CN103500867B - 一种频率可调节、功率可调谐的太赫兹雪崩振荡器 - Google Patents

一种频率可调节、功率可调谐的太赫兹雪崩振荡器 Download PDF

Info

Publication number
CN103500867B
CN103500867B CN201310446051.2A CN201310446051A CN103500867B CN 103500867 B CN103500867 B CN 103500867B CN 201310446051 A CN201310446051 A CN 201310446051A CN 103500867 B CN103500867 B CN 103500867B
Authority
CN
China
Prior art keywords
disk
tuning
frequency
cavity
avalanche
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310446051.2A
Other languages
English (en)
Other versions
CN103500867A (zh
Inventor
朱忠博
崔万兆
刘丰
胡天存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Institute of Space Radio Technology
Original Assignee
Xian Institute of Space Radio Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Institute of Space Radio Technology filed Critical Xian Institute of Space Radio Technology
Priority to CN201310446051.2A priority Critical patent/CN103500867B/zh
Publication of CN103500867A publication Critical patent/CN103500867A/zh
Application granted granted Critical
Publication of CN103500867B publication Critical patent/CN103500867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种频率可调节、功率可调谐的太赫兹雪崩振荡器,雪崩振荡器的振荡腔由上腔体与下腔体组合而成,下腔体的腔体顶面加工有波导槽,波导槽与上腔体组合构成了标准波导腔;雪崩二极管通过管座装配顶针装配在下腔体顶面中心的波导腔中,且通过旋转管座装配顶针能够调整雪崩二极管在波导腔中的高低位置,调整到位后通过锁紧螺母固定;调谐活塞中自上而下依次安装弹簧顶针、弹簧和调谐帽盘,装配有调谐帽盘、弹簧、弹簧顶针的调谐活塞从上腔压块中旋入直达波导腔,由弹簧保证调谐帽盘在雪崩二极管不同的高低位置时始终保持与雪崩二极管物理接触;调谐活塞的位置通过活塞锁紧螺母固定。

Description

一种频率可调节、功率可调谐的太赫兹雪崩振荡器
技术领域
本发明属于太赫兹电路技术领域,特别涉及工作在太赫兹频段的可调谐式雪崩振荡器腔体电路。
背景技术
太赫兹技术是当前学术研究的热点,能够被应用于物体成像、环境监测、医疗诊断、射电天文、安全检查、反恐探测、卫星通信和雷达探测等与国民经济和社会发展密切相关的领域。
太赫兹上述应用中,太赫兹频率源的实现是太赫兹系统应用的前提和关键,雪崩二极管作为传统的固态功率器件,能够稳定工作在太赫兹频段低端,具有良好的功率和频率特性。因此利用雪崩二极管实现太赫兹频段的固态振荡器是获取太赫兹信号的有效方式。然而,雪崩二极管封装为立体封装结构,因而雪崩振荡器的电路也采用波导腔体的这种立体电路结构。在太赫兹频段,与平面电路相比,基于波导腔体结构的电路具有以下特点:
(1)在电路设计方法方面,平面电路主要基于电路理论的方法进行设计优化,可利用仿真软件进行电路的较精确仿真优化;而波导腔体电路则主要基于电磁场分布的理论和方法进行设计优化,主要依靠波导电路内部的电磁场分布与传播特性,进行电路的指导性设计。
(2)在电路结构的实现方面,波导腔体电路对精密机械加工的精度要求极高,加工精度的误差范围达到了微米量级。因此,腔体电路设计的结构尺寸与实际加工的结构尺寸必然存在一定的偏差,会影响整个电路的性能。所以通常在腔体电路的设计中,要求电路自身存在一定的可调谐性。对于振荡器其主要参数为输出频率和输出功率,保证对输出频率和输出功率的可调谐性,可以降低对加工精度和二极管参数一致性的依赖,保证产品成功率。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种频率可调节、功率可调谐的太赫兹雪崩振荡器。
本发明的技术方案是:一种频率可调节、功率可调谐的太赫兹雪崩振荡器,包括上腔压块、馈电正极金属膜片、绝缘垫片、馈电负极金属垫片固定螺钉、馈电负极金属垫片、上腔体、下腔体;还包括调谐活塞、活塞锁紧螺母、管座装配顶针锁紧螺母、管座装配顶针、弹簧顶针、弹簧、调谐帽盘、雪崩二极管;
雪崩振荡器的振荡腔由上腔体与下腔体组合而成,下腔体的腔体顶面加工有波导槽,波导槽与上腔体组合构成了标准波导腔;雪崩二极管通过管座装配顶针装配在下腔体顶面中心的波导腔中,且通过旋转管座装配顶针能够调整雪崩二极管在波导腔中的高低位置,调整到位后通过锁紧螺母固定;调谐活塞中自上而下依次安装弹簧顶针、弹簧和调谐帽盘,装配有调谐帽盘、弹簧、弹簧顶针的调谐活塞从上腔压块中旋入直达波导腔,由弹簧保证调谐帽盘在雪崩二极管不同的高低位置时始终保持与雪崩二极管物理接触;调谐活塞的位置通过活塞锁紧螺母固定。
所述的调谐帽盘包括帽盘固定轴和帽盘;帽盘固定轴在调谐活塞中与弹簧接触,帽盘固定轴的下端安装帽盘,所述的帽盘为椭圆形。
所述的椭圆形帽盘的设计步骤如下:
(1)将要求或预定输出的频率作为中心频率f0,根据加工工艺确定一个频率范围,所述的频率范围设置为中心频率左右3GHz;
(2)根据有源帽盘谐振腔体谐振频率公式计算出f0-3GHz频率对应的帽盘直径D,然后计算出f0+3GHz频率对应的帽盘直径d;
(3)将D作为长轴,d作为短轴设计椭圆帽盘。
通过旋转调谐活塞改变椭圆帽盘的侧面投影尺寸,实现频率覆盖。
本发明的原理是:
为了实现振荡器输出频率和输出功率的调谐特性,首先对传统的圆形帽盘结构的振荡器的电磁特性进行了研究,圆形帽盘与有源器件的紧密结合构成了一种开放式的径向腔结构,有源器件在开放式径向腔中激励起的电场和磁场可以表示为:
H = - j ωμ i ^ z × ▿ E z - - - ( 1 - b )
其中J为激励电流,为激励电流形成的电磁场的波函数,可以看到,一般情况下,径向腔内的场是无穷个模式的总和,仅当激励源与某一固有模式的谐振频率相近时,该模式的场强趋于无限大,腔内的场才能用这一模式的电磁分布近似单独表示,从而实现单模工作。(1-a)(1-b)式还表明,对于某一固定模式而言,被激励场的幅度直接与激励电流J的位置有关;如果J所在位置,最大,则被激励的场最强;如果J所在位置,为零,则该模式的场亦为零。因此,对于有源器件安装在帽结构中心处的情况,只有激励起TM010谐振模式,建立稳定的电磁分布,才能向波导输出方向高效辐射电磁能量,激励起传输模式。同时,有源器件与帽盘所形成的径向腔中TM010模式所形成的等效磁流源对输出波导方向TE10模的激励系数可表示为:
A TM 010 + = ∫ V [ ( - x ^ / Z 10 ) sin ( πx / a ) + z cos ^ ( πx / a ) ] dv 2 ∫ S 0 sin 2 ( πx / a ) Z 10 ds - - - ( 2 )
式中,V为有源器件与帽盘所构成的径向腔内部体积,S0为上下底面及等效侧面构成的封闭曲面。利用(2)式可计算分析有源器件所激励起的谐振模式对输出波导方向的激励,从而评判波导输出方向输出功率的大小。
对于有源器件安装在帽结构中心处的情况,有源器件在帽结构匹配情况下激励起TM010谐振模式,其谐振波长可表示为:
λ c = 2 π μ r ϵ r · a u 01 - - - ( 3 )
式中u01为第一类0阶Bessel函数,λc为谐振波长,a为帽盘的半径。由(3)可知,TM010谐振模式的频率可由帽盘的半径a决定,帽盘半径a连续变化,则会引起输出频率的连续变化,若实际设计输出频率为f0,则设计振荡器输出频率为某一范围f1≤f0≤f2,则对应帽盘半径a也有一定范围。考虑到椭圆具有长短半轴,侧视投影尺寸会随角度变化而变化,按照(3)式设计长轴对应f1,短轴对应f2便可通过调整椭圆帽盘的侧视角度实现频率覆盖,有效地消除了机械加工和管子个性差异带来的影响,实现预定的频率输出。
本发明具有以下优点:
(1)该振荡器电路的可调谐性强(对频率和功率的可调谐性!),具体体现在:
1)雪崩二极管在振荡腔中高度位置可调谐。在振荡腔中,可以调节调谐活塞与管座装配顶针的位置,从而实现对雪崩二极管与调谐帽盘位置高低进行调谐,增加输出功率的调谐范围,实现电路性能的最优。
2)装配在振荡腔中的调谐帽盘便于更换。在电路调谐过程中,可以将调谐活塞从腔体中旋出之后,更换不同直径的调谐帽盘,在帽盘更换完成之后,又可将调谐活塞旋入振荡腔体中,进行电路性能的调谐。更换不同直径的调谐帽盘可以增大振荡器输出频率的调谐范围,扩宽振荡器输出的频带宽度。调谐活塞的这种结构设计增加了电路调谐的灵活度。
3)装配在振荡腔中的雪崩二极管便于更换。由于雪崩二极管装配在管座装配顶针顶部,因此可以通过从下腔体底部中心直接旋转取出管座装配顶针的方式而实现雪崩二极管的更换,利于使用同一腔体对不同雪崩二极管特性进行调谐观察,选取性能最优的器件,有利于实现电路性能的最优。
(2)电路结构尺寸小,利用腔体结构实现了对雪崩二极管的直流馈电,无需单独设计馈电电路。
附图说明
图1为本发明提供的振荡器正面结构图;
图2为本发明提供的振荡器侧面剖视结构图;
图3为本发明提供的振荡器背面结构图;
图4为本发明提供的振荡器侧面结构图。
具体实施方式
下面结合附图对本发明做详细说明,具体如下:
本发明提出了一种基于椭圆帽盘结构的频率和功率可调谐宽带太赫兹雪崩振荡器,利用椭圆帽盘结构实现了雪崩二极管与波导腔体之间的电路匹配,确保雪崩二极管振荡产生的信号能够有效从输出波导输出。同时通过雪崩二极管管座安装结构和帽盘调谐结构的巧妙设计,使雪崩二极管在振荡腔内部的高度位置可调谐,促使雪崩二极管沿波导输出口方向输出的功率实现最大化。
本发明的谐振器电路包括:调谐活塞1、活塞锁紧螺母2、上腔压块3、馈电正极金属膜片4、绝缘垫片5、馈电负极金属垫片固定螺钉6、馈电负极金属垫片7、上腔体8、下腔体9、管座装配顶针锁紧螺母10、管座装配顶针11、弹簧顶针12、弹簧13、调谐帽盘14、雪崩二极管15,具体结构如图1-4所示,本发明下述方案为110GHz频段实现的特例,其他频段采用类似结构更改电路参数可实现。
雪崩振荡器中的振荡腔由上腔体8与下腔体9组合而成,下腔体9的腔体顶面加工有标准尺寸的波导槽19,与上腔体8组合,构成了标准的WR10(2.54*1.27mm)波导腔。雪崩二极管15封装为立体同轴封装结构,二极管底部有装配螺孔。管座装配顶针11上侧为直径为M2的螺杆,下侧则为直径M5的螺杆,底面为一个旋钮圆盘。雪崩二极管15通过管座装配顶针11装配在下腔体9顶面中心的波导腔中,且通过旋转管座装配顶针11能够调整雪崩二极管15在波导腔中的高低位置,调整到位后通过锁紧螺母10固定。
调谐活塞1中,弹簧顶针12通过螺纹连接在调谐活塞1的内螺孔中,谐调帽盘14的帽盘固定轴上设置键,与调谐活塞1内壁的键槽配合,限制帽盘固定轴与调谐活塞1之间的相对旋转,通过旋转调谐活塞1带动帽盘旋转,从而改变帽盘的侧视投影尺寸。同时调谐帽盘14与弹簧顶针12在弹簧13作用下紧密接触,实现了雪崩二极管15高度调谐的过程中对雪崩二极管的直流馈电。
装配有调谐帽盘14、弹簧13、弹簧顶针12的调谐活塞从上腔压块3中心M4螺孔旋入,实现调谐帽盘14与装配在下腔体9中心的雪崩二极管管芯的良好物理接触。调谐帽盘14与雪崩二极管15紧密接触所构成的帽盘结构电路所形成的开放式径向腔对波导中的传输模式具有良好的辐射激励效果,能够形成有效激励波导中传输模式的谐振模式,将雪崩二极管产生的功率有效转换至输出波导口,从而利用调谐帽盘实现雪崩二极管与输出波导之间的良好匹配。
图2中,旋转下腔体9中管座装配顶针11底部的旋钮圆盘,可以旋转调谐管座装配顶针的高低,从而调谐管座装配顶针顶部雪崩二极管的位置高低。与之相匹配的是,上腔中的调谐帽盘14通过上方的弹簧的伸缩,确保在雪崩二极管15位置高低的调谐过程中,调谐帽盘14与雪崩二极管15的紧密接触。通过管座装配顶针与调谐活塞二者之间相匹配位置调谐,最终实现雪崩二极管在振荡腔中位置高低的调谐,促使雪崩二极管沿波导输出口方向输出的功率实现最大化。同时保证调谐帽盘与雪崩二极管紧密接触,实现直流馈电与电路匹配的功能。
各部分具体装配过程如下:
(1)雪崩二极管15与管座装配顶针11的装配
如图2所示,雪崩二极管15封装为立体同轴结构,雪崩二极管15底部有直径为M2的装配螺孔。管座装配顶针11上侧为直径为M2的螺杆,下侧则为直径M5的螺杆,底面为一个直径为8mm的旋钮圆盘。管座装配顶针11首先将上侧直径M2的螺杆旋转进入雪崩二极管15底部M2的螺孔中,并旋紧。实现将雪崩二极管15固定在管座装配顶针11的顶部。
(2)调谐活塞1的装配
如图2所示,将调谐帽盘14从调谐活塞1螺杆底面M1.6的内螺孔旋入,直至调谐帽盘14上侧直径M1.6的螺杆全部旋入至调谐活塞1螺杆内部中侧直径1.6mm的内通孔中。接着,在调谐活塞1顶部M2的内螺孔中先放置直径1.6mm的弹簧13。放入弹簧13后,再将弹簧顶针12从顶部M2的内螺孔旋入,调谐弹簧顶针12的旋入深度,确保弹簧顶针12、弹簧13、调谐帽盘14之间紧密的物理接触。
(3)振荡器上下腔的装配
如图1、图3所示,从上至下将上腔压块3、馈电正极金属膜片4、绝缘垫片5、上腔体8、下腔体9依次叠放。如图3所示,并在上腔压块3中2个腔体固定装配螺钉安放孔中首先放置2块装配固定螺钉绝缘垫片17,然后将2根腔体装配固定螺钉16从上腔压块3的固定螺钉安放孔中穿入,通过馈电正极金属膜片4、绝缘垫片5、上腔体8中的螺钉装配通孔,并最终旋入下腔体9中的装配螺孔。将2根腔体装配固定螺钉16旋紧,最终实现了上腔压块3、馈电正极金属膜片4、绝缘垫片5、上腔体8、下腔体9之间物理结构的装配,构成了雪崩振荡器的主腔体。接着如图4所示,将馈电负极金属垫片7穿入馈电负极金属垫片固定螺钉6的螺杆中,并将馈电负极金属垫片固定螺钉6旋入至馈电负极金属垫片固定螺钉安装螺孔18之中,并旋紧,最终实现振荡腔体两侧的馈电负极金属垫片7的固定安装,安装完成之后结构如图3所示。
(4)振荡器的整体装配
如图2所示,装配有雪崩二极管15的管座装配顶针11从下腔体9底面中心的M5的螺孔中旋入至顶,并最终将雪崩二极管15装配在下腔体9顶面中心的波导腔中。同时,装配有调谐帽盘14、弹簧13、弹簧顶针12的调谐活塞1从上腔压块3中心M4螺孔旋入,穿过馈电正极金属膜片4中心直径4mm的通孔、绝缘垫片5中心直径4.2mm的通孔、上腔体8的中心直径4.2mm的通孔,最终实现调谐帽盘14与装配在下腔体9中心的雪崩二极管15管芯的良好物理接触。在此基础上,如图1所示,直流馈电正极与馈电正极金属膜片4连接,负极与馈电负极金属膜片7连接,并最终实现对雪崩二极管的馈电功能,实现对雪崩振荡器电路性能的调谐观察。
(5)利用调谐帽盘的电路调谐
实现振荡器的整体装配之后,本发明中的调谐帽盘14采用了一种椭圆形式的调谐帽盘。根据公式(3)可知,当雪崩二极管15位于帽盘中心位置时,激励起的TM010模式的谐振频率与帽盘半径有关。而采用椭圆形式的调谐帽盘,由于椭圆具有长半轴和短半轴,因此对激励起来的TM010模式的谐振频率具有一定的调谐能力,从而具有更宽的输出频率调谐范围。
椭圆形帽盘的设计步骤如下:
(1)将要求或预定输出的频率作为中心频率f0,根据加工工艺确定一个频率范围,所述的频率范围一般设置为中心频率左右3GHz;
(2)根据有源帽盘谐振腔体谐振频率公式计算出f0-3GHz频率对应的帽盘直径D,然后计算出f0+3GHz频率对应的帽盘直径d;
(3)将D作为长轴,d作为短轴设计椭圆帽盘。
以工作中心频率为110GHz,波导尺寸为WR10(2.54*1.27mm)的雪崩振荡腔为例,椭圆形式的调谐帽盘结构尺寸如表1所示。
表1椭圆形式的调谐帽盘尺寸
结构尺寸(mm) 谐振频率(GHz)
长半轴 1.1 107
短半轴 0.96 113
表1中,椭圆帽盘的长半轴为1.1mm,对应的TM010模式谐振频率为107GHz,短半轴为0.96mm,对应的TM010模式谐振频率为113GHz。由于椭圆调谐帽盘的长半轴和短半轴不同,在调谐旋转帽盘的过程中,沿波导输出方向的帽盘半径会连续变化,对应的雪崩二极管激励的谐振模式的频率也会在一定的范围内改变,从而最终实现振荡器输出频率的调谐。
(6)雪崩二极管与帽盘位置的调谐
本发明中,雪崩二极管15与调谐帽盘14和下腔体9中的波导槽底面,构成了一个开放式的径向谐振腔,雪崩二极管15在波导腔中的位置高度可以调谐。雪崩二极管15的高度越低,则调谐帽盘14与下腔体9中波导槽底面的距离越小,越接近于径向谐振腔的结构,利于雪崩管激励并建立稳定的谐振模式;但当雪崩二极管15的高度过低时,调谐帽盘14沿波导输出方向的激励效率也会相应降低,从而影响输出功率。以工作中心频率为110GHz,波导尺寸为WR10(2.54*1.27mm)的雪崩振荡腔为例,在调谐帽盘14采用表1结构尺寸的条件下,雪崩二极管15的调谐高度对输出功率的影响如表2所示。
表2雪崩二极管高度对输出功率的影响
距离波导地面高度(mm) 输出频率(GHz) 输出功率(mW)
0.1 110 1.3
0.3 110 2.5
0.5 110 3
0.7 110 1.8
0.9 110 0.6
本发明未详细说明部分属于本领域技术人员公知常识。

Claims (4)

1.一种频率可调节、功率可调谐的太赫兹雪崩振荡器,包括上腔压块(3)、馈电正极金属膜片(4)、绝缘垫片(5)、馈电负极金属垫片固定螺钉(6)、馈电负极金属垫片(7)、上腔体(8)、下腔体(9);从上至下将上腔压块(3)、馈电正极金属膜片(4)、绝缘垫片(5)、上腔体(8)、下腔体(9)依次叠放并进行物理结构装配,构成雪崩振荡器的主腔体,馈电负极金属垫片7固定安装在上述主腔体的两侧;其特征在于:还包括调谐活塞(1)、活塞锁紧螺母(2)、管座装配顶针锁紧螺母(10)、管座装配顶针(11)、弹簧顶针(12)、弹簧(13)、调谐帽盘(14)、雪崩二极管(15);
雪崩振荡器的振荡腔由上腔体(8)与下腔体(9)组合而成,下腔体(9)的腔体顶面加工有波导槽(19),波导槽(19)与上腔体(8)组合构成了标准波导腔;雪崩二极管(15)通过管座装配顶针(11)装配在下腔体(9)顶面中心的波导腔中,且通过旋转管座装配顶针(11)能够调整雪崩二极管(15)在波导腔中的高低位置,调整到位后通过锁紧螺母(10)固定;调谐活塞(1)中自上而下依次安装弹簧顶针(12)、弹簧(13)和调谐帽盘(14),装配有调谐帽盘(14)、弹簧(13)、弹簧顶针(12)的调谐活塞(1)从上腔压块(3)中旋入直达波导腔,由弹簧(13)保证调谐帽盘(14)在雪崩二极管(15)不同的高低位置时始终保持与雪崩二极管(15)物理接触;调谐活塞(1)的位置通过活塞锁紧螺母(2)固定。
2.根据权利要求1所述的一种频率可调节、功率可调谐的太赫兹雪崩振荡器,其特征在于:所述的调谐帽盘(14)包括帽盘固定轴和帽盘;帽盘固定轴在调谐活塞(1)中与弹簧(13)接触,帽盘固定轴的下端安装帽盘,所述的帽盘为椭圆形。
3.根据权利要求2所述的一种频率可调节、功率可调谐的太赫兹雪崩振荡器,其特征在于:所述的椭圆形帽盘的设计步骤如下:
(1)将要求或预定输出的频率作为中心频率f0,根据加工工艺确定一个频率范围,所述的频率范围设置为中心频率左右3GHz;
(2)根据有源帽盘谐振腔体谐振频率公式计算出f0-3GHz频率对应的帽盘直径D,然后计算出f0+3GHz频率对应的帽盘直径d;
(3)将D作为长轴,d作为短轴设计椭圆帽盘。
4.根据权利要求2所述的一种频率可调节、功率可调谐的太赫兹雪崩振荡器,其特征在于:通过旋转调谐活塞(1)改变椭圆帽盘的侧视投影尺寸,实现频率覆盖。
CN201310446051.2A 2013-09-26 2013-09-26 一种频率可调节、功率可调谐的太赫兹雪崩振荡器 Active CN103500867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310446051.2A CN103500867B (zh) 2013-09-26 2013-09-26 一种频率可调节、功率可调谐的太赫兹雪崩振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310446051.2A CN103500867B (zh) 2013-09-26 2013-09-26 一种频率可调节、功率可调谐的太赫兹雪崩振荡器

Publications (2)

Publication Number Publication Date
CN103500867A CN103500867A (zh) 2014-01-08
CN103500867B true CN103500867B (zh) 2015-05-27

Family

ID=49866052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310446051.2A Active CN103500867B (zh) 2013-09-26 2013-09-26 一种频率可调节、功率可调谐的太赫兹雪崩振荡器

Country Status (1)

Country Link
CN (1) CN103500867B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825570B (zh) * 2014-01-22 2017-01-11 浙江大学 基于雪崩二极管高次倍频得到太赫兹波的腔体
CN105244247B (zh) * 2015-11-04 2017-03-15 中国工程物理研究院应用电子学研究所 一种可调慢波结构微波器件装置
CN105676186B (zh) * 2016-01-27 2018-11-13 西安电子工程研究所 一种基于impatt管的馈电电路
CN105552508A (zh) * 2016-01-27 2016-05-04 西安电子工程研究所 基于impatt二极管的w波段稳频振荡器
CN105680120B (zh) * 2016-01-27 2018-04-13 西安电子工程研究所 一种impatt二极管夹持紧固装置
CN109283448B (zh) * 2018-10-08 2021-01-05 北方电子研究院安徽有限公司 一种雪崩二极管高频调谐装置
CN109743021A (zh) * 2018-12-19 2019-05-10 安徽华东光电技术研究所有限公司 一种基于准光学技术的固态电子振荡器
TWI717067B (zh) 2019-10-23 2021-01-21 財團法人工業技術研究院 主軸電能及訊號傳輸裝置
CN113823890B (zh) * 2021-09-23 2022-04-12 华东光电集成器件研究所 一种高频大功率impatt管电参数调试装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1306406A (en) * 1970-04-14 1973-02-14 Secr Defence Tuning apparatus for coaxial resonant cavities
CN1949585A (zh) * 2006-10-27 2007-04-18 镇江蓝宝石电子实业有限公司 射频中心频率可调滤波器
EP2530453A1 (en) * 2011-05-31 2012-12-05 Victor Belitsky THz-sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600387B2 (en) * 2001-04-17 2003-07-29 Channel Master Llc Multi-port multi-band transceiver interface assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1306406A (en) * 1970-04-14 1973-02-14 Secr Defence Tuning apparatus for coaxial resonant cavities
CN1949585A (zh) * 2006-10-27 2007-04-18 镇江蓝宝石电子实业有限公司 射频中心频率可调滤波器
EP2530453A1 (en) * 2011-05-31 2012-12-05 Victor Belitsky THz-sensor

Also Published As

Publication number Publication date
CN103500867A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
CN103500867B (zh) 一种频率可调节、功率可调谐的太赫兹雪崩振荡器
CN102208315B (zh) 紧凑型低频段频率可调相对论返波振荡器
CN105826150B (zh) 一种基于特异Smith‑Purcell效应的太赫兹辐射源
Fang et al. Design of wideband omnidirectional two-layer transparent hemispherical dielectric resonator antenna
CN105490019B (zh) 一种圆极化脊波导缝隙天线
Konoplev et al. Surface wave Cherenkov maser based on a periodic lattice
GB623385A (en) Improvements in or relating to high frequency electrical systems employing wave guides
CN107425237B (zh) 一种矩形波导te10模到圆波导te21模的模式激励器
CN203326117U (zh) 一种结构紧凑的16元宽带基片集成波导背腔天线阵
CN102255136A (zh) 缝隙天线及雷达装置
CN205595463U (zh) 波导缝隙耦合圆极化天线
CN102739170A (zh) 一种用于太赫兹功率放大器的高频结构
CN103779763B (zh) 一种基于阵列光栅结构的太赫兹功率源高频结构
CN111864377B (zh) 宽带共线缝波导缝隙天线
CN105609965B (zh) 一种产生贝塞尔波束的天线
CN203660060U (zh) 一种高功率光栅极化器
CN106653525A (zh) 基于高次模式工作机制的毫米波段渡越时间振荡器
CN107946156A (zh) 可工作在长脉冲状态下同轴渡越时间振荡器电子收集极
CN107645052A (zh) 高功率微波连续横向枝节缝隙径向线天线
CN107039781B (zh) 一种基于平面结构的新型模式转换天线
CN106299713B (zh) 用于产生射频oam波束的hm-siw环形谐振腔结构天线及复用器
CN112187181B (zh) 一种基于史密斯帕塞尔辐射的扩展互作用振荡器设计方法
CN105846016A (zh) 一种高功率微波te31-te11模式转换器
Mollah et al. Design and performance improvement of microstrip patch antenna using graphene material for communication applications
CN107768825B (zh) 一种十字形圆极化槽天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant