CN103493313B - 脉冲模式种子激光的稳定 - Google Patents

脉冲模式种子激光的稳定 Download PDF

Info

Publication number
CN103493313B
CN103493313B CN201280014952.8A CN201280014952A CN103493313B CN 103493313 B CN103493313 B CN 103493313B CN 201280014952 A CN201280014952 A CN 201280014952A CN 103493313 B CN103493313 B CN 103493313B
Authority
CN
China
Prior art keywords
pulse
laser
seed
measure
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280014952.8A
Other languages
English (en)
Other versions
CN103493313A (zh
Inventor
卢福原
常峰
吴海胜
孙云龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Scientific Industries Inc
Original Assignee
Electro Scientific Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Scientific Industries Inc filed Critical Electro Scientific Industries Inc
Publication of CN103493313A publication Critical patent/CN103493313A/zh
Application granted granted Critical
Publication of CN103493313B publication Critical patent/CN103493313B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

包括脉冲种子激光源(12)、激光放大器(20)和光功率放大器(30)的可编程量身定做的激光脉冲发生器(10)产生响应于施加到种子激光(第一实施方案)或连续波种子激光输出的外部调制器(第二实施方案)的可编程模拟量身定做的脉冲信号而成形的高功率量身定做的激光脉冲(32)。所述可编程模拟量身定做的脉冲信号是通过组合由多通道信号发生器(18)产生的多个单独可编程模拟脉冲来产生的。施加到所述脉冲种子激光源的偏置产生预发射激光,然后产生量身定做的激光脉冲,使得所述种子激光源谱线和谱线宽度稳定在固态激光放大器的窄增益谱线宽度内,从而给予所述激光输出的脉冲峰值稳定。所述量身定做的激光脉冲发生器允许产生较短波长的谐波并向各种微加工应用提供经济、可靠的激光源。

Description

脉冲模式种子激光的稳定
版权声明
2012ElectroScientificIndustries,Inc。本专利文件的公开的部分包含受到版权保护的材料。当拓制出现在专利与商标局专利文件或记录中时,版权所有人不反对专利文件或专利公开的任一者进行的拓制,否则无论如何将保留所有版权权利。37CFR§1.71(d)。
技术领域
本公开涉及产生用于激光微加工应用中的量身定做的激光脉冲,并且具体而言,涉及使用高效率可编程量身定做的激光脉冲发生器的方法和系统,所述高效率可编程量身定做的激光脉冲发生器发射响应于可编程电信号脉冲而由种子激光产生并被光纤激光和固态功率放大器放大的量身定做的激光脉冲。
背景技术
存储芯片冗余链路处理是激光微加工应用的一个实例。半导体存储器阵列芯片的制造完成之后,芯片的暴露表面上的集成电路(IC)模式由钝化材料的电绝缘层密封。典型的钝化材料包括树脂或热塑性聚合物,例如,聚酰亚胺。这个最终“钝化”层的目的是防止芯片表面与环境湿度化学反应,以保护表面不受环境颗粒影响并吸收机械应力。在钝化之后,芯片被安装到与嵌入有允许探测和功能测试存储单元的金属互连的电子封装中。当许多冗余存储单元中的一个被确定为故障时,通过切断导电互连或导线、将那个单元连接到阵列中它邻接的单元来禁用所述单元。通过“链接处理”或“链接吹”来禁用个别存储单元是由激光微加工设备来实现的,所述激光微加工设备能够引导激光束能量,来在高度本地化的区域中去除链接材料而不会对与目标邻近、在目标下方或上方的材料造成损害。选择性地处理指定链接可通过改变激光束波长、光斑大小、脉冲重复频率、脉冲波形或影响能量传递的其它空间或时间光束参数来实现。
需要后处理存储器阵列或其它类型的IC芯片中导电链接的激光微加工过程使用具有快速上升前沿(例如,具有1-2ns上升时间)的尖脉冲来达成期望的质量、产量和可靠性。为了彻底切断导电链接,激光脉冲穿透上覆钝化层,然后穿过金属互连。来自现有固态激光的典型脉冲的上升沿随脉冲宽度发生变化。在链接处理中使用具有5-20ns脉冲宽度和倾斜的、逐渐上升前沿的传统高斯型激光脉冲倾向于在钝化层中产生“火山口”,尤其是如果其厚度太大或者不平坦的话。
YunlongSun在其题为“Laserprocessingoptimizationofsemiconductorbaseddevices”(1997年,俄勒冈研究学院)的博士论文中已很好地分析了上覆钝化层的断裂行为。因为钝化层厚度是重要的参数,所以特定钝化层材料的最优厚度可由基于Sun的分析的模拟分析来确定。在IC制造期间维持对钝化层的晶圆级操作控制的困难可导致非最优厚度和较差跨晶圆或晶圆到晶圆厚度均匀性。因此,最优化用于后处理中的激光脉冲的特性可有助于补偿钝化层中变型的错误尺寸和来源。
Smart的美国专利号6,281,471建议使用基本上矩形激光脉冲来进行链接处理。这种锋利的脉冲可通过将主振荡器激光与光纤功率放大器耦接来产生。这个配置通常称为主振荡器功率放大器配置(MOPA),或在光纤功率放大器的情况下称为MOFPA。这个低功率主振荡器通常使用能够产生具有快速上升时间的矩形脉冲的二极管激光。另一方面,在让渡给本专利申请的受让人的YunlongSun等人(Sun'516)的“MethodsofandLaserSystemsForLinkProcessingUsingLaserPulsesWithSpeciallyTailoredPowerProfiles”的美国专利号7,348,516中陈述:尽管有垂直上升沿,但是基本上矩形激光脉冲并不是进行链接处理的最佳激光脉冲波形。相反,Sun'516描述了在一个实施方案中类似椅子的特别量身定做的激光脉冲波形的使用,其具有到最有效处理链接的快速上升峰值或多个峰值,继而以在较低功率级别保持相对平坦的信号强度的直下降直到关闭。
与固定的高斯脉冲波形相比,量身定做的激光脉冲波形是有利的,因为在链接处理和其它激光处理应用期间,量身定做的激光脉冲与具有期望且可控强度的目标材料或结构互动。量身定做的激光脉冲提供优越的处理结果,因为对于多层目标结构中的目标材料或不同材料的不同处理阶段,强度是可控的。
图1A示出存储器链接处理中具有实际意义的典型量身定做的激光脉冲功率剖面。图1A的量身定做的激光脉冲功率剖面展现:(1)快速上升沿,在小于1.5ns内达到峰值功率;(2)在激光脉冲时间剖面的可选时间位置的一个峰值;和(3)低于峰值功率的平均最小功率。图1B示出接近激光脉冲时间剖面的中心发生的一个脉冲峰值,且图1C示出在激光脉冲时间剖面的不同时间发生的多个脉冲峰值。Sun等人的“GeneratingSetsofTailoredLaserPulses”的美国专利号7,126,746描述了使用图1A、1B和1C中示出类型的量身定做的激光脉冲或量身定做的激光脉冲组的存储器链接处理技术。
Sun等人的“LasersforSynchronizedPulseShapeTailoring”的美国专利号7,289,549和“MethodsForSynchronizedPulseShapeTailoring”的美国专利号7,301,981建议用两个激光介质沿两个不同长度的光路来实施的激光设计,以产生具有几个特别量身定做的激光形状的组合激光脉冲。
随着激光技术的发展,各种脉冲模式种子激光源继之以光纤放大器的设计已变得很平常。一种这样的设计在Deladurantaye等人的“DigitalLaserPulseShapingModuleandSystem”(DeladurantayePub.'741)的美国专利申请公开号2009/0323741A1中公开。DeladurantayePub.'741描述了使用高速数字-模拟转换器(DAC)来产生具有期望的脉冲波形以驱动耦接到激光源的光调制器或通过将期望的量身定做的脉冲波形注入激光源来直接用DAC驱动激光源的电流脉冲的方法。
根据DeladurantayePub.'741中描述的一个实施方案,当驱动电流脉冲驱动光学门控设备或调制器时,单个连续波二极管激光形成主振荡器且其输出被耦接到例如光电(E-O)设备或马赫-曾德(Mach-Zehnder)调制器的光学调制器来形成特别量身定做的脉冲。然后,该量身定做的脉冲被传递到光纤前置放大器,所述光纤前置放大器的输出被施加到MOPA配置的光纤功率放大器。作为一个选择,可添加谐波转换器来转换输出激光束的波长。
MOPA配置提供稳定的信号源、脉冲波形和激光束质量,但是受到较低激光功率输出级的限制。经常使用光纤放大器,因为其增益高且光泵浦和融入光学系统结构很容易。然而,绿色或紫外光谱中较高功率(即,两瓦特或更大)的MOPA链接处理系统携带了对接收用于转换到绿色或UV光的放大高功率IR激光能量的光纤功率放大器造成损害的高风险。已证明,使用光纤功率放大器来获得链接处理和需要更高功率的其它激光处理应用所需的功率级在现有光纤激光技术下极其困难。由于处理应用需要更高的激光功率,光纤放大器变成系统限制设计因素。
指定给ESI-PyroPhotonicsLasersInc.的Murison等人处理的美国专利号7,796,655公开了在光环行器中使用连续波种子二极管激光和振幅调制器来形成量身定做的脉冲光学波形的方法。DeladurantayePub.'741和Murison等人均描述了使用调制器来形成特别量身定做的脉冲,其中用以驱动调制器的波形的形状源自存储在DAC上存储器中的数字模式。DeladurantayePub.'741也描述了使用DAC来直接驱动种子二极管激光以产生适于放大的量身定做的脉冲。在这种配置中,种子二极管激光的输出展现了期望的特别量身定做的波形且可直接放大而不需要进一步调制。DeladurantayePub.'741没有讨论种子激光输出的光谱稳定性。
使用DAC产生具有期望的脉冲波形的电流脉冲的缺点是电子电路设计起来很复杂。DAC必须将量身定做的脉冲分成许多连续的部分或段。DAC产生的段数越多,量身定做的脉冲信号的分辨率将越好。DAC的脉冲定时分辨率和速度也由典型的量身定做的脉冲剖面具有小于1.5ns的前沿上升时间的操作要求来规定,以提供超过传统高斯型脉冲的链接处理益处。这个前沿上升时间指定1ns(或更小)的脉冲定时分辨率,即,每个DAC段的持续时间最多为1ns。具有这个脉冲定时分辨率和速度和50到100ns的总脉冲持续时间的量身定做的脉冲要求DAC具有多达50到100段。因此,DAC和其控制逻辑的速度必须大于1GHz。量身定做的脉冲产出所需的DAC速度和段数使得DAC实施设计起来有挑战性。
发明内容
一种可编程量身定做的激光脉冲发生器响应于可编程脉冲波形的电信号产生种子激光输出,以产生规定形状的量身定做的激光脉冲,其中脉冲宽度大约为亚纳秒到几百纳秒,且快速上升时间大约为几纳秒到亚纳秒。第一优选量身定做的激光脉冲发生器实施方案包括呈脉冲种子激光形式的脉冲激光源,所述脉冲激光源将电信号作为其输入来产生脉冲种子激光输出。第二优选量身定做的激光脉冲发生器实施方案包括调制器,所述调制器位于连续波种子激光外部并接收来自连续波种子激光的输出发射来产生脉冲种子激光输出。量身定做的激光脉冲发生器产生响应于施加到脉冲种子激光(第一实施方案)或外部调制器(第二实施方案)的电信号且由光功率放大器成形的一系列高功率量身定做的激光脉冲。量身定做的激光脉冲发生器允许功率可扩展性和产生较短波长的谐波并提供能够以高重复率操作的经济、可靠的激光源。量身定做的激光脉冲发生器产生各种波长的量身定做的激光脉冲来进行各种激光处理任务,包括激光打标、激光和孔钻、激光焊接、切割、划线、切削和用于包括太阳能电池、平板显示器或其它基板的各种金属和非金属材料的其它激光处理应用。量身定做的激光脉冲发生器实施的组合方案固有地比通过光学切割种子脉冲来形成量身定做的激光脉冲的现有的删减方法更有效。另外,所述方案产生由固态放大器所生成的稳定激光输出功率,从而提供激光功率可扩展性。
另外的方面和优势将自以下参照附图进行的优选实施方案的详细描述变得显而易见。
附图说明
图1A、1B和1C是适于激光链接处理的量身定做的脉冲波形的3个实例。
图2是本公开的可编程量身定做的激光脉冲发生器的第一优选实施方案的方框图。
图3是根据一个实施方案显示量身定做的驱动电流脉冲输入信号的优选电流驱动剖面的合成的图表。
图4是互连来建立偏置电流和图3线D的量身定做的驱动电流脉冲输入信号的两个激光驱动集成电路芯片。
图5是说明固态放大器的放大增益比光谱波长的典型固态增益元素Yb:YVO4的增益光谱。
图6A和图6B是代表固态放大器的输出的椅子型量身定做的激光脉冲输出的渲染图,其分别展现之前的较差峰值稳定性和施加偏置到图2和图7示出的种子激光之后的改善的峰值稳定性。
图7是本公开的可编程量身定做的激光脉冲发生器的第二优选实施方案的方框图。
具体实施方式
参看图2,在第一优选实施方案中,可编程量身定做的激光脉冲发生器10包括脉冲泵浦种子二极管激光12来产生脉冲种子激光输出14,所述脉冲种子激光输出具有响应于多通道模拟信号发生器18合成的量身定做的驱动电流脉冲输入信号16产生的激光脉冲强度剖面。脉冲种子激光输出14的谱线宽度和谱线稳定性是例如存储芯片链接切断的激光处理应用的重要因素,但是也是固态激光放大器产生稳定放大的重要特征。具有稳定谱线和窄谱线宽度的种子二极管激光12提供足够小以达到激光处理需要的聚焦的激光光斑大小。优选种子二极管激光12的实例是购自InnovativePhotonicSolutions,Inc.(MonmouthJunction,NJ)的1064nm单模式光谱稳定激光模型No.I1064SB0120P。这个激光特别设计用于种子高峰值功率脉冲的光纤激光,且具有特定光谱带宽1064nm±0.02nm。它使用布拉格光栅光学滤波器来达到1MHz的窄谱线宽度和每摄氏度0.007nm的稳定性。在替代性实施方案中,种子二极管激光12是种子光纤激光。
模拟信号发生器18在多个通道上产生组合起来形成量身定做的驱动电流脉冲输入信号16的编程模拟电流脉冲。优选模拟信号发生器18的实例是购自iCHaus(位于德国博登海姆市)的型号iC-HB三重155MHz激光驱动器。iC-HB驱动器是提供三通道模拟信号生成能力的集成电路,其中每个通道产生独立编程为用户指定振幅、脉冲宽度和包括小于1.5ns的快速前沿上升时间的定时参数的电流脉冲。分开三通道脉冲的延迟时间通过在期望的时间触发它们来编程。量身定做的驱动电流脉冲输入信号16是通过组合三个可编程通道电流脉冲来形成的。多个iC-HB驱动器可互连来扩大信号发生器18能够提供的可编程通道电流脉冲的数目。模拟信号发生器18可被编程来合成量身定做的驱动电流脉冲输入信号16,所述驱动电流脉冲输入信号16具有呈现许多脉冲波形中的任一个的驱动电流剖面。
脉冲种子激光输出14挑选光纤激光放大器20,光纤激光放大器20以一个或多个放大级实施来在高增益(例如,104)和低功率下在1050–1100nm范围中操作,从而产生传递到固态放大器30的放大的激光输出22。放大的激光输出22展现与被施加到光纤激光放大器20作为输入信号的脉冲种子激光输出14相同的谱线和谱线宽度特性。光纤激光放大器20的一个优选实施方案是购自nLIGHT公司(位于华盛顿州温哥华市)的单模式镱掺杂的光纤模型No.LIEKKIYb1200-6/125。技术人员将认识到,光纤长度、激光掺杂类型、掺杂水平,及泵浦水平可被选择来实现所需放大增益。以一个或多个放大级实施的固态放大器30产生以操作波长展现超窄光谱带宽的高功率激光输出32。优选固态放大器30的实例是钒酸盐(YVO)激光。钒酸盐增益介质的发射波长为1064nm,且增益光谱宽度小于0.02nm。固态放大器增益元素优选地选自各种已知Yb-或Nd-掺杂的固态激射物,最优选地为可呈棒、圆柱、磁盘或长方体形式的Yb:YVO4或Nd:YAG。
高功率激光输出32可选地施加到谐波转换光学模块34,例如,产生绿光输出的第二谐波发生器。谐波转换模块34合并非线性晶体来通过已知谐波转换技术将入射输入脉冲转换成较高谐波频率。在实施高功率激光输出32从1064nm谐波转换成355nm的第一实施方案中,谐波转换光学模块34并入类型I非严格相位匹配三硼酸锂(LBO)晶体来进行第二谐波发生(SHG)转换,然后是类型I严格相位匹配硼酸锂来进行第三谐波发生(THG)转换。在实施到266nm的谐波转换的第二实施方案中,THGLBO晶体可由严格相位匹配硼酸钡β(BBO)晶体代替。在实施到266nm的FHG转换的第三实施方案中,或者可使用CLBO。V.G.Dmitriev等人在HandbookofNonlinearOpticalCrystals(Springer-Verlag,NewYork,1991ISBN3-540-53547-0),第138-141页中描述了谐波转换过程。
图3是显示量身定做的驱动电流脉冲输入信号16的优选电流驱动剖面40的合成的图表。图3的线D示出为在脉冲期44具有时变振幅42的电流驱动剖面40代表三个电流波形的叠加。图3的线A示出通道1脉冲46的电流波形,通道1脉冲46是具有跨越驱动电流剖面40的脉冲期的脉冲宽度48的矩形脉冲。脉冲46的振幅50和脉冲宽度48建立脉冲种子激光输出14的激光脉冲强度剖面的平均最小功率。图3的线B示出通道2脉冲54的电流波形,通道2脉冲54是具有构成在驱动电流剖面40的前沿58开始的电流尖波的窄脉冲宽度56的矩形脉冲。脉冲54的振幅60和脉冲宽度56分别建立脉冲种子激光输出14的激光脉冲强度剖面的初始功率峰值的峰值振幅和持续时间。图3的线C示出通道3脉冲62的电流波形,通道3脉冲62是矩形脉冲,其比起通道2脉冲54的脉冲宽度56和振幅60分别具有更宽脉冲宽度64和更低振幅66。通道脉冲54和62时间偏移了使通道3脉冲62在驱动电流剖面40的后沿68附近构成较低峰值振幅电流脉冲的量。脉冲62的振幅66和脉冲宽度64分别建立在脉冲种子激光输出14的激光脉冲强度剖面的后沿近端的相对较低功率、较长持续时间目标材料处理脉冲的峰值振幅和持续时间。
如上文所述,每个iC-HB驱动器目前限于三个输出通道,但在本公开的范围内可构思另外的通道。例如为了下文阐述的原因叠加在偏置电流水平上的图3线D的量身定做的驱动电流信号剖面40的更精致的量身定做的电流驱动剖面需要使用另外的可编程通道来产生另外的可组合电流脉冲。这是通过将多个iC-HB驱动器连接在一起以提供6个、9个或更多个可编程通道来实现的。另外,对于驱动高量值电流的种子二极管激光超过单个iC-HB驱动器通道的最大额定电流的状况,多个通道可平行组合来合作地下降高量值电流。
图4示出具有第一iC-HB驱动器70和第二iC-HB驱动器72的实施方案,所述iC-HB驱动器适于建立具有图3线D的电流驱动剖面40的偏置电流和量身定做的驱动电流脉冲输入信号16。如上所述,iC-HB驱动器70和72中每一个具有3个通道,其中每个通道包括电流控制电压通道输入、开关输入和二极管阴极电流接收器。在图4示出的实施方案中,二极管阴极电流接收器被组合到种子二极管激光12的阴极74,其中一个通道建立偏置而另外的三个通道建立驱动电流脉冲剖面40。驱动器70上通道1包括:电流控制电压通道输入761、开关输入781和二极管阴极电流接收器161。驱动器70上通道2包括:电流控制电压通道输入762、开关输入782和二极管阴极电流接收器162。驱动器72上通道3包括:电流控制电压通道输入763、开关输入783和二极管阴极电流接收器163。另外,驱动器70上偏置通道包括:电流控制电压通道输入764、开关输入784和二极管阴极电流接收器164。定时器80被编程来建立打开和关闭驱动器70和72的开关输入的定时脉冲。当定时器80激活开关输入上的定时脉冲时,开关输入打开对应的通道二极管阴极电流接收器,从而允许通道以振幅控制器82中可配置电压预建立的脉冲振幅下降电流脉冲。当二极管阴极电流接收器在发生定时脉冲期间打开时,电流从串联的电压源84和电阻器86流经种子二极管激光12。
图4示出驱动器70和72的开关输入与建立电流脉冲触发序列的定时器80矩形脉冲定时波形的输出之间的电导体。首先,可配置电压88预建立偏置脉冲电流振幅,然后,脉冲宽度92超过驱动电流剖面40的脉冲期的矩形脉冲偏置定时波形90激活偏置电流流过种子二极管激光12。第二,可配置电压94预建立脉冲振幅50,然后,具有对应于脉冲宽度48的脉冲宽度98的定时波形96触发通道1激活脉冲46(图3的线A)。第三,可配置电压100预建立脉冲振幅60,然后,具有对应于脉冲宽度56的脉冲宽度104的定时波形102触发通道2激活脉冲54(图3的线B)。第四,可配置电压106预建立脉冲振幅66,然后,具有对应于脉冲宽度64的脉冲宽度110的定时波形108触发通道3激活脉冲62(图3的线C)。
替代性实施方案使用一个iC-HB驱动器来产生量身定做的驱动电流脉冲输入信号16,其特征是单个、初始脉冲峰值和较低平均功率级,其中时间剖面类似于图1A的量身定做的脉冲的时间剖面。单个通道引入偏置电流水平,且剩余的两个通道以类似于上文参看图4描述的驱动器70的方式来合成初始脉冲峰值和较低平均功率级。
只要量身定做的驱动电流脉冲输入信号16在脉冲模式下用快速(即,小于1.5ns)前沿驱动种子二极管激光12,就有固态激光放大器30的高功率激光输出32的脉冲峰值不稳定性。在研究这个现象之后,申请人确定激光输出32的脉冲峰值不稳定性是由组合当种子二极管激光12承受脉冲的泵浦时脉冲种子激光输出14的谱线不稳定性与固态放大器30的相对窄增益谱线宽度造成的。
图5是说明固态放大器30的输出32处的所述不稳定性是如何产生的图表。参看图5,固态放大器30具有放大增益比光谱波长反应曲线114。全宽、一半最大功率的增益光谱带宽约是0.02nm。因此,种子二极管激光12的谱线或谱线宽度的任何波动(不稳定性)导致脉冲种子激光输出14的谱线沿反应曲线114经受不同量的增益,从而导致激光输出32的峰值功率不稳定性(抖动)。所述脉冲峰值不稳定性在放大的激光输出22不明显,因为光纤激光放大器20的增益介质的光谱带宽相对较宽(50nm)。
图6A是代表固态放大器30的高功率激光输出32的椅子型量身定做的脉冲的示波器显示截图渲染。图6A示出高功率激光输出32的激光脉冲强度剖面的前沿124处脉冲峰值122的不稳定性。申请人相信激光输出32的脉冲峰值不稳定性的发生是由于当被具有小于1.5ns的前沿的驱动电流脉冲输入信号16刺激时种子二极管激光12未能停在指定光谱带宽和激光波长稳定性导致的。申请人认为,暗示连续波操作的现有测量和性能分级的种子二极管激光制造商规格不适用于所述的脉冲激光操作条件。以脉冲模式操作的种子二极管激光在脉冲开始时展现激光发射谱线抖动,然后停在指定的光谱稳定性和谱线宽度。当种子二极管激光12与固态放大器30集成时,YVO增益介质的窄光谱宽度公开种子二极管激光12的谱线的不稳定性。
申请人发现,将之前开始并持续通过主要量身定做的驱动电流脉冲输入信号16的部分的低振幅偏置电流脉冲施加到种子二极管激光12从种子二极管激光12产生低功率偏置激光,即,预发射激光,所述低功率偏置激光充分稳定种子二极管激光12的脉冲种子激光输出14的谱线和谱线宽度并最小化先前可观察的脉冲峰值122的不稳定性。图6B示出具有稳定脉冲峰值功率128的所得量身定做的激光输出32。偏置电流脉冲的振幅足够低以从种子二极管激光12产生相对低的预发射激光输出(未示出),使得激光输出32展现优良的脉冲峰值稳定,但预发射激光远低于可在放大和谐波发生级之后检测到的功率级。在开始低功率电流偏置脉冲之后不久即施加主要量身定做的驱动电流脉冲输入信号16,所以,来自固态放大器30的最终激光脉冲输出32可传递量身定做的激光脉冲,而不会有不理想的脉冲峰值不稳定性。低功率电流偏置脉冲和量身定做的驱动电流脉冲输入信号16的前沿之间的时间延迟在几纳秒到毫秒的范围。低功率电流偏置脉冲部分重叠优选地在几纳秒到毫秒的范围的主要量身定做的驱动电流脉冲输入信号16,但是可延伸穿过主要的量身定做的驱动电流脉冲输入信号16(如图4指示)。这个低振幅偏置电流脉冲可如下文所讨论由iC-HB驱动器70和72的一个通道产生,或由独立信号发生器产生。
在图4示出的实施方案中,驱动器70模拟信号发生器18的偏置通道用以传递低电流、宽偏置脉冲来提供低功率预发射激光。优选偏置脉冲电流级是在种子二极管激光12的激光阈值的1.0到1.2倍的范围。不超过激光阈值电流3.0倍的偏置电流提供期望的效果。对于使用来自InnovativePhotonicSolutions的种子二极管激光12的优选实施方案,电流不大于46mA且优选地在7mA到46mA的范围中。这个偏置电流脉冲在量身定做的驱动电流脉冲输入信号16前预选择的时间延迟(例如约10ns),来允许种子二极管激光12稳定。偏置电流减小了激光脉冲输出32的脉冲峰值122中约16%到约4%的抖动。图6B示出具有展现前沿130处稳定性的期望的脉冲峰值128的固态放大器30的所得量身定做的激光脉冲输出32。偏置电流级被选择来从种子二极管激光12产生比量身定做的驱动电流脉冲输入信号16产生的输出功率小得多的输出功率。因此,偏置脉冲电流可大部分与量身定做的驱动电流脉冲输入信号16重叠。可选的谐波转换器光学模块34可用来减小偏置激光输出组分,这是因为其受非线性谐波转换过程抑制。
参看图7,在第二优选实施方案中,可编程量身定做的激光脉冲发生器140包括产生连续波激光输出144的连续波种子激光142。外部调制器146从种子激光142接收连续波激光输出144且从模拟信号发生器18接收量身定做的驱动电流脉冲输入信号16来产生脉冲种子激光输出14。优选连续波种子激光是来自InnovativePhotonicSolutions的上文识别的种子二极管激光。或者,可使用Murison等人描述的连续波单频率光纤激光。外部调制器可包括光调制器,例如,E-O设备或带宽在1064nm大于3GHz的APE型锂铌马赫-曾德调制器。脉冲发生器140的剩余组件与脉冲发生器10的剩余组件相同,因此,用相同的元件符号识别。
上文使用的术语和描述是仅以说明的方式阐述而不旨在限制。技术人员将认识到,可在不脱离本发明的基本原理的情况下对上述实施方案的细节进行许多变形。因此,本发明的范围应仅由权利要求书确定。

Claims (20)

1.一种发射特征是时间依赖性激光脉冲强度剖面的脉冲激光输出的可编程量身定做的激光脉冲发生器,其包括:
多通道模拟信号发生器,其产生组合以形成量身定做的脉冲模拟驱动输入信号的多个可编程时间偏移信号脉冲,其包含界定激光脉冲强度剖面的脉冲波形;
脉冲种子激光源,其与所述多通道模拟信号发生器可操作地相关且响应于所述量身定做的脉冲模拟驱动输入信号来产生具有所述激光脉冲强度剖面的脉冲种子激光输出,所述脉冲种子激光源特征是谱线和谱线宽度;和
激光放大器,其用于接收所述脉冲种子激光输出并产生具有激光脉冲强度剖面的放大的激光输出,所述激光脉冲强度剖面对应于所述脉冲种子激光输出的所述激光脉冲强度剖面;
固态功率放大器的一个或多个级,其用于接收且进一步放大所述放大的激光输出来产生功率放大器脉冲激光输出,所述固态功率放大器具有特征是窄光谱增益宽度的增益介质;和
偏置源,其用于向所述脉冲种子激光源提供电偏置,来定义不同于所述功率放大器脉冲激光输出的所述激光脉冲强度剖面的波形,且来暂时引导量身定做的脉冲模拟驱动输入信号,且造成所述谱线和谱线宽度维持在所述固态功率放大器的所述窄光谱增益宽度内,且从而有助于所述功率放大器脉冲激光输出的稳定性。
2.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述脉冲种子激光源包括种子二极管激光。
3.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述脉冲种子激光源包括种子光纤激光。
4.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述脉冲种子激光源包括发射连续波激光输出的连续波激光和与所述连续波激光合作来响应于所述量身定做的脉冲模拟驱动输入信号调制所述连续波激光输出从而产生所述脉冲种子激光输出的脉冲调制器。
5.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述激光放大器包括接收并放大所述脉冲种子激光输出的光纤激光放大器的一个或多个级。
6.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述多个可编程时间偏移信号脉冲中的一个形成所述电偏置,所述电偏置脉冲部分重叠所述量身定做的脉冲模拟驱动输入信号且具有在所述脉冲种子激光源的发射激光电流阈值的1.0到3.0倍范围内的电流级。
7.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述电偏置是叠加在所述脉冲种子激光输出上的连续波激光输出的形式。
8.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述脉冲种子激光输出具有脉冲激光输出波长,且所述可编程量身定做的激光脉冲发生器还包括谐波转换器,所述谐波转换器与所述固态功率放大器光学相关来执行所述脉冲种子激光输出的所述脉冲激光输出波长的谐波转换,以产生波长比所述脉冲激光输出波长短的激光输出。
9.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述脉冲种子激光输出的所述激光脉冲强度剖面包括1.5ns或是更快的前沿上升时间。
10.如权利要求1所述的可编程量身定做的激光脉冲发生器,其中所述脉冲种子激光输出的所述激光脉冲强度剖面包括脉冲宽度在亚纳秒到几百纳秒的范围中。
11.一种从脉冲种子激光源产生可编程脉冲激光输出的方法,其特征是从响应于驱动信号脉冲输入而产生的可编程随时间变化的激光脉冲强度剖面,所述可编程脉冲激光输出包括由具有特征是窄光谱增益宽度的增益介质的固态功率放大器来产生的放大的激光输出,所述放大的激光输出具有激光脉冲强度剖面,其对应于在谱线和谱线宽度下所产生的对应于脉冲种子激光输出的激光脉冲强度剖面,所述方法包括:
合成具有界定所述可编程随时间变化的激光脉冲强度剖面的脉冲波形的所述驱动信号脉冲输入;
使用提供了足够的持续时间的偏置来偏置所述脉冲种子激光源,以稳定所述脉冲种子激光输出在稳定的谱线和谱线宽度中,所述偏置定义不同于所述放大的激光输出的所述激光脉冲强度剖面的波形;
将所述驱动信号脉冲输入提供到所述脉冲种子激光源,使得其以所述稳定的谱线和谱线宽度和稳定的脉冲峰值发射所述脉冲种子激光输出;以及
用所述固态功率放大器放大所述脉冲种子激光输出,以产生所述放大的激光输出,所述放大的激光输出以在所述固态功率放大器的所述窄光谱增益宽度内的所述稳定的谱线和谱线宽度和脉冲峰值来展现所述脉冲种子激光输出的基本上准确可靠的复制。
12.如权利要求11所述的方法,其中所述驱动信号脉冲输入的所述合成是由产生多个时间偏移电流脉冲的可编程多通道模拟信号发生器来执行的,所述多个时间偏移电流脉冲组合以形成模拟类型的所述驱动信号脉冲输入。
13.如权利要求11所述的方法,其中所述脉冲种子激光输出具有脉冲激光输出波长,且所述方法还包括将所述放大的激光输出施加到谐波转换器来执行所述脉冲激光输出波长的谐波转换。
14.如权利要求11所述的方法,其中所述脉冲种子激光源包括种子二极管激光。
15.如权利要求14所述的方法,其中所述偏置包括具有电流级是在种子二极管激光的激光阈值的1.0到1.2倍的范围中的偏置脉冲。
16.如权利要求15所述的方法,其中所述电流级不超过激光阈值电流的3.0倍。
17.如权利要求16所述的方法,其中所述电流级在7mA到46mA的范围中。
18.如权利要求15所述的方法,其中所述偏置脉冲暂时引导并部分重叠所述驱动信号脉冲输入。
19.如权利要求18所述的方法,其中所述偏置脉冲藉由前预选择的期间来暂时引导所述驱动信号脉冲输入。
20.如权利要求19所述的方法,其中所述前预选择的期间是大约10ns。
CN201280014952.8A 2011-03-31 2012-03-30 脉冲模式种子激光的稳定 Expired - Fee Related CN103493313B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/076,970 2011-03-31
US13/076,970 US20120250707A1 (en) 2011-03-31 2011-03-31 Stabilization of pulsed mode seed lasers
PCT/US2012/031530 WO2012135665A2 (en) 2011-03-31 2012-03-30 Stabilization of pulsed mode seed lasers

Publications (2)

Publication Number Publication Date
CN103493313A CN103493313A (zh) 2014-01-01
CN103493313B true CN103493313B (zh) 2016-04-13

Family

ID=46927218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280014952.8A Expired - Fee Related CN103493313B (zh) 2011-03-31 2012-03-30 脉冲模式种子激光的稳定

Country Status (7)

Country Link
US (1) US20120250707A1 (zh)
EP (1) EP2692029A4 (zh)
JP (1) JP2014512679A (zh)
KR (1) KR20140046404A (zh)
CN (1) CN103493313B (zh)
TW (1) TW201251243A (zh)
WO (1) WO2012135665A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817827B2 (en) * 2011-08-17 2014-08-26 Veralas, Inc. Ultraviolet fiber laser system
CN103001118A (zh) * 2012-12-04 2013-03-27 广东汉唐量子光电科技有限公司 一种增益窄化控制的全光纤高功率皮秒脉冲激光放大器
WO2014105653A2 (en) * 2012-12-31 2014-07-03 Nlight Photonics Corporation Pulsed bias current for gain switched semiconductor lasers for amplified spontaneous emission reduction
US9452494B2 (en) * 2013-03-13 2016-09-27 Ethicon, Inc. Laser systems for drilling holes in medical devices
JP6367569B2 (ja) * 2014-02-13 2018-08-01 スペクトロニクス株式会社 レーザ光源装置
CN104868353B (zh) * 2015-05-07 2017-11-21 清华大学 一种激光产生系统及方法
US9785050B2 (en) * 2015-06-26 2017-10-10 Cymer, Llc Pulsed light beam spectral feature control
WO2017004798A1 (en) * 2015-07-08 2017-01-12 Source Photonics (Chengdu) Co., Ltd. A multifunctional laser diode driving circuit, a module comprising the same, and a method using the same
KR101787526B1 (ko) * 2016-02-25 2017-10-18 주식회사 이오테크닉스 레이저 장치 및 레이저 발생 방법
KR102393457B1 (ko) * 2016-05-26 2022-05-02 가부시키가이샤 니콘 펄스 광 생성 장치, 펄스 광 생성 방법, 펄스 광 생성 장치를 구비한 노광 장치 및 검사 장치
TWI664043B (zh) * 2017-12-07 2019-07-01 新代科技股份有限公司 雷射打標機及雷射打標控制方法
DE102017129637A1 (de) * 2017-12-12 2019-06-13 Westfälische Wilhelms-Universität Münster Ultrakurz-Impulslasersystem mit schnell abstimmbarer Zentralwellenlänge
US11081855B2 (en) * 2018-06-18 2021-08-03 Coherent, Inc. Laser-MOPA with burst-mode control
JP2020053423A (ja) * 2018-09-21 2020-04-02 浜松ホトニクス株式会社 レーザ装置及びレーザ波形制御方法
CN110299664A (zh) * 2019-05-29 2019-10-01 长春新产业光电技术有限公司 一种高能量超快脉宽和重复频率可调谐的混合放大激光器
CN113395056B (zh) * 2021-06-11 2023-08-29 西安交通大学 一种快前沿大电流脉冲调制器电路及脉冲调制器
CN115064933B (zh) * 2022-06-06 2024-09-17 山东大学 一种皮秒长脉冲串等幅放大装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982406A (en) * 1989-10-02 1991-01-01 The United States Of America As Represented By The Secretary Of The Air Force Self-injection locking technique
CN1839013A (zh) * 2003-08-19 2006-09-27 电子科学工业公司 利用激光器进行连线处理的方法
CN101496320A (zh) * 2006-07-27 2009-07-29 伊雷克托科学工业股份有限公司 串接光放大器
CN101523673A (zh) * 2006-09-29 2009-09-02 热光子学镭射公司 用于脉冲激光源发射成形光波形的方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171037A (ja) * 1983-03-18 1984-09-27 Hitachi Ltd 半導体レーザの駆動方法及び駆動装置
JPH0799584B2 (ja) * 1985-12-24 1995-10-25 株式会社日立製作所 光学式情報記録再生装置
JPH07141677A (ja) * 1993-11-18 1995-06-02 Olympus Optical Co Ltd 半導体レーザの駆動装置
JPH07273387A (ja) * 1994-03-31 1995-10-20 Fanuc Ltd 出力波形制御方式
US6281471B1 (en) * 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US7593440B2 (en) * 2005-03-29 2009-09-22 Coherent, Inc. MOPA laser apparatus with two master oscillators for generating ultraviolet radiation
CN1976262B (zh) * 2006-12-08 2011-04-20 华为技术有限公司 一种稳定多通道光波长的方法和装置
GB0713265D0 (en) * 2007-07-09 2007-08-15 Spi Lasers Uk Ltd Apparatus and method for laser processing a material
DE102007044438A1 (de) * 2007-09-18 2009-03-19 Osram Opto Semiconductors Gmbh Schaltungsanordnung zum Betrieb einer Pulslaserdiode und Verfahren zum Betrieb einer Pulslaserdiode
CA2727985C (en) * 2008-06-27 2015-02-10 Institut National D'optique Digital laser pulse shaping module and system
US8238390B2 (en) * 2008-06-27 2012-08-07 Institut National D'optique Methods for stabilizing the output of a pulsed laser system having pulse shaping capabilities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982406A (en) * 1989-10-02 1991-01-01 The United States Of America As Represented By The Secretary Of The Air Force Self-injection locking technique
CN1839013A (zh) * 2003-08-19 2006-09-27 电子科学工业公司 利用激光器进行连线处理的方法
CN101496320A (zh) * 2006-07-27 2009-07-29 伊雷克托科学工业股份有限公司 串接光放大器
CN101523673A (zh) * 2006-09-29 2009-09-02 热光子学镭射公司 用于脉冲激光源发射成形光波形的方法和系统

Also Published As

Publication number Publication date
WO2012135665A2 (en) 2012-10-04
EP2692029A2 (en) 2014-02-05
KR20140046404A (ko) 2014-04-18
TW201251243A (en) 2012-12-16
JP2014512679A (ja) 2014-05-22
CN103493313A (zh) 2014-01-01
WO2012135665A3 (en) 2012-12-27
US20120250707A1 (en) 2012-10-04
EP2692029A4 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
CN103493313B (zh) 脉冲模式种子激光的稳定
CN101523673B (zh) 用于脉冲激光源发射成形光波形的方法和系统
US8309885B2 (en) Pulse temporal programmable ultrafast burst mode laser for micromachining
US7974319B2 (en) Spectrally tailored pulsed fiber laser oscillator
CN101496320B (zh) 串接光放大器
US7724787B2 (en) Method and system for tunable pulsed laser source
US7529281B2 (en) Light source with precisely controlled wavelength-converted average power
US7817686B2 (en) Laser micromachining using programmable pulse shapes
US8106329B2 (en) Laser processing of conductive links
US9461436B2 (en) Pulse laser device and burst mode using same, and method for controlling a variable burst mode
CN102368588B (zh) 一种提高超短脉冲对比度的方法
WO2007064298A1 (en) Q-switched laser arrangement
CN102510001A (zh) 二倍频绿光激光器
CN104868353B (zh) 一种激光产生系统及方法
He et al. 4 mJ rectangular-envelope GHz-adjustable burst-mode fiber-bulk hybrid laser and second-harmonic generation
US11482834B1 (en) High power long wavelength pulsed IR laser system with highly variable pulse width and repetition rate
CN106848826A (zh) 一种双电光q开关再生放大装置
McComb et al. Pulsed Yb: fiber system capable of> 250kW peak power with tunable pulses in the 50ps to 1.5 ns range
Ouzounov et al. Fiber-based drive laser systems for the Cornell ERL electron photoinjector
Demske Master-Oscillator-Power-Amplifier (MOPA) Laser Sources Used as Drive Lasers for Photoinjectors for High-Gain, Free Electron Lasers (FELs)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20170330

CF01 Termination of patent right due to non-payment of annual fee