CN103500869A - 一种用于测量深低温强磁场下样品表面态的吸收式谐振腔 - Google Patents

一种用于测量深低温强磁场下样品表面态的吸收式谐振腔 Download PDF

Info

Publication number
CN103500869A
CN103500869A CN201310469843.1A CN201310469843A CN103500869A CN 103500869 A CN103500869 A CN 103500869A CN 201310469843 A CN201310469843 A CN 201310469843A CN 103500869 A CN103500869 A CN 103500869A
Authority
CN
China
Prior art keywords
resonant cavity
screw
microwave
magnetic field
panel installed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310469843.1A
Other languages
English (en)
Other versions
CN103500869B (zh
Inventor
吕蒙
俞国林
徐勇刚
常志刚
刘新智
林铁
孙雷
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201310469843.1A priority Critical patent/CN103500869B/zh
Publication of CN103500869A publication Critical patent/CN103500869A/zh
Application granted granted Critical
Publication of CN103500869B publication Critical patent/CN103500869B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种用于测量深低温、强磁场下样品表面态的吸收式谐振腔,谐振腔主要由同轴电缆组件、微波隔板和面板安装式连接器、谐振腔盖板、谐振腔、铜片A、铜片B、螺丝A、螺丝B等组成。谐振腔的主要特征在于利用同轴电缆将微波导入深低温、强磁场环境的谐振腔中,实现了微波测量与深低温、强磁场输运测量的结合。该系统为对诸如拓扑绝缘体等二维纳米结构材料表面态的深低温磁输运研究提供了一种有效工具。

Description

一种用于测量深低温强磁场下样品表面态的吸收式谐振腔
技术领域
本发明涉及一种吸收式谐振腔,具体涉及一种用于测量深低温强磁场下样品表面态的吸收式谐振腔,通过在极低温、强磁场下利用测量吸收式谐振腔的品质因子(Q因子)的方法,在不破坏、无接触的条件下对谐振腔中的样品表面态进行表征以及研究材料表面态对微波的反应特性等。
背景技术
在半导体材料与器件相关的测试手段中,磁输运是一种重要而基础的研究手段,用以研究材料的载流子浓度,类型和迁移率等基本信息。而在深低温的条件下,众多量子效应呈现出来,作为对经典电导的修正,电导的量子效应反映出材料的自旋特性等物理信息,这些特性可能在新一代的物理器件——自旋电子学器件中得到应用,因此具有重要的研究价值。对电导的量子效应进行研究已经成为一门新的学科,研究的现象包括磁阻振荡、量子霍尔效应、弱局域与反弱局域效应、量子隧穿等。
目前这些研究大部分采用传统的电学测试方法,因此受到诸如材料衬底电导、三维方向上的载流子、样品腐蚀不易和可能破坏样品、以及样品电极制备不易等制约。本发明采用测量吸收式谐振腔的品质因子(Q因子)的方法来进行测量,避免了上述几点对实验结果的影响,为极低温、强磁场下对诸如拓扑绝缘体等二维纳米结构材料磁输运测试和自旋共振研究提供了良好的研究工具,是研究二维纳米结构和构造相干电子学器件的有力工具。
发明内容
本发明的目的是提供了一种吸收式谐振腔,可以通过一种无接触、不破坏的微波测量方法,来研究样品的表面态性质。本发明的技术方案如下:
测试系统由同轴电缆组件101、微波隔板和面板安装式连接器102、谐振腔盖板103、谐振腔104、铜片A105、铜片B106、螺丝A107、螺丝B107组成,基本结构见附图1。
所述的同轴电缆组件101和微波隔板和面板安装式连接器102连接,所述的同轴电缆组件101的连接器采用公头,它与微波隔板和面板安装式连接器102的母头连接器直接相连;有两组微波隔板和面板安装式连接器102分别与两组同轴电缆组件101相连,其末端有天线,分别用于发射微波和接收微波;两组微波隔板和面板安装式连接器102通过螺丝B108固定于谐振腔盖板103上,微波隔板和面板安装式连接器102下端天线对准谐振腔盖板103中间孔洞,用螺丝B108固定;谐振腔盖板103短边两个三等分点上各有一个螺孔,与谐振腔104两端螺孔对应,通过螺丝A107与谐振腔104固定;谐振腔盖板103中央开有两个小孔,微波通过微波隔板和面板安装式连接器102的天线发射端通过其中一小孔进入谐振腔104,经谐振腔104吸收后沿另一小孔传出,再经由另一微波隔板和面板安装式连接器102、另一同轴电缆组件101输出谐振腔盖板103由螺丝A107固定在谐振腔104上,调节谐振腔大小的铜片A105和铜片B106竖直放置在谐振腔104内以调节其谐振腔的大小,从而调节谐振腔104的谐振频率,实现不同频率微波下的测量。
所述的同轴电缆组件101工作频率范围应与谐振腔104谐振频率相对应,其损耗、驻波、机械相位稳定性应符合测试要求。
所述的微波隔板和面板安装式连接器102的工作频率应满足包含谐振腔104的谐振频率。
所述的谐振腔104形状为中空有底圆柱形,中间挖空一长方体,形成谐振腔,四周可为圆弧状,两边有支架,可用螺丝B108固定于测试所需位置;另两侧边上朝上有用于固定谐振腔盖板103的螺孔;谐振腔104采用紫铜,表面镀银。
所述的螺丝A107及螺丝B108采用铜质螺丝。
本发明的优点在于:本发明利用了微波的趋肤效应,从而解决了传统电学输运测试时样品体电导的干扰,采用无接触、不破坏的方法进行测量,方法简单方便,可对样品直接进行测量;本发明避免了以往微波辐射下测试时微波加热对样品测试结果的影响,实现了利用微波进行电学输运特性和自旋特性的原位研究,为诸如拓扑绝缘体等二维纳米结构材料表面态磁输运研究提供了一种有效工具。
附图说明
图1:吸收式谐振腔组装示意图,图中各部分为:同轴电缆组件101、微波隔板和面板安装式连接器102、谐振腔盖板103、谐振腔104、铜片A105、铜片B106、螺丝B108。
图2:吸收式谐振腔腔内俯视图,图中各部分为:谐振腔104、铜片A105、铜片B106、螺丝A107。
具体实施方式
下面根据发明内容和附图说明给出本发明的一个较好的实例,结合实例进一步说明本发明技术细节、结构特征和功能特点。但此实例并不限制本发明范围,合乎发明内容和附图说明中描述的实例均应包含在本发明范围内。
同轴电缆组件101采用使用频率高、低损耗低驻波、机械相位稳定性好的Micro coax UFB311A同轴电缆,工作频率范围为DC~26.5GHz。
微波隔板和面板安装式连接器102采用ROD-SMA-KFD(母头),工作频率范围为DC~18GHz。
谐振腔盖板103、谐振腔104和铜片A105、铜片B106均采用紫铜材料,外部镀银防止氧化。
谐振腔盖板103长25mm,宽21mm,厚度为3mm,短边上各有两个螺孔,通过螺丝A107与谐振腔104固定,谐振腔盖板103垂直于长边的中轴线三等分点上,有两个直径0.25mm的小孔A和B,用于微波的传入和传出。
谐振腔104外部下半部为圆柱形,高11mm,外部圆直径为31mm,上半部为伸出支架,长30mm,用于将谐振腔104固定与测试处;内部则挖空形成一长方形谐振腔,长宽俱为20mm,深9.5mm,为了加工方便,四角各有一直径3mm的四分之一圆。谐振腔盖板103、铜片A105和铜片B106则须与谐振腔104的大小对应。
铜片A105和铜片B106可竖直放置于谐振腔101中,通过调整其大小来改变其谐振频率。谐振腔的最小谐振频率为:
Figure BDA0000393212130000041
(a>b>c,a、b、c为矩形谐振腔三条边长),根据我们的系统尺寸,我们设计的矩形谐振腔大小为20mm*20mm*9.5mm至20mm*9.5mm*9.5mm可调,对应的谐振频率可在10.6GHz至17.5GHz范围内调谐。
螺丝A107采用M1.6*4螺钉,用于谐振腔盖板103与谐振腔104的固定;螺丝B108采用M2.5*4螺钉,用于将谐振腔104固定于测试所需位置。
在吸收式谐振腔测量方法中,微波传输经过同轴电缆组件101、微波隔板和面板安装式连接器102由谐振腔盖板103上小孔A进入谐振腔104,作用后由谐振腔盖板103上的小孔B传出,经另一微波隔板和面板安装式连接器102和同轴电缆组件101传播至检波器进行测量其功率大小,得出谐振腔谐振曲线,从而获得其品质因数。在变磁场下即可得到腔内样品表面态随磁场的变化关系。

Claims (5)

1.一种用于测量深低温、强磁场下样品表面态的吸收式谐振腔,包括:同轴电缆组件(101)、微波隔板和面板安装式连接器(102)、谐振腔盖板(103)、谐振腔(104)、铜片A(105)、铜片B(106)、螺丝A(107)和螺丝B107;其特征在于:
所述的同轴电缆组件(101)和微波隔板和面板安装式连接器(102)连接,所述的同轴电缆组件(101)的连接器采用公头,它与微波隔板和面板安装式连接器(102)的母头连接器直接相连;有两组微波隔板和面板安装式连接器(102)分别与两组同轴电缆组件(101)相连,其末端有天线,分别用于发射微波和接收微波;两组微波隔板和面板安装式连接器(102)通过螺丝B(108)固定于谐振腔盖板(103)上,微波隔板和面板安装式连接器(102)下端天线对准谐振腔盖板(103)中间孔洞,用螺丝B(108)固定;谐振腔盖板(103)短边两个三等分点上各有一个螺孔,与谐振腔(104)两端螺孔对应,通过螺丝A(107)与谐振腔(104)固定;谐振腔盖板(103)中央开有两个小孔,微波通过微波隔板和面板安装式连接器(102)的天线发射端通过其中一小孔进入谐振腔(104),经谐振腔(104)吸收后沿另一小孔传出,再经由另一微波隔板和面板安装式连接器(102)、另一同轴电缆组件(101)输出。谐振腔盖板(103)由螺丝A(107)固定在谐振腔(104)上,调节谐振腔大小的铜片A(105)和铜片B(106)竖直放置在谐振腔(104)内以调节其谐振腔的大小,从而调节谐振腔(104)的谐振频率,实现不同频率微波下的测量。
2.根据权利要求1所述的一种用于测量深低温、强磁场下样品表面态的吸收式谐振腔,其特征在于:所述的同轴电缆组件(101)工作频率范围应与谐振腔(104)谐振频率相对应,其损耗、驻波、机械相位稳定性应符合测试要求。
3.根据权利要求1所述的一种用于测量深低温、强磁场下样品表面态的吸收式谐振腔,其特征在于:所述的微波隔板和面板安装式连接器(102)的工作频率应满足包含谐振腔(104)的谐振频率。
4.根据权利要求1所述的一种用于测量深低温、强磁场下样品表面态的吸收式谐振腔,其特征在于:所述的谐振腔(104)形状为中空有底圆柱形,中间挖空一长方体,形成谐振腔,四周可为圆弧状,两边有支架,可用螺丝B(108)固定于测试所需位置;另两侧边上朝上有用于固定谐振腔盖板(103)的螺孔;谐振腔(104)采用紫铜,表面镀银。
5.根据权利要求1所述的一种用于测量深低温、强磁场下样品表面态的吸收式谐振腔,其特征在于:所述的螺丝A(107)及螺丝B(108)采用铜质螺丝。
CN201310469843.1A 2013-10-10 2013-10-10 一种用于测量深低温强磁场下样品表面态的吸收式谐振腔 Expired - Fee Related CN103500869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310469843.1A CN103500869B (zh) 2013-10-10 2013-10-10 一种用于测量深低温强磁场下样品表面态的吸收式谐振腔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310469843.1A CN103500869B (zh) 2013-10-10 2013-10-10 一种用于测量深低温强磁场下样品表面态的吸收式谐振腔

Publications (2)

Publication Number Publication Date
CN103500869A true CN103500869A (zh) 2014-01-08
CN103500869B CN103500869B (zh) 2015-05-13

Family

ID=49866054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310469843.1A Expired - Fee Related CN103500869B (zh) 2013-10-10 2013-10-10 一种用于测量深低温强磁场下样品表面态的吸收式谐振腔

Country Status (1)

Country Link
CN (1) CN103500869B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017526A (zh) * 2016-01-12 2017-08-04 泰连公司 具有谐振控制的电连接器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044708A1 (en) * 2005-08-26 2007-03-01 Magnetrol International, Inc. Ultrasonic sensor assembly and method
CN101187683A (zh) * 2007-10-30 2008-05-28 电子科技大学 低损耗电介质材料高温复介电常数测试装置及方法
EP2043193A1 (en) * 2007-09-28 2009-04-01 Alcatel Lucent A directional coupler and a method thereof
CN202330564U (zh) * 2011-11-04 2012-07-11 电子科技大学 一种基于准光学谐振腔的介质材料介电性能变温测量装置
CN203536549U (zh) * 2013-10-10 2014-04-09 中国科学院上海技术物理研究所 用于测量深低温强磁场下样品表面态的吸收式谐振腔

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044708A1 (en) * 2005-08-26 2007-03-01 Magnetrol International, Inc. Ultrasonic sensor assembly and method
EP2043193A1 (en) * 2007-09-28 2009-04-01 Alcatel Lucent A directional coupler and a method thereof
CN101187683A (zh) * 2007-10-30 2008-05-28 电子科技大学 低损耗电介质材料高温复介电常数测试装置及方法
CN202330564U (zh) * 2011-11-04 2012-07-11 电子科技大学 一种基于准光学谐振腔的介质材料介电性能变温测量装置
CN203536549U (zh) * 2013-10-10 2014-04-09 中国科学院上海技术物理研究所 用于测量深低温强磁场下样品表面态的吸收式谐振腔

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017526A (zh) * 2016-01-12 2017-08-04 泰连公司 具有谐振控制的电连接器
CN107017526B (zh) * 2016-01-12 2020-02-21 泰连公司 具有谐振控制的电连接器

Also Published As

Publication number Publication date
CN103500869B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
CN104965127A (zh) 一种微波闭式谐振腔复介电常数测量装置
Berres et al. Multiwall carbon nanotubes at RF-THz frequencies: Scattering, shielding, effective conductivity, and power dissipation
Cuenca et al. Investigating the broadband microwave absorption of nanodiamond impurities
Rubinger et al. Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials
Valente et al. A compact L-band orthomode transducer for radio astronomical receivers at cryogenic temperature
US12004426B2 (en) Terahertz detector and method of manufacturing terahertz detector
Salama et al. An embeddable microwave patch antenna module for civil engineering applications
CN103529407B (zh) 一种无接触式低温磁输运测试的样品杆
CN203536550U (zh) 用于测量深低温强磁场下样品表面态的反射式谐振腔
CN203536549U (zh) 用于测量深低温强磁场下样品表面态的吸收式谐振腔
CN103500869B (zh) 一种用于测量深低温强磁场下样品表面态的吸收式谐振腔
CN103500870B (zh) 一种用于测量深低温强磁场下样品表面态的反射式谐振腔
Foudazi et al. Aperture‐coupled microstrip patch antenna fed by orthogonal SIW line for millimetre‐wave imaging applications
Siddiqui et al. A novel dielectric detection system based on wire-loaded waveguides
Ramzan et al. A microstrip probe based on electromagnetic energy tunneling for extremely small and arbitrarily shaped dielectric samples
Song et al. Design of one-eighth spherical dielectric resonator antenna for 5G applications
Generalov et al. Millimeter-wave power sensor based on silicon rod waveguide
Jones et al. Regenerative feedback resonant circuit to detect transient changes in electromagnetic properties of semi-insulating materials
CN209014499U (zh) 一种低维材料热传导性质原位测量装置
Karami et al. Square waveguide cavity for complex permittivity and permeability measurement by perturbation method without repositioning
JPH11174102A (ja) Y型temセル
Banerjee et al. Measurement of dielectric properties of medium loss samples at X-band frequencies
Samad et al. Design of DS-CSRR based microwave sensor for efficient measurement of dielectric constant of materials
CN103604985B (zh) 一种大功率微波脉冲圆波导探测结构及方法
CN205193260U (zh) 一种用于复合绝缘子检测的紧贴式双层平面射频线圈

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150513

Termination date: 20171010

CF01 Termination of patent right due to non-payment of annual fee