如式(6)所示的滚动调度模型的拉格朗日对偶问题求解,并进行不可行传输断面安全约束的辨识,具体过程如下:
(6-1)初始化时设置迭代次数m=0,设置迭代收敛误差判据ε,ε的取值为0.001,设置最大迭代次数M,M的取值为1000~10000,设置拉格朗日乘子向量λ,
Figure BDA0000386582740000122
ω的修正步长为α,α的取值为0.8~0.9995,设置一个电力系统传输断面安全约束的可行性标志为f,f=[f1,f2,...,fK],初始化时,f=[0,0,...,0];
(6-2)设置拉格朗日乘子向量λ、ω
Figure BDA0000386582740000123
的初始值,分别记为λ(0)ω (0)
Figure BDA0000386582740000124
λ(0)=0,
Figure BDA0000386582740000125
构造一个近似矩阵B,近似矩阵B的初始值为B(0),B(0)为一个与拉格朗日乘子向量
Figure BDA0000386582740000126
有相同列数的单位矩阵;
(6-3)遍历电力系统的所有发电机,i=1,2,...,Ng,求解步骤(4)的式(8)所示的优化子问题,得到最优解
Figure BDA0000386582740000127
并根据最优解和式(8),计算
Figure BDA0000386582740000129
的值;
(6-4)根据步骤(4)的式(7)计算得到拉格朗日对偶函数的值;
(6-5)利用下式(12)计算拉格朗日对偶函数对拉格朗日乘子向量的次梯度 g &lambda; ( 0 ) = [ g &lambda; 1 ( 0 ) , g &lambda; 2 ( 0 ) , . . . , g &lambda; T ( 0 ) ] , g &omega; &OverBar; ( 0 ) = [ g &omega; &OverBar; 1,1 ( 0 ) , g &omega; &OverBar; 1,2 ( 0 ) , . . . , g &omega; &OverBar; 1 , T ( 0 ) , . . . , g &omega; &OverBar; K , T ( 0 ) ] g &omega; &OverBar; ( 0 ) = [ g &omega; &OverBar; 1,1 ( 0 ) , g &omega; &OverBar; 1,2 ( 0 ) , . . . , g &omega; &OverBar; 1 , T ( 0 ) , . . . , g &omega; &OverBar; K , T ( 0 ) ] ,
g &lambda; t ( 0 ) = D t - &Sigma; i = 1 N g p i , t ( 0 ) , &ForAll; t = 1,2 , . . . , T g &omega; &OverBar; k , t ( 0 ) = L &OverBar; k , t - &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( 0 ) , &ForAll; k = 1,2 , . . . K , t = 1,2 , . . . , T g &omega; &OverBar; k , t ( 0 ) = &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( 0 ) - L &OverBar; k , t , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . T - - - ( 12 )
(6-6)计算拉格朗日对偶函数对拉格朗日乘子次梯度的无穷范数
Figure BDA00003865827400001214
如式(13)所示:
g &infin; ( m ) = max { | g &lambda; t ( m ) | , | g &omega; &OverBar; k , t ( m ) | , | g &omega; &OverBar; k , t ( m ) | | &ForAll; t = 1,2 , . . . , T , k = 1,2 , . . . , K } - - - ( 13 )
(6-7)根据迭代收敛误差判据ε,对上述次梯度的无穷范数
Figure BDA00003865827400001216
进行判断,若
Figure BDA00003865827400001217
则进行步骤(7);若
Figure BDA0000386582740000131
则进行步骤(6-8);
(6-8)根据滚动调度模型的拉格朗日对偶函数的上界
Figure BDA0000386582740000132
对拉格朗日对偶函数值
Figure BDA0000386582740000133
进行判断,若
Figure BDA0000386582740000134
则进行步骤(6-9);若 q ( &lambda; ( m ) , &omega; &OverBar; ( m ) , &omega; &OverBar; ( m ) ) < C &OverBar; , 则进行步骤(6-12);
(6-9)设定一个不可行传输断面安全约束的存在性标志flag=0,并进行不可行传输断面安全约束的辨识,具体步骤如下:
(6-9-1)设置循环次数k=1;
(6-9-2)根据上述步骤(4)的式(7),计算一个中间参数
Figure BDA0000386582740000136
其中Ek(ω (m))、
Figure BDA0000386582740000137
的表达式如式(14)所示:
E k ( &omega; &OverBar; ( m ) ) = [ 0,0 , . . . , 0 , &omega; &OverBar; k , 1 ( m ) , &omega; &OverBar; k , 2 ( m ) , . . . , &omega; &OverBar; k , T ( m ) , 0 , . . . , 0 ] E k ( &omega; &OverBar; ( m ) ) = [ 0,0 , . . . , 0 , &omega; &OverBar; k , 1 ( m ) , &omega; &OverBar; k , 2 ( m ) , . . . , &omega; &OverBar; k , T ( m ) , 0 , . . . , 0 ] - - - ( 14 )
(6-9-3)对上述中间参数q′k进行判断,若则使电力系统传输断面安全约束的可行性标志fk=1,不可行传输断面安全约束的存在性标志flag=1,并执行步骤(6-10);若则执行步骤(6-9-4);
(6-9-4)设置k=k+1,并对k进行判断:若k≤K,则执行步骤(6-9-2);若k>K,则执行步骤(6-10);
(6-10)对不可行传输断面安全约束的存在性标志flag进行判断,若flag=1,则执行步骤(6-11);若flag=0,则执行步骤(6-12);
(6-11)遍历k=1,2,...,K,对fk进行判断:若fk=1,则使第k个传输断面在第t个调度时段的有功潮流下限值L k,t和上限值
Figure BDA00003865827400001318
分别为L k,t=-∞和
Figure BDA00003865827400001311
返回步骤(6-2);若fk=0,则保持L k,t
Figure BDA00003865827400001312
的值不变,返回步骤(6-2);
(6-12)计算拉格朗日乘子向量的修正方向
Figure BDA00003865827400001315
d &omega; &OverBar; ( m ) = [ d &omega; &OverBar; 1,1 ( m ) , d &omega; &OverBar; 1,2 ( m ) , . . . , d &omega; &OverBar; 1 , T ( m ) , . . . , d &omega; &OverBar; K , T ( m ) ] d &omega; &OverBar; ( m ) = [ d &omega; &OverBar; 1,1 ( m ) , d &omega; &OverBar; 1,2 ( m ) , . . . , d &omega; &OverBar; 1 , T ( m ) , . . . , d &omega; &OverBar; K , T ( m ) ] , 如式(15)所示:
[ d &lambda; ( m ) , d &omega; &OverBar; ( m ) , d &omega; &OverBar; ( m ) ] = B ( m ) &CenterDot; [ g &lambda; ( m ) , g &omega; &OverBar; ( m ) , g &omega; &OverBar; ( m ) ] - - - ( 15 )
(6-13)计算拉格朗日乘子向量λ(m+1),ω (m+1),
Figure BDA0000386582740000142
如式(16)所示:
&lambda; t ( m + 1 ) = &lambda; t ( m ) + &alpha; &CenterDot; d &lambda; t ( m ) , &ForAll; t = 1,2 , . . . , T &omega; &OverBar; k , t ( m + 1 ) = max { &omega; &OverBar; k , t ( m ) + &alpha; &CenterDot; d &omega; &OverBar; k , t ( m ) , 0 } , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T &omega; &OverBar; k , t ( m + 1 ) = max { &omega; &OverBar; k , t ( m ) + &alpha; &CenterDot; d &omega; &OverBar; k , t ( m ) , 0 } , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T - - - ( 16 )
(6-14)遍历电力系统中所有发电机,i=1,2,...,Ng,求解步骤(4)的式(8)所示的优化子问题,得到最优解
Figure BDA0000386582740000144
并根据最优解
Figure BDA0000386582740000145
和式(8),计算
Figure BDA0000386582740000146
的值;
(6-15)根据步骤(4)的式(7)计算得到拉格朗日对偶函数
Figure BDA0000386582740000147
的值;
(6-16)利用下式(17)计算拉格朗日对偶函数对拉格朗日乘子向量的次梯度 g &lambda; ( m + 1 ) = [ g &lambda; 1 ( m + 1 ) , g &lambda; 2 ( m + 1 ) , . . . , g &lambda; T ( m + 1 ) ] , g &omega; &OverBar; ( m + 1 ) = [ g &omega; &OverBar; 1,1 ( m + 1 ) , g &omega; &OverBar; 1,2 ( m + 1 ) , . . . , g &omega; &OverBar; 1 , T ( m + 1 ) , . . . , g &omega; &OverBar; K , T ( m + 1 ) ] g &omega; &OverBar; ( m + 1 ) = [ g &omega; &OverBar; 1,1 ( m + 1 ) , g &omega; &OverBar; 1,2 ( m + 1 ) , . . . , g &omega; &OverBar; 1 , T ( m + 1 ) , . . . , g &omega; &OverBar; K , T ( m + 1 ) ] ,
g &lambda; t ( m + 1 ) = D t - &Sigma; i = 1 N g p i , t ( m + 1 ) , &ForAll; t = 1,2 , . . . , T g &omega; &OverBar; k , t ( m + 1 ) = L &OverBar; k , t - &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( m + 1 ) , &ForAll; k = 1,2 , . . . K , t = 1,2 , . . . , T g &omega; &OverBar; k , t ( m + 1 ) = &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( m + 1 ) - L &OverBar; k , t , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . T - - - ( 17 )
(6-17)计算拉格朗日乘子向量的增量向量u(m)和上述次梯度的增量向量v(m),如式(18)所示:
u ( m ) = [ &lambda; ( m + 1 ) - &lambda; ( m ) , &omega; &OverBar; ( m + 1 ) - &omega; &OverBar; ( m ) , &omega; &OverBar; ( m + 1 ) - &omega; &OverBar; ( m ) ] T v ( m ) = [ g &lambda; ( m + 1 ) - g &lambda; ( m ) , g &omega; &OverBar; ( m + 1 ) - g &omega; &OverBar; ( m ) , g &omega; &OverBar; ( m + 1 ) - g &omega; &OverBar; ( m ) ] T - - - ( 18 )
(6-18)利用以下式(19)计算近似矩阵B(m+1)
B ( m + 1 ) = B ( m ) + ( 1 + v ( m ) T B ( m ) v ( m ) T u ( m ) T v ( m ) ) u ( m ) u ( m ) T u ( m ) T v ( m ) - u ( m ) v ( m ) T B ( m ) + B ( m ) v ( m ) u ( m ) T u ( m ) T v ( m ) - - - ( 19 )
(6-19)使m=m+1,若m≤M,则执行步骤(6-6);若m>M,则执行步骤(7);
(7)将电力系统中各台发电机在各个时段发出的有功功率
Figure BDA0000386582740000151
下发到各个发电厂,进行在线滚动调度;
(8)遍历电力系统中所有传输断面k,k=1,2,...,K,根据步骤(6-11)的判定结果,若fk=1,则输出第k个传输断面的安全约束是不可行的,若fk=0,则输出第k个传输断面的安全约束是可行的,输出不可行传输断面安全约束,提示电网调度运行人员。

Claims (1)

1.一种电力系统在线滚动调度中不可行传输断面约束的辨识方法,其特征在于,该方法包括以下步骤:
(1)设电力系统在线滚动调度时间段长度为Tspan,Tspan的取值范围为1~4小时,并设相邻两个调度时间段的间隔为Tspace,Tspace的取值范围为5~15分钟,滚动调度的调度时段个数T为: T = T span T space - - - ( 1 )
(2)计算电力系统中所有发电机的发电成本的二次系数为:a={ai,t|i=1,2,...,Ng,t=1,2,...,T},发电成本的一次系数为:b={bi,t|i=1,2,...,Ng,t=1,2,...,T},发电成本的常数系数为:c={ci,t|i=1,2,...,Ng,t=1,2,...,T},其中ai,t、bi,t和ci,t分别为第i台发电机在第t个调度时段的发电成本二次系数、一次系数和常数系数,ai,t、bi,t和ci,t的取值分别为对第i台发电机在第t个调度时段的发电成本函数的泰勒展开式中的二次项系数、一次项系数和常数项系数,Ng为电力系统中所有发电机的个数;计算发电机对传输断面的输出功率转移分布因子,具体过程如下:
(2-1)用电力系统中支路电抗的倒数作为支路参数建立节点电纳矩阵B0,并计算节点电抗矩阵X,
Figure FDA0000386582730000012
(2-2)设置k=1;
(2-3)设置i=1;
(2-4)遍历第k个传输断面的编号为l的传输线路,l∈ILk,ILk为组成第k个传输断面的传输线路的下标集合;记第i台发电机连接的节点编号为ng(i),第l条传输线路的首端点为nbi(l),第l条传输线路的末端点为nbj(l);计算第i台发电机对第l条传输线路的输出功率转移分布因子γl-i,如式(2)所示:
&gamma; l - i = X ng ( i ) , nbi ( l ) - X ng ( i ) , nbj ( l ) x l - - - ( 2 )
其中,Xng(i),nbi(l)表示节点电抗矩阵X中在第ng(i)行第nbi(l)列的元素,Xng(i),nbj(l)表示节点电抗矩阵X中在第ng(i)行第nbj(l)列的元素;xl表示第l条传输断面的电抗;
(2-5)计算第i台发电机对第k个传输断面的输出功率转移分布因子Gk-i,如式(3)所示:
G k - i = &Sigma; l &Element; IL k &gamma; l - i - - - ( 3 )
(2-6)使i=i+1,根据Ng对i进行判断:若i≤Ng,则返回步骤(2-4);若i>Ng,则执行步骤(2-7);
(2-7)使k=k+1,根据K对k进行判断:若k≤K,则返回步骤(2-3);若k>K,则执行步骤(3);
(3)建立电力系统考虑传输断面安全约束的滚动调度模型,如式(3)所示:
min p C ( p ) = &Sigma; t = 1 T &Sigma; i = 1 N g ( a i , t &CenterDot; p i , t 2 + b i , t &CenterDot; p i , t + c i , t )
subjectto.
&Sigma; i = 1 N g p i , t = D t , &ForAll; t = 1,2 , . . . , T ( a )
L &OverBar; k , t &le; &Sigma; i = 1 N g G k , i &CenterDot; p i , t &le; L &OverBar; k , t , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T ( b )
H i ( p i ) &le; 0 , &ForAll; i = 1,2 , . . . , N g ( c ) - - - ( 3 )
其中,p为决策向量,
Figure FDA0000386582730000028
其中pi=[pi,1,pi,2,...,pi,t,...,pi,T]为第i台发电机发出的有功功率向量,pi,t为第i台发电机在第t个调度时段发出的有功功率,C(p)为电力系统总发电成本,Dt为在第t个调度时段的系统负荷预测值,传输断面为一组传输线路的集合,L k,t为第k个传输断面在第t个调度时段的有功潮流下限值,
Figure FDA0000386582730000027
为第k个传输断面在第t个调度时段的有功潮流上限值,Gk,i为第i台发电机对第k个传输断面的输出功率转移分布因子,输出功率转移分布因子计算方法为:
式(3)中的Hi(pi)≤0为物理约束条件,Hi(pi)≤0表示第i台发电机需要满足的物理约束,包括:第i台发电机在各个调度时段发出的有功功率限制约束和有功功率爬坡速率约束,其中的有功功率限制约束如式(4)所示:
- p i , t &le; - p i , t min p i , t &le; p i , t min , &ForAll; t = 1,2 , . . . , T - - - ( 4 )
式(4)中,为第i台发电机在第t个调度时段发出的有功功率下限值,
Figure FDA0000386582730000033
为第i台发电机在第t个调度时段发出的有功功率上限值;
其中的有功功率爬坡速率约束如式(5)所示:
- p i , t + p i , t - 1 - RD i , t - 1 &le; 0 p i , t - p i , t - 1 - RU i , t - 1 &le; 0 , &ForAll; t = 1,2 , . . . , T - - - ( 5 )
式(5)中,RDi,t为第i台发电机在第t个调度时段的最大向下调节量,RUi,t为第i台发电机在第t个调度时段的最大向上调节量;
(4)构造上述式(3)所示的滚动调度模型的拉格朗日对偶问题,如式(6)所示:
max &lambda; , &omega; &OverBar; , &omega; &OverBar; q ( &lambda; , &omega; &OverBar; , &omega; &OverBar; )
subjectto.
&omega; &OverBar; , &omega; &OverBar; &GreaterEqual; 0 - - - ( 6 )
式(6)中,λ,
Figure FDA0000386582730000037
ω分别为拉格朗日乘子向量,λ=[λ12,...,λT]、ω=[ω 1,1,ω 1,2,...,ω 1,T,...,ω K,1,ω K,2,...,ω K,T]和
Figure FDA0000386582730000038
Figure FDA0000386582730000039
为拉格朗日对偶函数,表达式如式(7)为:
q ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = &Sigma; i = 1 N g q i ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) + K ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) - - - ( 7 )
式(7)中,
Figure FDA00003865827300000311
为与第i台发电机相关的拉格朗日对偶函数子项,
Figure FDA00003865827300000312
等于如式(8)所示的优化子问题的最优值:
q i ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = min p i { L i ( p i , &lambda; , &omega; &OverBar; , &omega; &OverBar; ) | p i is subject to H i ( p i ) &le; 0 } - - - ( 8 )
式(8)中,
Figure FDA00003865827300000314
为与第i台发电机相关的拉格朗日函数子项,表达式如式(9)所示:
L i ( p i , &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = &Sigma; t = 1 T { a i , t &CenterDot; p i , t 2 + [ b i , t - &lambda; t + &Sigma; k = 1 K G k , i &CenterDot; ( &omega; &OverBar; k , t - &omega; &OverBar; k , t ) ] } - - - ( 9 )
其中ai,t和bi,t分别为第i台发电机在第t个调度时段的发电成本二次系数和一次系数,Gk,i为第i台发电机对第k个传输断面的输出功率转移分布因子,
式(7)中,
Figure FDA0000386582730000041
的表达式如式(10)所示:
K ( &lambda; , &omega; &OverBar; , &omega; &OverBar; ) = &Sigma; t = 1 T [ &lambda; t &CenterDot; D t + &Sigma; k = 1 K ( &omega; &OverBar; k , t &CenterDot; L &OverBar; k , t - &omega; &OverBar; k , t &CenterDot; L &OverBar; k , t ) ] - - - ( 10 )
(5)计算上述步骤(2)的滚动调度模型的拉格朗日对偶函数的上界如式(11)所示:
C &OverBar; = &Sigma; t = 1 T &Sigma; i = 1 N g [ a i , t &CenterDot; ( P i , t max ) 2 + b i , t &CenterDot; P i , t max + c i , t ] - - - ( 11 )
(6)对上述步骤(4)中如式(6)所示的滚动调度模型的拉格朗日对偶问题求解,并进行不可行传输断面安全约束的辨识,具体过程如下:
(6-1)初始化时设置迭代次数m=0,设置迭代收敛误差判据ε,ε的取值为0.001,设置最大迭代次数M,M的取值为1000~10000,设置拉格朗日乘子向量λ,
Figure FDA0000386582730000045
ω的修正步长为α,α的取值为0.8~0.9995,设置一个电力系统传输断面安全约束的可行性标志为f,f=[f1,f2,...,fK],初始化时,f=[0,0,...,0];
(6-2)设置拉格朗日乘子向量λ、ω的初始值,分别记为λ(0)ω (0)
Figure FDA0000386582730000047
λ(0)=0,
Figure FDA0000386582730000048
构造一个近似矩阵B,近似矩阵B的初始值为B(0),B(0)为一个与拉格朗日乘子向量有相同列数的单位矩阵;
(6-3)遍历电力系统的所有发电机,i=1,2,...,Ng,求解步骤(4)的式(8)所示的优化子问题,得到最优解并根据最优解
Figure FDA00003865827300000411
和式(8),计算
Figure FDA00003865827300000412
的值;
(6-4)根据步骤(4)的式(7)计算得到拉格朗日对偶函数的值;
(6-5)利用下式(12)计算拉格朗日对偶函数对拉格朗日乘子向量的次梯度 g &lambda; ( 0 ) = [ g &lambda; 1 ( 0 ) , g &lambda; 2 ( 0 ) , . . . , g &lambda; T ( 0 ) ] , g &omega; &OverBar; ( 0 ) = [ g &omega; &OverBar; 1,1 ( 0 ) , g &omega; &OverBar; 1,2 ( 0 ) , . . . , g &omega; &OverBar; 1 , T ( 0 ) , . . . , g &omega; &OverBar; K , T ( 0 ) ] g &omega; &OverBar; ( 0 ) = [ g &omega; &OverBar; 1,1 ( 0 ) , g &omega; &OverBar; 1,2 ( 0 ) , . . . , g &omega; &OverBar; 1 , T ( 0 ) , . . . , g &omega; &OverBar; K , T ( 0 ) ] ,
g &lambda; t ( 0 ) = D t - &Sigma; i = 1 N g p i , t ( 0 ) , &ForAll; t = 1,2 , . . . , T g &omega; &OverBar; k , t ( 0 ) = L &OverBar; k , t - &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( 0 ) , &ForAll; k = 1,2 , . . . K , t = 1,2 , . . . , T g &omega; &OverBar; k , t ( 0 ) = &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( 0 ) - L &OverBar; k , t , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . T - - - ( 12 )
(6-6)计算拉格朗日对偶函数对拉格朗日乘子次梯度的无穷范数
Figure FDA0000386582730000051
如式(13)所示:
g &infin; ( m ) = max { | g &lambda; t ( m ) | , | g &omega; &OverBar; k , t ( m ) | , | g &omega; &OverBar; k , t ( m ) | | &ForAll; t = 1,2 , . . . , T , k = 1,2 , . . . , K } - - - ( 13 )
(6-7)根据迭代收敛误差判据ε,对上述次梯度的无穷范数
Figure FDA0000386582730000053
进行判断,若
Figure FDA0000386582730000054
则进行步骤(7);若
Figure FDA0000386582730000055
则进行步骤(6-8);
(6-8)根据滚动调度模型的拉格朗日对偶函数的上界
Figure FDA0000386582730000056
对拉格朗日对偶函数值
Figure FDA0000386582730000057
进行判断,若
Figure FDA0000386582730000058
则进行步骤(6-9);若 q ( &lambda; ( m ) , &omega; &OverBar; ( m ) , &omega; &OverBar; ( m ) ) < C &OverBar; , 则进行步骤(6-12);
(6-9)设定一个不可行传输断面安全约束的存在性标志flag=0,并进行不可行传输断面安全约束的辨识,具体步骤如下:
(6-9-1)设置循环次数k=1;
(6-9-2)根据上述步骤(4)的式(7),计算一个中间参数
Figure FDA00003865827300000510
其中Ek(ω (m))、
Figure FDA00003865827300000511
的表达式如式(14)所示:
E k ( &omega; &OverBar; ( m ) ) = [ 0,0 , . . . , 0 , &omega; &OverBar; k , 1 ( m ) , &omega; &OverBar; k , 2 ( m ) , . . . , &omega; &OverBar; k , T ( m ) , 0 , . . . , 0 ] E k ( &omega; &OverBar; ( m ) ) = [ 0,0 , . . . , 0 , &omega; &OverBar; k , 1 ( m ) , &omega; &OverBar; k , 2 ( m ) , . . . , &omega; &OverBar; k , T ( m ) , 0 , . . . , 0 ] - - - ( 14 )
(6-9-3)对上述中间参数q′k进行判断,若
Figure FDA00003865827300000514
则使电力系统传输断面安全约束的可行性标志fk=1,不可行传输断面安全约束的存在性标志flag=1,并执行步骤(6-10);若
Figure FDA00003865827300000515
则执行步骤(6-9-4);
(6-9-4)设置k=k+1,并对k进行判断:若k≤K,则执行步骤(6-9-2);若k>K,则执行步骤(6-10);
(6-10)对不可行传输断面安全约束的存在性标志flag进行判断,若flag=1,则执行步骤(6-11);若flag=0,则执行步骤(6-12);
(6-11)遍历k=1,2,...,K,对fk进行判断:若fk=1,则使第k个传输断面在第t个调度时段的有功潮流下限值L k,t和上限值
Figure FDA0000386582730000061
分别为L k,t=-∞和
Figure FDA0000386582730000062
返回步骤(6-2);若fk=0,则保持L k,t的值不变,返回步骤(6-2);
(6-12)计算拉格朗日乘子向量的修正方向
Figure FDA0000386582730000064
Figure FDA0000386582730000065
Figure FDA0000386582730000066
d &omega; &OverBar; ( m ) = [ d &omega; &OverBar; 1,1 ( m ) , d &omega; &OverBar; 1,2 ( m ) , . . . , d &omega; &OverBar; 1 , T ( m ) , . . . , d &omega; &OverBar; K , T ( m ) ] d &omega; &OverBar; ( m ) = [ d &omega; &OverBar; 1,1 ( m ) , d &omega; &OverBar; 1,2 ( m ) , . . . , d &omega; &OverBar; 1 , T ( m ) , . . . , d &omega; &OverBar; K , T ( m ) ] , 如式(15)所示:
[ d &lambda; ( m ) , d &omega; &OverBar; ( m ) , d &omega; &OverBar; ( m ) ] = B ( m ) &CenterDot; [ g &lambda; ( m ) , g &omega; &OverBar; ( m ) , g &omega; &OverBar; ( m ) ] - - - ( 15 )
(6-13)计算拉格朗日乘子向量λ(m+1),ω (m+1),
Figure FDA00003865827300000610
如式(16)所示:
&lambda; t ( m + 1 ) = &lambda; t ( m ) + &alpha; &CenterDot; d &lambda; t ( m ) , &ForAll; t = 1,2 , . . . , T &omega; &OverBar; k , t ( m + 1 ) = max { &omega; &OverBar; k , t ( m ) + &alpha; &CenterDot; d &omega; &OverBar; k , t ( m ) , 0 } , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T &omega; &OverBar; k , t ( m + 1 ) = max { &omega; &OverBar; k , t ( m ) + &alpha; &CenterDot; d &omega; &OverBar; k , t ( m ) , 0 } , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . , T - - - ( 16 )
(6-14)遍历电力系统中所有发电机,i=1,2,...,Ng,求解步骤(4)的式(8)所示的优化子问题,得到最优解
Figure FDA00003865827300000612
并根据最优解
Figure FDA00003865827300000613
和式(8),计算
Figure FDA00003865827300000614
的值;
(6-15)根据步骤(4)的式(7)计算得到拉格朗日对偶函数的值;
(6-16)利用下式(17)计算拉格朗日对偶函数对拉格朗日乘子向量的次梯度 g &lambda; ( m + 1 ) = [ g &lambda; 1 ( m + 1 ) , g &lambda; 2 ( m + 1 ) , . . . , g &lambda; T ( m + 1 ) ] , g &omega; &OverBar; ( m + 1 ) = [ g &omega; &OverBar; 1,1 ( m + 1 ) , g &omega; &OverBar; 1,2 ( m + 1 ) , . . . , g &omega; &OverBar; 1 , T ( m + 1 ) , . . . , g &omega; &OverBar; K , T ( m + 1 ) ] g &omega; &OverBar; ( m + 1 ) = [ g &omega; &OverBar; 1,1 ( m + 1 ) , g &omega; &OverBar; 1,2 ( m + 1 ) , . . . , g &omega; &OverBar; 1 , T ( m + 1 ) , . . . , g &omega; &OverBar; K , T ( m + 1 ) ] ,
g &lambda; t ( m + 1 ) = D t - &Sigma; i = 1 N g p i , t ( m + 1 ) , &ForAll; t = 1,2 , . . . , T g &omega; &OverBar; k , t ( m + 1 ) = L &OverBar; k , t - &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( m + 1 ) , &ForAll; k = 1,2 , . . . K , t = 1,2 , . . . , T g &omega; &OverBar; k , t ( m + 1 ) = &Sigma; i = 1 N g G k , i &CenterDot; p i , t ( m + 1 ) - L &OverBar; k , t , &ForAll; k = 1,2 , . . . , K , t = 1,2 , . . . T - - - ( 17 )
(6-17)计算拉格朗日乘子向量的增量向量u(m)和上述次梯度的增量向量v(m),如式(18)所示:
u ( m ) = [ &lambda; ( m + 1 ) - &lambda; ( m ) , &omega; &OverBar; ( m + 1 ) - &omega; &OverBar; ( m ) , &omega; &OverBar; ( m + 1 ) - &omega; &OverBar; ( m ) ] T v ( m ) = [ g &lambda; ( m + 1 ) - g &lambda; ( m ) , g &omega; &OverBar; ( m + 1 ) - g &omega; &OverBar; ( m ) , g &omega; &OverBar; ( m + 1 ) - g &omega; &OverBar; ( m ) ] T - - - ( 18 )
(6-18)利用以下式(19)计算近似矩阵B(m+1)
B ( m + 1 ) = B ( m ) + ( 1 + v ( m ) T B ( m ) v ( m ) T u ( m ) T v ( m ) ) u ( m ) u ( m ) T u ( m ) T v ( m ) - u ( m ) v ( m ) T B ( m ) + B ( m ) v ( m ) u ( m ) T u ( m ) T v ( m ) - - - ( 19 )
(6-19)使m=m+1,若m≤M,则执行步骤(6-6);若m>M,则执行步骤(7);
(7)将电力系统中各台发电机在各个时段发出的有功功率下发到各个发电厂,进行在线滚动调度;
(8)遍历电力系统中所有传输断面k,k=1,2,...,K,根据步骤(6-11)的判定结果,若fk=1,则输出第k个传输断面的安全约束是不可行的,若fk=0,则输出第k个传输断面的安全约束是可行的,输出不可行传输断面安全约束,提示电网调度运行人员。
CN201310439186.6A 2013-09-24 2013-09-24 电力系统在线滚动调度中不可行传输断面约束的辨识方法 Active CN103514374B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310439186.6A CN103514374B (zh) 2013-09-24 2013-09-24 电力系统在线滚动调度中不可行传输断面约束的辨识方法
US14/143,474 US9721313B2 (en) 2013-09-24 2013-12-30 Method and device for identifying feasibility of transmission interface constraint in online rolling dispatching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310439186.6A CN103514374B (zh) 2013-09-24 2013-09-24 电力系统在线滚动调度中不可行传输断面约束的辨识方法

Publications (2)

Publication Number Publication Date
CN103514374A true CN103514374A (zh) 2014-01-15
CN103514374B CN103514374B (zh) 2016-08-10

Family

ID=49897083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310439186.6A Active CN103514374B (zh) 2013-09-24 2013-09-24 电力系统在线滚动调度中不可行传输断面约束的辨识方法

Country Status (2)

Country Link
US (1) US9721313B2 (zh)
CN (1) CN103514374B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037759A (zh) * 2014-06-12 2014-09-10 山东大学 电力系统注入转移分布因子的抗差最小二乘估计方法
CN105335791A (zh) * 2014-08-07 2016-02-17 中国南方电网有限责任公司 一种交直流大电网协调优化自动控制方法及系统
CN106940869A (zh) * 2017-03-10 2017-07-11 国网山东省电力公司经济技术研究院 考虑负荷不确定性的参考电网鲁棒优化评价方法
CN108876004A (zh) * 2018-05-04 2018-11-23 云南电网有限责任公司 一种基于块坐标下降法的微网群分层分布式经济调度方法
CN110556827A (zh) * 2019-09-17 2019-12-10 国网河南省电力公司 一种电网稳定限额自适应及动态监控方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11537323B2 (en) * 2020-01-07 2022-12-27 SK Hynix Inc. Processing-in-memory (PIM) device
CN113783236B (zh) * 2021-09-03 2023-10-20 南方电网科学研究院有限责任公司 高比例新能源电力系统实时优化调度方法、装置及介质
CN113839845B (zh) * 2021-09-18 2023-05-19 南方电网科学研究院有限责任公司 一种保密分布式优化调度方法、系统、计算机设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158417A1 (en) * 2002-11-06 2004-08-12 Bonet Antonio Trias System and method for monitoring and managing electrical power transmission and distribution networks
US7974742B2 (en) * 2003-06-13 2011-07-05 Enis Ben M Method of coordinating and stabilizing the delivery of wind generated energy
CN102170170A (zh) * 2011-04-02 2011-08-31 清华大学 消纳风电接入的大电网调度滚动计划方法
CN102931689A (zh) * 2012-10-30 2013-02-13 清华大学 考虑发电调节次数约束的在线滚动调度方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343360B1 (en) * 1998-05-13 2008-03-11 Siemens Power Transmission & Distribution, Inc. Exchange, scheduling and control system for electrical power
US7085660B2 (en) * 2003-05-13 2006-08-01 Siemens Power Transmission & Distribution, Inc. Energy management system in a power and distribution system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158417A1 (en) * 2002-11-06 2004-08-12 Bonet Antonio Trias System and method for monitoring and managing electrical power transmission and distribution networks
US7974742B2 (en) * 2003-06-13 2011-07-05 Enis Ben M Method of coordinating and stabilizing the delivery of wind generated energy
CN102170170A (zh) * 2011-04-02 2011-08-31 清华大学 消纳风电接入的大电网调度滚动计划方法
CN102931689A (zh) * 2012-10-30 2013-02-13 清华大学 考虑发电调节次数约束的在线滚动调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭烨,等.: "拉格朗日乘子法电力系统网络参数错误辨识研究", 《中国电机工程学报》, vol. 33, no. 7, 5 March 2013 (2013-03-05) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037759A (zh) * 2014-06-12 2014-09-10 山东大学 电力系统注入转移分布因子的抗差最小二乘估计方法
CN104037759B (zh) * 2014-06-12 2016-01-20 山东大学 电力系统注入转移分布因子的抗差最小二乘估计方法
CN105335791A (zh) * 2014-08-07 2016-02-17 中国南方电网有限责任公司 一种交直流大电网协调优化自动控制方法及系统
CN106940869A (zh) * 2017-03-10 2017-07-11 国网山东省电力公司经济技术研究院 考虑负荷不确定性的参考电网鲁棒优化评价方法
CN108876004A (zh) * 2018-05-04 2018-11-23 云南电网有限责任公司 一种基于块坐标下降法的微网群分层分布式经济调度方法
CN110556827A (zh) * 2019-09-17 2019-12-10 国网河南省电力公司 一种电网稳定限额自适应及动态监控方法

Also Published As

Publication number Publication date
US9721313B2 (en) 2017-08-01
US20150088470A1 (en) 2015-03-26
CN103514374B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN103514374A (zh) 电力系统在线滚动调度中不可行传输断面约束的辨识方法
CN105226643B (zh) 安全约束下电力系统运行模拟模型快速生成与求解方法
Xu et al. Robust dispatch of high wind power-penetrated power systems against transient instability
CN105846456B (zh) 一种交直流互联电网风、火协调动态经济调度优化方法
CN107944757A (zh) 电力互联系统可再生能源消纳能力评估分析方法
CN107591844A (zh) 考虑节点注入功率不确定性的主动配电网鲁棒重构方法
Shui et al. A data-driven distributionally robust coordinated dispatch model for integrated power and heating systems considering wind power uncertainties
CN104993522A (zh) 一种基于mpc的主动配电网多时间尺度协调优化调度方法
CN106327091A (zh) 基于鲁棒联络线计划的多区域异步协调动态经济调度方法
CN108695857B (zh) 风电场自动电压控制方法、装置及系统
CN104779611A (zh) 基于集中式和分布式双层优化策略的微电网经济调度方法
CN104716670B (zh) 光伏并网下基于网络安全约束的机组组合方法
CN103218690A (zh) 基于碳排放流的主动配电网用户用电碳排放量的测量方法
CN105244869A (zh) 一种含微网的配电网动态随机调度控制方法
Jannati et al. A survey on energy storage resources configurations in order to propose an optimum configuration for smoothing fluctuations of future large wind power plants
CN104779638A (zh) 一种风电场内机组优化调度方法及调度装置
CN103473393B (zh) 一种考虑随机概率的输电裕度控制模型建模方法
CN102545258A (zh) 一种大规模风电并网的电网优化规划方法
CN102280878A (zh) 基于sced的风电接纳能力优化评估方法
CN107317361A (zh) 一种考虑区域自治能力的主动配电网全局优化调度方法
CN104993478A (zh) 一种适用于用户侧微电网的离网运行控制方法
CN105305423A (zh) 一种考虑间歇性能源不确定性的最优误差边界的确定方法
CN103296701A (zh) 一种风电场有功功率控制方法
CN104377701B (zh) 一种根据电压日波动率实时更新母线电压控制限值的方法
CN103259289A (zh) 基于最优潮流含dfig风电系统可用传输容量的获得方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant