CN103501022A - 一种基于荷电状态的混合储能系统功率分配方法 - Google Patents

一种基于荷电状态的混合储能系统功率分配方法 Download PDF

Info

Publication number
CN103501022A
CN103501022A CN201310433618.2A CN201310433618A CN103501022A CN 103501022 A CN103501022 A CN 103501022A CN 201310433618 A CN201310433618 A CN 201310433618A CN 103501022 A CN103501022 A CN 103501022A
Authority
CN
China
Prior art keywords
soc
energy storage
storage device
charge
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310433618.2A
Other languages
English (en)
Other versions
CN103501022B (zh
Inventor
孙艺敏
肖曦
丁若星
田培根
黄秀琼
王奎
杨艺云
张阁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Guangxi Power Grid Co Ltd
Original Assignee
Tsinghua University
Guangxi Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Guangxi Power Grid Co Ltd filed Critical Tsinghua University
Priority to CN201310433618.2A priority Critical patent/CN103501022B/zh
Publication of CN103501022A publication Critical patent/CN103501022A/zh
Application granted granted Critical
Publication of CN103501022B publication Critical patent/CN103501022B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种基于荷电状态的混合储能系统功率分配方法,包括以下步骤:将循环寿命长、可大电流深度充放电的储能装置设置为第一储能装置D1,将循环寿命相对较短、大电流深度充放电影响循环寿命的储能装置设置为第二储能装置D2,第二储能装置D2根据第一储能装置D1的荷电状态为其提供补偿功率,以使其荷电状态处于合理水平。该方法利用第一储能装置D1的容量,将变化剧烈的功率波动转化成变化较平缓的荷电状态波动,从而降低第二储能装置D2功率指令波动的剧烈程度,达到延长其寿命的目的。

Description

一种基于荷电状态的混合储能系统功率分配方法
技术领域
本发明涉及一种基于荷电状态的混合储能系统功率分配方法,属于储能系统控制技术领域,是一种基于两种不同类型储能装置荷电状态的混合储能系统功率分配方法。
背景技术
以可再生能源为主要发电形式的微网中,储能系统需根据指令吸收或发出功率,在微网并网运行时起到平抑可再生能源功率波动的作用,微网离网运行时保证微网内的实时功率平衡。
微网中常用的储能形式有飞轮储能、超导储能、超级电容、蓄电池等。蓄电池能量密度大,但是功率密度小,循环寿命较短,且大电流充放电和深度放电会缩短寿命。将功率输出能力强、循环寿命长的飞轮储能、超级电容或超导储能,与具有大容量、长时间储能能力的蓄电池类储能装置联合起来,进行协调控制,组成混合储能系统,使蓄电池有可能以对自身更有利的方式运行,能达到延长蓄电池寿命的目的。将混合储能系统需要响应的功率合理地在两种特性的储能装置之间进行分配,是延长系统整体寿命的关键。
目前提出的混合储能系统功率分配方法大致可以归纳成两类,下面以超级电容和蓄电池组成的混合储能系统为例进行说明。
一类方法是利用滤波器将功率指令的高、低频分量分开,分别由超级电容和蓄电池处理。另一类方法是令超级电容优先充放电;当其荷电状态达到上限或下限时,令蓄电池代替其响应功率指令,并调整超级电容的荷电状态至正常范围。
由于高频分量可能引起较大的充放电电流和放电深度,因此第一类方法能够在一定程度上改善蓄电池的不利工作条件,从而延长蓄电池的寿命。但是,在不同的储能装置容量配置和功率波动特性情况下,不一定只有高频分量是蓄电池循环寿命的不利影响因素。比如,超级电容容量足够时,低频、但是幅值较小的功率波动实际上并不需要由蓄电池来处理。因此,这种滤波法不是从本质上去除不利影响的方法。第二类方法的不足之处在于,超级电容可能在荷电状态过低或过高的一段时间内失去缓冲作用,蓄电池必须直接处理变化范围较大、较频繁的功率波动,无法在有利条件下工作。
发明内容
为克服上述现有技术的不足,本发明提出一种基于荷电状态的混合储能系统功率分配方法。将循环寿命长、可大电流深度充放电的储能装置设置为第一储能装置D1,将循环寿命相对较短、大电流深度充放电影响循环寿命的储能装置设置为第二储能装置D2。为延长混合储能系统整体的寿命,应尽量减小第二储能装置D2的充放电次数、充放电电流大小及放电深度。
根据第一储能装置D1的荷电状态计算其所需的补偿功率,该补偿功率由第二储能装置D2提供。第一储能装置D1的功率指令为混合储能系统的功率指令叠加补偿功率,第二储能装置D2则只起到调整第一储能装置D1的荷电状态的作用,功率指令为需提供的补偿功率。通过合理设计以第一储能装置D1的荷电状态为自变量的补偿功率函数,可以在功率分配的同时,达到第一储能装置D1与第二储能装置D2之间一定程度上的荷电状态平衡,减小第二储能装置D2的荷电状态超限的可能性。
为了实现上述目的,本发明采取如下技术方案:
一种基于荷电状态的混合储能系统功率分配方法,包括以下步骤:将循环寿命长、可大电流深度充放电的储能装置设置为第一储能装置D1,将循环寿命相对较短、大电流深度充放电影响循环寿命的储能装置设置为第二储能装置D2,
1)计算混合储能系统整体的平均电量存储率,据此得到第一储能装置D1的荷电状态期望值,从而得出第一储能装置D1所需的补偿功率与其荷电状态的函数关系;
2)按照上述函数关系,根据第一储能装置D1的荷电状态得出第二储能装置D2应为第一储能装置D1提供的补偿功率;
3)得到第一储能装置D1与第二储能装置D2各自的功率指令。
所述第一储能装置D1为超级电容,第二储能装置D2为磷酸铁锂电池。
所述步骤1)中混合储能系统整体的平均电量存储率k为
k = ( Q 1 - Q 1,1 ) + ( Q 2 - Q 2,1 ) ( Q 1 , u - Q 1,1 ) + ( Q 2 , u - Q 2,1 ) - - - ( 1 )
式中,Q1、Q1,u、Q1,l分别为第一储能装置D1的当前储存电量、储存电量上限和下限,Q2、Q2,u、Q2,l分别为第二储能装置D2的当前储存电量、储存电量上限和下限。
所述步骤1)中第一储能装置D1的荷电状态期望值SOC1,ref为
SOC1,ref=SOC1,l+k(SOC1,u-SOC1,l)    (2)
式中,SOC1,u、SOC1,l为第一储能装置D1的荷电状态上下限,k为混合储能系统的平均电量存储率。SOC1,ref的意义是,第一储能装置D1、第二储能装置D2达到相同的电量存储率、即两者荷电状态平衡时,第一储能装置D1应具有的荷电状态。
所述步骤1)中得出第一储能装置D1所需的补偿功率P1,c与其荷电状态SOC1函数关系的方法如下。
设第一储能装置D1的荷电状态正常范围上下限分别为SOC1,nu和SOC1,nl,给定常数ΔSOC1和Δ1,令
SOC1,nl=SOC1,ref-ΔSOC1       (3)
SOC1,nu=SOC1,ref+ΔSOC1     (4)
并对SOC1,nl和SOC1,nu进行限幅,使满足
SOC1,nl≥SOC1,l1    (5)
SOC1,nu≤SOC1,u1    (6)
以保证补偿功率P1,c起作用的区域宽度,则
SOC1,nl=max{SOC1,l1,SOC1,ref-ΔSOC1}   (7)
SOC1,nu=min{SOC1,u1,SOC1,ref+ΔSOC1}    (8)
应合理选取ΔSOC1和Δ1,使得SOC1,nu≥SOC1,nl
由上述步骤确定SOC1的正常范围[SOC1,nl,SOC1,nu]。由此可得到第一储能装置D1所需补偿功率P1,c与第一储能装置D1的荷电状态SOC1的函数关系为
P 1 , c = f ( SOC 1 ) = P max · SOC 1 , nl - SOC 1 SOC 1 , nl - SOC 1,1 , SOC 1 ∈ [ SOC 1,1 , SOC 1 , nl ) - P mxa · SOC 1 - SOC 1 , nu SOC 1 , u - SOC 1 , nu , SOC 1 ∈ ( SOC 1 , nu , SOC 1 , u ] - - - ( 9 )
式中,Pmax为混合储能系统能吸收或发出的最大功率,由混合储能系统变换器容量决定;假设第一储能装置D1和第二储能装置D2的功率限值都不小于Pmax。f(SOC1)的示意图如图1所示。
需对补偿功率P1,c进行限幅,以免第一储能装置D1的功率指令过大。令
|P1,c+P|≤Pmax      (10)
-Pmax-P≤P1,c≤Pmax-P       (11)
式中,P为混合储能系统需要响应的功率指令,吸收功率为正。
所述步骤3)中第一储能装置D1与第二储能装置D2各自的功率指令P1和P2分别为
P1=P1,c+P    (12)
P2=-P1,c    (13)
若超级电容始终能够获得由上述步骤计算出的所需的补偿功率,则SOC1不会超出允许范围[SOC1,l,SOC1,u]。举例说明,当超级电容的荷电状态达到下限SOC1,l、且储能系统需要放电(-Pmax≤P<0)时,根据式(9)将得到P1,c=Pmax,因此有P1=P1,c+P≥0,也就是说,此时由于补偿功率的作用将强制超级电容充电。
由于考虑了此时混合储能系统整体的平均电量存储率,因此SOC1的正常范围会随着SOC1的期望值SOC1,ref浮动,使得补偿功率的作用范围也随SOC1,ref变化,能在一定程度上限制SOC1与SOC1,ref之间的差距,也即起到不同储能装置间荷电状态平衡的作用。
本文将荷电状态简称为SOC。
与现有技术相比,本发明的有益效果在于:
针对不同类型储能装置的特点,利用循环寿命长、可大电流深度充放电的储能装置的容量,将变化剧烈的功率波动转换成变化较平缓的荷电状态波动,作为循环寿命相对较短、大电流深度充放电影响循环寿命的储能装置的功率指令,从而降低其功率指令波动的剧烈程度,达到延长寿命的目的。另外,还在功率分配的过程中实现了不同类型储能装置之间的荷电状态平衡,减小荷电状态超限的可能性。
附图说明
图1是第一储能装置D1所需补偿功率与其荷电状态SOC的函数关系示意图;
图2是功率分配流程图;
图3是应用本发明所述功率分配方法得到的一组仿真结果。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例1
本心知肚明所述的基于荷电状态的混合储能系统功率分配方法,包括以下步骤:
设置第一储能装置D1为超级电容,第二储能装置D2为磷酸铁锂电池。设混合储能系统能吸收或发出的最大功率为Pmax
超级电容功率密度大,其功率上限很容易超过Pmax;而由于超级电容能量密度很小,所以其能持续发出或吸收功率的时间很短,为保证长时间尺度内的功率支撑,磷酸铁锂电池的功率上限也必须不小于Pmax;因此,两种储能装置的功率限值都不小于Pmax的假设是容易满足的。
设混合储能系统需要响应的功率指令为P,储能系统吸收功率时P为正。设超级电容和磷酸铁锂电池,荷电状态的上下限分别为SOC1,u、SOC1,l和SOC2,u、SOC2,l,当前荷电状态分别为SOC1和SOC2,额定储存电量分别为Q1,n和Q2,n,储存电量的上下限分别为Q1,u、Q1,l和Q2,u、Q2,l,当前储存电量分别为Q1和Q2。则有
Q1=Q1,n×SOC1,Q1,l=Q1,n×SOC1,l,Q1,u=Q1,n×SOC1,u
Q2=Q2,n×SOC2,Q2,1=Q2,n×SOC2,1,Q2,u=Q2,n×SOC2,u
计算混合储能系统整体的平均电量存储率k
k = ( Q 1 - Q 1,1 ) + ( Q 2 - Q 2,1 ) ( Q 1 , u - Q 1,1 ) + ( Q 2 , u - Q 2 , 1 )
然后计算超级电容的荷电状态期望值SOC1,ref
SOC1,ref=SOC1,l+k(SOC1,u-SOC1,l)
给定常数ΔSOC1和Δ1,以确定超级电容荷电状态的正常范围[SOC1,nl,SOC1,nu]
SOC1,nl=max{SOC1,l1,SOC1,ref-ΔSOC1}
SOC1,nu=min{SOC1,u1,SOC1,ref+ΔSOC1}
再由超级电容荷电状态的正常范围确定P1,c与SOC1的函数关系,据此得到超级电容所需的补偿功率P1,c
P 1 , c = f ( SOC 1 ) = P max &CenterDot; SOC 1 , nl - SOC 1 SOC 1 , nl - SOC 1,1 , SOC 1 &Element; [ SOC 1 , 1 , SOC 1 , nl ) - P max &CenterDot; SOC 1 - SOC 1 , nu SOC 1 , u - SOC 1 , nu , SOC 1 &Element; ( SOC 1 , nu , SOC 1 , u ] - P max - P &le; P 1 , c &le; P max - P
最后得到超级电容与磷酸铁锂电池各自的功率指令P1和P2
P1=P1,c+P
P2=-P1,c
相应流程图如图2所示。按照上述功率分配方法,可得到图3所示的仿真结果;仿真参数如表1所示。其中SOC1,0和SOC2,0分别为超级电容和磷酸铁锂电池的初始荷电状态。由于超级电容的端电压与其荷电状态成正比,会随荷电状态的降低而急剧下降;因此,为防止超级电容端电压过低,将超级电容的荷电状态下限SOC1,l设置为较大的50%。
表1仿真参数
Q1,n Q2,n SOC1,0 SOC2,0 SOC1,l SOC1,u ΔSOC1 Δ1
0.2Ah 5Ah 85% 40% 50% 100% 20% 5%
从图3可以看出,当超级电容荷电状态正常时,磷酸铁锂电池停止输出或吸收功率,仅由超级电容响应整个混合储能系统的功率指令;当超级电容荷电状态超出正常范围时,磷酸铁锂电池需要为超级电容提供的补偿功率与超级电容的荷电状态成线性关系,削弱了功率指令频繁、大范围波动的特性,有利于延长磷酸铁锂电池的寿命。

Claims (6)

1.一种基于荷电状态的混合储能系统功率分配方法,其特征在于,包括以下步骤:
将循环寿命长、可大电流深度充放电的储能装置设置为第一储能装置D1,循环寿命相对较短、大电流深度充放电影响循环寿命的储能装置设置为第二储能装置D2,
1)计算混合储能系统整体的平均电量存储率,据此得到第一储能装置D1的荷电状态期望值,从而得出第一储能装置D1所需的补偿功率与其荷电状态的函数关系;
2)按照上述函数关系,根据第一储能装置D1的荷电状态得出第二储能装置D2应为第一储能装置D1提供的补偿功率;
3)得到第一储能装置D1与第二储能装置D2各自的功率指令。
2.根据权利要求1所述基于荷电状态的混合储能系统功率分配方法,其特征在于,所述第一储能装置D1为超级电容,第二储能装置D2为磷酸铁锂电池。
3.根据权利要求1所述基于荷电状态的混合储能系统功率分配方法,其特征在于,所述步骤1)中混合储能系统整体的平均电量存储率k为
k = ( Q 1 - Q 1,1 ) + ( Q 2 - Q 2,1 ) ( Q 1 , u - Q 1,1 ) + ( Q 2 , u - Q 2 , 1 ) - - - ( 1 )
式中,Q1、Q1,u、Q1,l分别为第一储能装置D1的当前储存电量、储存电量上限和下限,Q2、Q2,u、Q2,l分别为第二储能装置D2的当前储存电量、储存电量上限和下限。
4.根据权利要求1所述基于荷电状态的混合储能系统功率分配方法,其特征在于,所述步骤1)中第一储能装置D1的荷电状态期望值SOC1,ref
SOC1,ref=SOC1,l+k(SOC1,u-SOC1,l)    (2)
式中,SOC1,u、SOC1,l为第一储能装置D1的荷电状态上下限,k为混合储能系统的平均电量存储率。
5.根据权利要求1所述基于荷电状态的混合储能系统功率分配方法,其特征在于所述步骤1)中得出第一储能装置D1所需的补偿功率P1,c与其荷电状态SOC1函数关系的方法如下;
设第一储能装置D1的荷电状态正常范围上下限分别为SOC1,nu和SOC1,nl,给定常数ΔSOC1和Δ1,令
SOC1,nl=SOC1,ref-ΔSOC1(3)
SOC1,nu=SOC1,ref+ΔSOC1       (4)
并对SOC1,nl和SOC1,nu进行限幅,使满足
SOC1,nl≥SOC1,l1   (5)
SOC1,nu≤SOC1,u1    (6)
SOC1,nl=max{SOC1,l1,SOC1,ref-ΔSOC1}   (7)
SOC1,nu=min{SOC1,u1,SOC1,ref+ΔSOC1}     (8)
应合理选取ΔSOC1和Δ1,使得SOC1,nu≥SOC1,nl
由上述步骤确定SOC1的正常范围[SOC1,nl,SOC1,nu],
第一储能装置D1所需补偿功率P1,c与第一储能装置D1的荷电状态SOC1的函数关系为
P 1 , c = f ( SOC 1 ) = P max &CenterDot; SOC 1 , nl - SOC 1 SOC 1 , nl - SOC 1,1 , SOC 1 &Element; [ SOC 1,1 , SOC 1 , nl ) - P mxa &CenterDot; SOC 1 - SOC 1 , nu SOC 1 , u - SOC 1 , nu , SOC 1 &Element; ( SOC 1 , nu , SOC 1 , u ] - - - ( 9 )
式中,Pmax为混合储能系统能吸收或发出的最大功率,由混合储能系统变换器容量决定;假设第一储能装置D1和第二储能装置D2的功率限值都不小于Pmax
对补偿功率P1,c进行限幅,令
|P1,c+P|≤Pmax         (10)
-Pmax-P≤P1,c≤Pmax-P         (11)
式中,P为混合储能系统需要响应的功率指令,吸收功率为正。
6.根据权利要求1所述基于荷电状态的混合储能系统功率分配方法,其特征在于,所述步骤3)中第一储能装置D1与第二储能装置D2各自的功率指令P1和P2分别为
P1=P1,c+P       (12)
P2=-P1,c          (13)
CN201310433618.2A 2013-09-22 2013-09-22 一种基于荷电状态的混合储能系统功率分配方法 Expired - Fee Related CN103501022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310433618.2A CN103501022B (zh) 2013-09-22 2013-09-22 一种基于荷电状态的混合储能系统功率分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310433618.2A CN103501022B (zh) 2013-09-22 2013-09-22 一种基于荷电状态的混合储能系统功率分配方法

Publications (2)

Publication Number Publication Date
CN103501022A true CN103501022A (zh) 2014-01-08
CN103501022B CN103501022B (zh) 2015-12-23

Family

ID=49866204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310433618.2A Expired - Fee Related CN103501022B (zh) 2013-09-22 2013-09-22 一种基于荷电状态的混合储能系统功率分配方法

Country Status (1)

Country Link
CN (1) CN103501022B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162236A (zh) * 2015-09-28 2015-12-16 香港城市大学深圳研究院 一种复合能源功率分配系统
CN106950500A (zh) * 2017-03-07 2017-07-14 清华大学 一种基于电池寿命的共享式电池的容量计算方法
CN107872066A (zh) * 2016-09-27 2018-04-03 北京睿能世纪科技有限公司 一种电网储能系统出力的控制方法及装置
CN108767872A (zh) * 2018-05-18 2018-11-06 江苏大学 一种应用于风光混合储能微网系统的模糊控制方法
CN115360737A (zh) * 2022-08-16 2022-11-18 中国舰船研究设计中心 一种多储能单元协同放电方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355040A (zh) * 2011-10-19 2012-02-15 北京四方继保自动化股份有限公司 与电池成组应用相匹配的变流器模块化设计与控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355040A (zh) * 2011-10-19 2012-02-15 北京四方继保自动化股份有限公司 与电池成组应用相匹配的变流器模块化设计与控制方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162236A (zh) * 2015-09-28 2015-12-16 香港城市大学深圳研究院 一种复合能源功率分配系统
CN107872066A (zh) * 2016-09-27 2018-04-03 北京睿能世纪科技有限公司 一种电网储能系统出力的控制方法及装置
CN107872066B (zh) * 2016-09-27 2020-06-12 北京睿能世纪科技有限公司 一种电网储能系统出力的控制方法及装置
CN106950500A (zh) * 2017-03-07 2017-07-14 清华大学 一种基于电池寿命的共享式电池的容量计算方法
CN106950500B (zh) * 2017-03-07 2019-03-29 清华大学 一种基于电池寿命的共享式电池的容量计算方法
CN108767872A (zh) * 2018-05-18 2018-11-06 江苏大学 一种应用于风光混合储能微网系统的模糊控制方法
CN108767872B (zh) * 2018-05-18 2021-12-21 江苏大学 一种应用于风光混合储能微网系统的模糊控制方法
CN115360737A (zh) * 2022-08-16 2022-11-18 中国舰船研究设计中心 一种多储能单元协同放电方法
CN115360737B (zh) * 2022-08-16 2024-08-06 中国舰船研究设计中心 一种多储能单元协同放电方法

Also Published As

Publication number Publication date
CN103501022B (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
Shin et al. Battery-supercapacitor hybrid system for high-rate pulsed load applications
CN103296722B (zh) 应用于h桥级联型电池储能系统相内soc均衡控制方法
CN103311943B (zh) 一种混合储能系统平抑间歇式电源功率波动的控制方法
CN101394101B (zh) 动力锂离子电池组充放电均衡装置
CN109690901B (zh) 基于超级电容器的能量存储设备
CN109038707B (zh) 一种电池组分段混合均衡控制方法
CN103501022A (zh) 一种基于荷电状态的混合储能系统功率分配方法
CN102340165A (zh) 电动力汽车电源管理系统
CN108023130A (zh) 一种锂离子电池充电优化方法
CN108011425B (zh) 一种电池组主动均衡电路及方法
CN102946113A (zh) 一种基于电池与超级电容的超级电容端电压控制方法
CN105162153A (zh) 一种混合储能控制方法
CN103683309A (zh) 一种应用于微电网中混合储能系统的有功分级分配方法
CN105607003A (zh) 一种储能单元容量测试方法
CN104993506A (zh) 一种分布式发电系统的混合储能装置
JP2017195732A (ja) 蓄電池システム
Guan et al. A modular active balancing circuit for redox flow battery applied in energy storage system
KR101689017B1 (ko) 마이크로그리드 내 다수 bess의 퍼지 드룹 제어 시스템 및 방법
CN113381496A (zh) 基于一种混合储能系统限值管理控制方法
CN103312001A (zh) 包含超级电容器的储能系统中电池的充电方法及系统
CN101127448A (zh) 一种铅酸蓄电池的脉冲恒能充电方法及其充电装置
CN201290017Y (zh) 动力锂离子电池组充放电均衡装置
KR102645452B1 (ko) 충방전 장치, 배터리 충전 방법 및 충방전 시스템
Rahimirad et al. Battery life investigation of a hybrid energy management system considering battery temperature effect
CN105629174A (zh) 一种恒功率参数确定方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151223

CF01 Termination of patent right due to non-payment of annual fee