CN103487067B - 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统 - Google Patents

利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统 Download PDF

Info

Publication number
CN103487067B
CN103487067B CN201310473672.XA CN201310473672A CN103487067B CN 103487067 B CN103487067 B CN 103487067B CN 201310473672 A CN201310473672 A CN 201310473672A CN 103487067 B CN103487067 B CN 103487067B
Authority
CN
China
Prior art keywords
light
optical fiber
wavelength
interference
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310473672.XA
Other languages
English (en)
Other versions
CN103487067A (zh
Inventor
肖倩
贾波
卞庞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201310473672.XA priority Critical patent/CN103487067B/zh
Publication of CN103487067A publication Critical patent/CN103487067A/zh
Priority to PCT/CN2014/088326 priority patent/WO2015051758A1/zh
Priority to US15/028,865 priority patent/US10024697B2/en
Application granted granted Critical
Publication of CN103487067B publication Critical patent/CN103487067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • G08B13/12Mechanical actuation by the breaking or disturbance of stretched cords or wires
    • G08B13/122Mechanical actuation by the breaking or disturbance of stretched cords or wires for a perimeter fence
    • G08B13/124Mechanical actuation by the breaking or disturbance of stretched cords or wires for a perimeter fence with the breaking or disturbance being optically detected, e.g. optical fibers in the perimeter fence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Optical Transform (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属光纤传感技术领域,具体为一种利用波分复用技术降低干涉路径散(反)射光干扰的方法。该方法在感应光纤末端串接入波分复用器,利用波分复用器将一个波长成分从工作路径中分出,用于测量散(反)射光产生的干扰信号,以该信号为参考,将受到散射光干扰的有效信号成分提取出来——获得纯净的有效信号。这种方法结构简单,由于在感应光纤末端连接的装置为无源,无需供电,系统易于实现,特别适用于感应光纤末端所处位置供电困难的场合。本发明适用于长距离管线监控、大范围光纤周界安防等。

Description

利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统
技术领域
本发明属光纤传感技术领域,具体涉及一种消减光纤传感器中背向散射光影响的方法与系统。
背景技术
光纤传感技术常被用于大范围、长距离的监测中,如,应用于石油管线,高压电网,输气管道、通信光缆等基础设施的安全监测,它把光纤作为感应器,实时采集相关扰动信号,通过对特征的分析来确定扰动发生的位置。单芯反馈式光路结构是感应段光纤使用单根光纤,光纤自身不用闭合,仅在光纤末端加一反馈装置,如反射镜,构成干涉光路。在实际应用中,这种结构铺设方便、灵活。这类监测系统的特点是携带扰动信息的光是传输到光纤末端后,经反馈装置反馈的光。
如下是单芯反馈式定位系统采用的一种定位技术。
图1所示的为一感应段光纤(光缆),1为光纤(光缆)的起始点,感应段的末端有一反馈装置2,如反射镜,入射光经反馈装置作用后原路返回。设外界D点有一扰动,对光相位产生的调制为,当光先后两次经过扰动点D,相位受到的调制为:
其中,,L为扰动点D距反馈装置2的距离,c为真空中的光速,为光纤的等效折射率。
构造干涉光路,如图2所示。
干涉光路由N*M(N、M为整数)耦合器3、P*Q(P、Q为整数)耦合器4、光纤延迟器5,延迟为τ,光纤(光缆)6和反馈装置2构成。3a1、3a2、…、3aN、3b1、3b2为耦合器3的端口,3a1、3a2、…、3aN是同向端口,共N个,3b1、3b2是耦合器3的另一组同向端口(共M个)中的两个端口。4a1、4a2、4b1为耦合器4的端口,4a1、4a2是耦合器2的一组同向端口(共P个)中的两个端口,4b1是耦合器4的另一组同向端口(共Q个)中的两个端口。光纤6为感应光纤。反馈装置2,使沿光纤传输来的光重新进入光纤6返回到耦合器4。光源经耦合器3的端口3a1输入,经耦合器3分光后分别经端口3b1、3b2输出,两路光:
Ⅰ:3b1→5→4a1→4b1→6→2→6→4b1→4a2→3b2
Ⅱ:3b2→4a2→4b1→6→2→6→4b1→4a1→5→3b1
在耦合器3处重新会和,发生干涉,干涉信号分别经端口3a1、3a2、…、3aN输出。
干涉光路中,先经过延迟器5在进入光缆6的光,受到的相位调制为:
两相干干涉光的相位差为:
在相位差的频谱中,存在频率陷落点,即“陷波点”,根据陷波点的位置即可确定扰动发生的位置。“陷波点”如图3所示,在这幅通过时频变换得到的幅度-频率图中,“○”所标示的位置即为频率陷波点。陷波点与扰动位置的关系为:
其中,为k阶陷波点的频率。
从上述的原理中可以看到,相干的光必需历经从感应光纤6的端点1传输到2再返回到感应光纤6中这一过程,才能携带有位置“L”信息。然而,在实际中,由于光纤的结构特点以及光纤自身的缺陷等原因,光纤中存在着散射光,如瑞利散射光等。
如图4所示,设点7是一个散射点,背向散射光沿光缆回到干涉结构中,因而存在这样两束光:
Ⅰ:3b1→5→4a1→4b1→6→7→6→4b1→4a2→3b2
Ⅱ:3b2→4a2→4b1→6→7→6→4b1→4a1→5→3b1
由于具有相似的光谱特性,无扰动时,光程相等,因而在耦合器3处重新会和,也会发生干涉。显然,这两束干涉光携带的扰动点的信息是点7到扰动点D的长度L7。设点8是另一个散射点,该点后向散射形成的干涉携带的长度信息为点8到扰动点D的长度L8,显然,,由于这些干涉在输出端是混合在一起的,对于布里渊背向散射光或拉曼背向散射光等产生的干涉光,可以通过光滤波器滤除,但对于瑞利散射产生的干涉光,或是光路上的接点反射产生的干涉光,是不可能通过光滤波的方法对其进行消除,必然会影响有用干涉信号的纯度,直接影响到扰动点位置L的精度。通常情况下,背向散射光、接点反射光产生的干涉强度明显小于反射光产生的干涉强度(有效干涉信号),对有效干涉信号不会产生明显的影响,L的精度可以满足实际使用需要,但是当被监测线路达到一定长度后,整个线路散射光的综合影响会很明显,这时可以观察到干涉信号已发生明显的畸变,系统无法正常获得有效干涉信号——获取的信号不仅包含有效干涉信号,而且还包含散射光带来的寄生干涉信号。
相类似,光路中的接点带来的反射也会对干涉信号造成同样的不利影响。
传感线路中散(反)射光的影响,不仅是系统的监测距离受到了明显限制,且在线路中存在较大散(反)射点的情况下,系统无法进行正常测试。
为了消减上述信号的影响,在先技术发明专利201010508357.2(如图5所示)提出了利用相位生成载波(PhaseGeneratedCarrier)技术将有效干涉相位信息从混杂着背向散射光、接点反射光干涉干扰信号的光输出中分离出来,获得纯净的含有有效扰动位置信息的信号,从而达到消除背向散射光等的影响的目的。该技术在感应光纤(光缆)6的末端,接近反馈装置2处接入一相位调制器9,对相位调制器9施加调制信号:未到达感应光纤6末端反馈装置2处,即被散(反)射点(如散射点7、8)散(反)射而后向传输的光,由于不经过相位调制器9,信号不会被调制;而到达末端被反馈装置2反射的有效光,由于传输中经过了相位调制器9,信号被调制到调制信号散射干扰信号所未能及的调制频率频率基频或倍频的边带上,从而,与散射光信号分离,通过相应的信号处理手段,即可实现有效光信息的提取,从而避免了散射光的干扰。
上述技术由于在感应光纤6末端串接了相位调制器9,对光路进行相位调制,需要给调制信号施加电信号,因而感应光纤末端连接的装置为有源装置,即需要供电。而在一些实际应用,感应光纤末端所处的位置供电困难,限制了该方法的应用。
发明内容
本发明的目的在于提供一种感应光纤末端无需供电的、消减光纤传感器中背向散射光影响的系统与方法。
本发明提出了一种利用波分复用技术,获取独立的散射光产生的干扰信号,从而可以从被干扰信号影响的干涉输出信号中获取纯净的有效信号。本发明是对图5所示的系统的改进,在感应光纤末端串接入波分复用器,利用波分复用器将一个波长成分从工作路径中分出,用于测量散射光产生的干扰信号,以该信号为参考,即可将受到散射光干扰的有效信号成分提取出来——获得纯净的有效信号。这种方法所涉及的结构简单,由于在感应光纤末端没有增加有源器件,因而更易于实现。具体方法如下。
本发明系统,其基本的干涉光路结构如图4所示,在图5所示的原来的光路结构中,在感应光纤(光缆)6的末端,接近反馈装置2处接入一相位调制器9,改为:在感应光纤6的末端与反馈装置2之间串接入一波分复用器10,其中,波分复用器10设有一个复用端口10a,2个分光端口10b、10c;这2个分光端口10b、10c相应的波长分别为λ1、λ2;复用端口10a与感应光纤6的末端相连,分光端口10b与反馈装置2相连,分光端口10c末端空置。光路连接如图6所示。
在上述光路结构下,波长为λ1的光,沿感应光纤6向尾端反馈装置2传输的过程中,有一部分光被散(反)射点作用,提前返回,剩余的光则经波分复用器10后,到达反馈装置2后,再沿原路返回;因而,波长λ1形成的信号可表示为:
(1)。
其中,为经反馈装置2反射形成信号,为感应光纤6上第i个散(反)射点对波长为λ1的光形成的信号,表示沿着波分复用器10之前的感应光纤6上的所有散射点求和。波长为λ2的光,沿感应光纤6向尾端反馈装置2传输的过程中,除了光被散(反)射点作用,提前沿返回,其余的光传输至波分复用器10,皆经端口10c泄漏出去,因而,波长λ2形成的信号可表示为:
(2)。
其中,为感应光纤6上第i个散(反)射点对波长为λ2的光形成的信号。
当λ1、λ2接近时,有:
(3)
(4)。
这样,利用波长λ1、λ2形成信号,通过一定的信号处理手段,例如,自适应算法等等,便可将干扰信号成分去除,获得有效信号
本发明中注入光纤光路结构的光,可以是一个独立的光源提供,也可以是两个或多个不同波长的光源经过波分复用器件合波形成的组合光源提供;波分复用器可以为两个分光端口,也可为多个分光端口。
本发明的优点在于可有效地消除单芯反馈式光纤传感光路中背向散(反)射光的影响,将有效信息从被严重干扰的信号中提取出来,提高了信号测量的精度,进而显著地提高了测量距离,增强干涉测量系统对线路的适应性。该发明采用波分复用技术,获取散射光形成的干扰信号,结构简单,易于实现。同时,由于采用的器件为无源器件,保持了单芯反馈式光纤传感结构中感应光纤尾端连接转置无需供电的优势,特别适用于感应光纤末端所处位置供电困难的应用场合,具有更广泛的适应性。更加易于实现监测光缆尾端自由延伸的布设方式。
基于发明的分布式光纤管线监控系统可广泛应用于通信干线、电力传输线、天然气管道、石油管道、边境线的安全监测领域的长距离监测;也能应用于大型建筑物例如水坝、隧道、矿井等的安全监测。
附图说明
图1是单芯反馈式传感器定位原理。
图2为一种单芯反馈式干涉结构。
图3是从干涉信号解调出的相位信号的频谱,“○”为频率“陷波点”。
图4是背向散射光带来的影响示意图。
图5是采用相位生成载波技术消减背向散射影响的光路连接方法。
图6是采用波分复用技术消减背向散射影响的光路连接方法。
图7是可实现本发明方法的的一个具体实施结构。
图中标号:1为感应光纤6的端点,2为反馈装置,3为N*M(N、M为整数)耦合器,4是P*Q(P、Q为整数)耦合器,5是光纤延迟器,延迟为τ,6是传感光纤(光缆)和反馈装置2构成。3a1、3a2、…、3aN、3b1、3b2为耦合器3的端口,3a1、3a2、…、3aN是同向端口,共N个,3b1、3b2是耦合器3的另一组同向端口(共M个)中的两个端口。4a1、4a2、4b1为耦合器4的端口,4a1、4a2是耦合器2的一组同向端口(共P个)中的两个端口,4b1是耦合器4的另一组同向端口(共Q个)中的两个端口。7、8为光纤中的散射点。9为相位调制器。10为接在感应光纤尾端的波分复用器,10a为复用端口,10b、10c为分光端口。11为波分复用器,11a为复用端口,11b、11c为分光端口;12为波分复用器,12a为复用端口,12b、12c为分光端口;13为波分复用器,13a为复用端口,13b、13c为分光端口。
具体实施方式
实施例的测量系统采用如图2所示干涉结构,具体连接方式如图7所示。耦合器3采用均分的3*3光纤熔融拉锥型单模耦合器,耦合器4采用均分的2*2光纤熔融拉锥型单模耦合器。波分复用器采用三端口器件,即具有两个分光端口,两端口工作波长分别为1310nm和1550nm。11为波分复用器,11a为复用端口,11b、11c为分光端口;12为波分复用器,12a为复用端口,12b、12c为分光端口;13为波分复用器,13a为复用端口,13b、13c为分光端口。光输入采用两种波长的光源,波长分别为λ1=1310nm和λ2=1550nm,分别与波分复用器11的端口11b、11c相连,经端口11a注入到耦合器3的3a1端口中。经从端口3a2、3a3输出的光,分别注入波分复用器12、13的相应端口12a、13a,相应的1310nm成分的光从12b、13b输出,1550nm成分的光从12c、13c输出。则从端口12c、13c输出的光为散(反)射光产生的干扰信号,从端口12b、13b输出的光为受散(反)射光产生的信号干扰的有效干涉信号。
在该结构中,使用的光源为电子集团总公司44研究所生产,皆为超辐射二极管(SLD)。耦合器为熔融拉锥型单模耦合器,耦合器4采用均分的2*2光纤熔融拉锥型单模耦合器,皆为武汉邮电研究院生产。光纤延迟器使用的光纤为G652型单模光纤。光电转换及信息处理中使用的光电转换器件为44所生产的型号为GT322C500的InGaAs光电探测器。反馈装置2为光纤末端蒸镀铝膜制作,反射率大于95%。波分复用器10为熔融拉锥单模器件。
在该单芯传感路径中,感应光缆6的长度为45km,距离末端(反馈装置2)10km处存在活动接头连接点,该点反射>2dB,在端口4b1附近对感应光缆6施加扰动,不采用本发明所述方法,系统无法正常定位,采用该波分复用技术后,系统可准确定位。

Claims (2)

1.一种利用波分复用技术消减干涉路径散射、反射光干扰的方法,其特征在于,在反射式干涉光路结构中,在感应光纤(6)的末端与反馈装置(2)之间串接入一波分复用器(10),该波分复用器(10)设有一个复用端口(10a),2个分光端口(10b、10c);这2个分光端口(10b、10c)对应的波长分别为λ1、λ2;复用端口(10a)与感应光纤(6)的末端相连,第一分光端口(10b)与反馈装置(2)相连,第二分光端口(10c)末端空置;
波长为λ1的光,沿感应光纤(6)向尾端反馈装置(2)传输的过程中,有一部分光被散射、反射点作用,提前返回,剩余的光则经波分复用器(10)后,到达反馈装置(2)后,再沿原路返回;因而,波长λ1形成的信号表示为:
(1)
其中,为经反馈装置(2)反射形成信号,为感应光纤(6)上第i个散射、反射点对波长为λ1的光形成的信号,表示沿着波分复用器(10)之前的感应光纤(6)上的所有散射点求和;波长为λ2的光,沿感应光纤(6)向尾端反馈装置(2)传输的过程中,除了光被散射、反射点作用,提前沿感应光纤(6)返回,其余的光传输至波分复用器(10),皆经第二分光端口(10c)泄漏出去,波长λ2形成的信号表示为:
(2)
其中,为感应光纤(6)上第i个散射、反射点对波长为λ2的光形成的信号;
通过信号处理手段,使λ1、λ2接近,则有:
(3)
(4)
这样,便可将干扰信号成分去除,获得有效信号
2.一种实现权利要求1所述方法的系统,其特征在于,在反射式干涉光路结构中,在感应光纤(6)的末端与反馈装置(2)之间串接有一波分复用器(10),该波分复用器(10)有一个复用端口(10a),2个分光端口(10b、10c);这2个分光端口(10b、10c)对应的波长分别为λ1、λ2;复用端口(10a)与感应光纤(6)的末端相连,第一分光端口(10b)与反馈装置(2)相连,第二分光端口(10c)末端空置。
CN201310473672.XA 2013-10-12 2013-10-12 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统 Active CN103487067B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310473672.XA CN103487067B (zh) 2013-10-12 2013-10-12 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统
PCT/CN2014/088326 WO2015051758A1 (zh) 2013-10-12 2014-10-10 利用波分复用技术消减干涉路径散、反射光干扰的方法与系统
US15/028,865 US10024697B2 (en) 2013-10-12 2014-10-10 Method and system using wavelength division multiplexing for eliminating and reducing light diffusion and light reflection interference in interference path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310473672.XA CN103487067B (zh) 2013-10-12 2013-10-12 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统

Publications (2)

Publication Number Publication Date
CN103487067A CN103487067A (zh) 2014-01-01
CN103487067B true CN103487067B (zh) 2016-05-11

Family

ID=49827478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310473672.XA Active CN103487067B (zh) 2013-10-12 2013-10-12 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统

Country Status (3)

Country Link
US (1) US10024697B2 (zh)
CN (1) CN103487067B (zh)
WO (1) WO2015051758A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487067B (zh) 2013-10-12 2016-05-11 复旦大学 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统
CN106664109B (zh) * 2014-07-18 2019-04-23 华为技术有限公司 一种通信装置、系统及处理信号的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003704A2 (en) * 1990-08-28 1992-03-05 The Boeing Company Encoded surface position sensor
CN101561536A (zh) * 2008-04-16 2009-10-21 中国科学院半导体研究所 一种抗振动与噪声干扰的光纤传感波长解调系统
CN101813742A (zh) * 2010-04-01 2010-08-25 复旦大学 利用光纤对电网高压局部放电进行探测及定位的方法
CN102003971A (zh) * 2010-10-15 2011-04-06 复旦大学 一种消除光纤传感器中背向散射光影响的方法
CN103115633A (zh) * 2013-01-29 2013-05-22 复旦大学 利用相位生成载波降低干涉路径散(反)射光干扰的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973169A (en) * 1987-06-24 1990-11-27 Martin Marietta Corporation Method and apparatus for securing information communicated through optical fibers
GB8826487D0 (en) * 1988-11-11 1988-12-14 Health Lab Service Board Optical determination of velocity
GB9821956D0 (en) * 1998-10-09 1998-12-02 Univ Southampton Novel system to detect disturbance in optical fibres & cables
WO2003084007A1 (fr) * 2002-03-28 2003-10-09 Fujitsu Limited Dispositif optique a fonction de compensation de perte et amplificateur optique de compensation de perte
CN102117525A (zh) 2010-09-20 2011-07-06 北京邮电大学 一种光纤入侵检测系统
CN102064884B (zh) 2010-11-25 2013-06-12 复旦大学 基于波分复用的长距离分布式光纤定位干涉系统
CN202101683U (zh) 2011-05-18 2012-01-04 东南大学 连续光波分复用型长距离分布式扰动定位装置
CN102322879B (zh) 2011-05-18 2013-07-31 东南大学 连续光波分复用型长距离分布式扰动定位装置及方法
CN102496231B (zh) 2011-11-25 2014-01-15 北京航天易联科技发展有限公司 长距离干线安全光纤波分复用式预警系统
CN103487067B (zh) 2013-10-12 2016-05-11 复旦大学 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003704A2 (en) * 1990-08-28 1992-03-05 The Boeing Company Encoded surface position sensor
CN101561536A (zh) * 2008-04-16 2009-10-21 中国科学院半导体研究所 一种抗振动与噪声干扰的光纤传感波长解调系统
CN101813742A (zh) * 2010-04-01 2010-08-25 复旦大学 利用光纤对电网高压局部放电进行探测及定位的方法
CN102003971A (zh) * 2010-10-15 2011-04-06 复旦大学 一种消除光纤传感器中背向散射光影响的方法
CN103115633A (zh) * 2013-01-29 2013-05-22 复旦大学 利用相位生成载波降低干涉路径散(反)射光干扰的方法

Also Published As

Publication number Publication date
US20160252371A1 (en) 2016-09-01
WO2015051758A1 (zh) 2015-04-16
CN103487067A (zh) 2014-01-01
US10024697B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
CN103115633B (zh) 利用相位生成载波降低干涉路径散(反)射光干扰的方法
CN105136177B (zh) 一种亚毫米空间分辨率的分布式光纤传感装置及方法
CN106768278B (zh) 一种分布式光纤振动和温度双物理量传感定位系统
CN106441447B (zh) 基于混沌布里渊动态光栅的分布式光纤传感系统
CN105043586B (zh) 一种基于少模光纤的拉曼分布式测温系统和测温方法
CN100561144C (zh) 分布式光纤振动传感方法及装置
US7656535B2 (en) Optical system and method for inferring a disturbance
EP1987317B1 (en) Sensing a disturbance
CN102003971B (zh) 一种消除光纤传感器中背向散射光影响的方法
CN102064884B (zh) 基于波分复用的长距离分布式光纤定位干涉系统
CN105371941B (zh) 基于光环形器的分布式光纤振动传感检测方法
CN104819770A (zh) 基于外差检测和相位解调的相位光时域反射装置及方法
US10145727B2 (en) Method and structure for diminishing signal interference of transmission path of optical fibre interference system
CN105136179B (zh) 基于ase噪声相干探测的分布式光纤传感装置及方法
CN102117525A (zh) 一种光纤入侵检测系统
CN108489594A (zh) 基于相位生成载波技术的混合型光纤传感系统
CN105806379B (zh) 弱反射光纤布拉格光栅-珐泊腔传感器的解调系统
KR101356986B1 (ko) 광섬유 분포 온도 측정용 라만 센서 시스템
CN110160627A (zh) 迈克尔逊干涉与相位敏感光时域反射的光纤声音传感系统
CN212030564U (zh) 一种光源频移校准辅助通道结构及光纤振动测量装置
CN103630229A (zh) 一种微分相干时域散射型分布式光纤振动传感方法及系统
CN109238319A (zh) 一种光纤声温压复合传感器
CN115200691A (zh) 一种少模光纤分布式声传感系统及其信号处理方法
CN103487067B (zh) 利用波分复用技术消减干涉路径散射、反射光干扰的方法与系统
CN102646308A (zh) 基于单光纤和单光纤光栅光缆周界安防系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20140101

Assignee: Dongguan advanced optical fiber Application Technology Research Institute Co.,Ltd.

Assignor: FUDAN University

Contract record no.: X2021310000051

Denomination of invention: Method and system for reducing interference path scattering and reflected light interference by wavelength division multiplexing technology

Granted publication date: 20160511

License type: Exclusive License

Record date: 20211221

EE01 Entry into force of recordation of patent licensing contract