CN103484653B - 环形激光冲击强化紧固孔的装置和方法 - Google Patents

环形激光冲击强化紧固孔的装置和方法 Download PDF

Info

Publication number
CN103484653B
CN103484653B CN201310397715.0A CN201310397715A CN103484653B CN 103484653 B CN103484653 B CN 103484653B CN 201310397715 A CN201310397715 A CN 201310397715A CN 103484653 B CN103484653 B CN 103484653B
Authority
CN
China
Prior art keywords
lens
hole
fastener hole
indent
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310397715.0A
Other languages
English (en)
Other versions
CN103484653A (zh
Inventor
曹子文
巩水利
毛智勇
车志刚
邹世坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Manufacturing Technology Institute
Original Assignee
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Beijing Aeronautical Manufacturing Technology Research Institute filed Critical AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority to CN201310397715.0A priority Critical patent/CN103484653B/zh
Publication of CN103484653A publication Critical patent/CN103484653A/zh
Application granted granted Critical
Publication of CN103484653B publication Critical patent/CN103484653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明为一种环形激光冲击强化紧固孔的装置和方法,该装置设置在设有紧固孔的激光冲击强化对象上方;包括有由上至下依次顺序同轴设置的带中心孔的内凹锥透镜、带中心孔的聚焦透镜、外凸锥透镜和聚焦透镜;各透镜设置在光学镜片调整架上;各透镜与紧固孔同轴设置;直径大于内凹锥透镜中心孔孔径的圆形激光束由内凹锥透镜上方轴向射入。本发明能够将圆形激光束空间分离后再耦合形成新的环形激光束,并实现该新的环形激光束的空间能量分布调节,使其可承受的激光功率密度提高,通过该环形激光束冲击强化调控紧固孔端周围的残余应力分布,从而进一步提高紧固孔的疲劳性能。本发明提高了激光脉冲能量的利用率,操作简单,便于推广使用。

Description

环形激光冲击强化紧固孔的装置和方法
技术领域
本发明是关于一种用于紧固孔激光冲击强化的装置,尤其涉及一种由圆形激光束转换成环形激光束来实现冲击强化紧固孔的装置和方法。
背景技术
激光冲击强化技术是利用纳秒级脉冲激光与材料表面产生等离子体冲击波效应,通过使材料表面产生微小塑性变形引入残余压应力层,从而提高金属零件的疲劳性能。通常情况下,材料表面应布置吸收层(铝箔胶带或黑漆等)和约束层(去离子水等)后才可实施激光冲击强化。激光冲击强化属于通用的表面强化技术,激光冲击强化可用于关键疲劳零件或零件的关键疲劳部位,如:紧固孔、叶片、榫头、焊缝、齿轮等。公开的发明专利“一种孔结构的激光冲击处理方法”(ZL200710143348.6),其中涉及了利用圆形激光束对紧固孔端周围表面实施激光冲击强化。现有的紧固孔激光冲击强化技术是采用圆形激光束与紧固孔同轴入射辐照在紧固孔端周围表面,圆形激光束的辐照直径应大于紧固孔直径,圆形激光束超过紧固孔直径的部分在紧固孔端周围材料表层产生残余压应力场,残余压应力场抑制了疲劳裂纹萌生和疲劳裂纹扩展,从而提高紧固孔的疲劳寿命。现有的圆形光斑紧固孔激光冲击强化技术是通过离焦量来控制圆形光斑的激光功率密度,整个光斑范围内的激光功率密度只能同时增大或同时减小。
由上所述,现有的紧固孔激光冲击强化方法的不足之处在于:①.采用圆形激光束同轴入射强化紧固孔,由于紧固孔部位无材料,浪费了作用在紧固孔部位的激光能量,在不改变激光输出能量的情况下,可强化的紧固孔尺寸严重受限;②.当需要较大的残余压应力值时,作用在紧固孔端周围表面的激光功率密度也较大,但激光功率密度越大,紧固孔边缘的变形越严重,不利用疲劳性能,因此激光功率密度和紧固孔边缘变形相互矛盾。
由此,本发明人凭借多年从事相关行业的经验与实践,提出一种环形激光冲击强化紧固孔的装置和方法,以克服现有技术的缺陷。
发明内容
本发明的目的在于提供一种环形激光冲击强化紧固孔的装置和方法,可将圆形光斑转换为环形光斑,并可调节该环形光斑的能量分布,通过环形光斑激光冲击强化调控紧固孔端周围的残余应力分布,从而进一步提高紧固孔的疲劳性能。
本发明的目的是这样实现的,一种环形激光冲击强化紧固孔的装置,该装置设置在激光冲击强化的对象上方,该激光冲击强化的对象设有紧固孔;所述装置包括有由上至下依次顺序同轴设置的带中心孔的内凹锥透镜、带中心孔的聚焦透镜、外凸锥透镜和聚焦透镜;所述各透镜均设置在一光学镜片调整架上;所述各透镜与所述紧固孔同轴设置;直径大于内凹锥透镜中心孔孔径的圆形激光束由带中心孔的内凹锥透镜上方轴向射入。
在本发明的一较佳实施方式中,所述光学镜片调整架上设有调节所述各透镜之间轴向间距以及各透镜与紧固孔孔端面之间距离的调整机构。
在本发明的一较佳实施方式中,所述带中心孔的内凹锥透镜为上表面呈平面、下表面呈内凹圆锥面的圆形玻璃镜片,该镜片中心具有第一圆孔;所述平面与内凹圆锥面母线的夹角为α,0.05弧度<α<0.5弧度。
在本发明的一较佳实施方式中,所述带中心孔的聚焦透镜为中心具有第二圆孔的聚焦透镜;所述第二圆孔直径大于第一圆孔直径。
在本发明的一较佳实施方式中,所述外凸锥透镜为上表面呈平面、下表面呈外凸圆锥面的圆形玻璃镜片;所述平面与外凸圆锥面母线的夹角为β,0.05弧度<β<0.5弧度。
在本发明的一较佳实施方式中,所述聚焦透镜为一面呈球面、另一面呈平面或两面均为球面的圆形玻璃镜片。
在本发明的一较佳实施方式中,所述紧固孔的直径为Φ2mm~Φ6mm。
本发明的目的还可以这样实现,一种环形激光冲击强化紧固孔的方法,圆形激光束轴向通过所述环形激光冲击强化紧固孔的装置中各透镜后,分解为两个同轴的圆环形光束并叠加在紧固孔孔端周围表面上;通过调节各透镜之间轴向间距以及各透镜与紧固孔孔端面之间距离,进而调节两个同轴环形光斑在紧固孔孔端周围表面的叠加位置和能量分布,由耦合的环形光斑激光冲击强化调控紧固孔端周围的残余应力分布,提高紧固孔的疲劳性能。
在本发明的一较佳实施方式中,该方法至少包括以下步骤:
(1)依序设置各透镜,并使各透镜与紧固孔呈同轴位置;
(2)开启激光发射器,使圆形激光束由带中心孔的内凹锥透镜上方轴向射入;
(3)根据要求调整各透镜之间轴向间距以及各透镜与紧固孔孔端面之间距离,以调节在紧固孔孔端周围表面上的两个同轴环形光斑的尺寸和叠加位置,进而调节耦合后的两个同轴环形光斑的激光能量分布,以提高紧固孔的疲劳性能。
在本发明的一较佳实施方式中,在步骤(2)中,首先将带中心孔的内凹锥透镜放置在入射圆形激光束的光路上,圆形激光束的直径大于内凹锥透镜中心孔的孔径;通过光学镜片调整架调整带中心孔的内凹锥透镜的位置,使带中心孔的内凹锥透镜的中心轴与入射圆形激光束的光轴重合;再将带中心孔的聚焦透镜与带中心孔的内凹锥透镜同光轴间隔放置;之后将外凸锥透镜、聚焦透镜依次放置在带中心孔的聚焦透镜下方的圆形激光束的光路上,调整外凸锥透镜和聚焦透镜的位置,使镜片中心轴与圆形激光束的光轴重合。
由上所述,本发明能够将圆形激光束(光斑)空间分离后再耦合形成新的环形激光束(光斑),并实现该新的环形激光束的空间能量分布调节,使其可承受的激光功率密度提高,通过该环形激光束冲击强化调控紧固孔端周围的残余应力分布,从而进一步提高紧固孔的疲劳性能。本发明对激光偏振性无要求,操作简单,便于推广使用。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1:为本发明环形激光冲击强化紧固孔的装置结构示意图。
图2:为本发明中带中心孔的内凹锥透镜的结构示意图。
图3:为本发明中带中心孔的聚焦透镜的结构示意图。
图4:为本发明中外凸锥透镜的结构示意图。
图5:为本发明中第二环形激光束和第四环形激光束的位置关系示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。
如图1、图5所示,本发明提出一种环形激光冲击强化紧固孔的装置100,该装置100设置在激光冲击强化的对象13上方,所述激光冲击强化的对象13为金属材料(如:铝合金、钛合金等),该激光冲击强化的对象13设有紧固孔12;所述装置100包括有由上至下依次顺序同轴设置的带中心孔的内凹锥透镜1、带中心孔的聚焦透镜2、外凸锥透镜3和聚焦透镜4;所述各透镜均设置在一光学镜片调整架(图中未示出)上;所述各透镜与所述紧固孔12同轴设置;直径大于内凹锥透镜1中心孔孔径的圆形激光束5由带中心孔的内凹锥透镜1上方轴向射入;所述光学镜片调整架上设有调节所述各透镜之间轴向间距以及各透镜与紧固孔12孔端面之间距离的调整机构;该光学镜片调整架上还设有调节各透镜呈同轴状态的调整机构。
进一步,在本实施方式中,如图1~图4所示,所述带中心孔的内凹锥透镜1为上表面呈平面、下表面呈内凹圆锥面的圆形玻璃镜片,该镜片中心具有第一圆孔101,第一圆孔101的孔径为D1;所述平面与内凹圆锥面母线的夹角为α,0.05弧度<α<0.5弧度。所述带中心孔的聚焦透镜2为中心具有第二圆孔201的聚焦透镜,第二圆孔201的孔径为D2;所述第二圆孔201直径大于第一圆孔101直径。所述外凸锥透镜3为上表面呈平面、下表面呈外凸圆锥面的圆形玻璃镜片;所述平面与外凸圆锥面母线的夹角为β,0.05弧度<β<0.5弧度。所述聚焦透镜4为两面均为球面的圆形玻璃镜片(聚焦透镜4也可以为一面呈球面另一面呈平面的形状)。
本发明还提出一种利用所述环形激光冲击强化紧固孔的装置100进行环形激光冲击强化紧固孔的方法,如图1所示,圆形激光束5(圆形激光束直径为D5)轴向通过所述环形激光冲击强化紧固孔的装置100中各透镜后,分解为两个同轴的圆环形光束8和10,该两个同轴的圆环形光束8和10耦合并叠加在紧固孔12孔端周围表面上,形成新的环形激光束11(如图5所示);通过调节各透镜之间轴向间距以及各透镜与紧固孔12孔端面之间距离,进而调节环形激光束11中两个同轴环形光斑在紧固孔12孔端周围表面的叠加位置和能量分布,由耦合的环形光斑激光冲击强化调控紧固孔端周围的残余应力分布,由此提高紧固孔的疲劳性能。
进一步,在本实施方式中,该方法至少包括以下步骤:
(1)依序设置各透镜,并使各透镜与紧固孔呈同轴位置;
(2)开启激光发射器,使圆形激光束由带中心孔的内凹锥透镜上方轴向射入;
(3)根据要求调整各透镜之间轴向间距以及各透镜与紧固孔孔端面之间距离,以调节在紧固孔孔端周围表面上的两个同轴环形光斑的尺寸和叠加位置,进而调节耦合后的两个同轴环形光斑的激光能量分布,以提高紧固孔的疲劳性能。
在步骤(2)中,首先将带中心孔的内凹锥透镜1放置在入射圆形激光束5的光路上,圆形激光束5的直径大于内凹锥透镜1中心孔(即:第一圆孔101)的孔径;通过光学镜片调整架调整内凹锥透镜1的位置,使带中心孔的内凹锥透镜1的中心轴与入射圆形激光束5的光轴重合;然后将带中心孔的聚焦透镜2与带中心孔的内凹锥透镜1同光轴间隔放置,两者的距离为L1-2,带中心孔的聚焦透镜2与紧固孔12的孔端的距离为L2-12;最后将外凸锥透镜3和聚焦透镜4依次放置在带中心孔的聚焦透镜2下方的圆形激光束5的光路上,调整外凸锥透镜3和聚焦透镜4的位置,使外凸锥透镜3和聚焦透镜4中心轴与圆形激光束5的光轴重合;外凸锥面镜3和聚焦透镜4之间距离为L3-4,聚焦透镜4与与紧固孔12的孔端的距离为L4-12
入射圆形激光束5经过带中心孔的内凹锥透镜1后,被分解为透过第一圆孔101形成的圆形光束6和经内凹锥透镜折射形成的第一环形激光束7;随着激光向前传播,圆形光束6的尺寸保持不变,而第一环形激光束7的尺寸不断增大,但其外径和内径的差值保持不变;通过带中心孔的聚焦透镜2后,第一环形激光束7被聚焦为第二环形激光束8并同轴照射在紧固孔12的孔端周围;由于带中心孔的聚焦透镜2上的第二圆孔201大于第一圆孔101,所以,圆形光束6穿过所述第二圆孔201后照射在外凸锥透镜3上,圆形光束6通过外凸锥透镜3先聚焦后发散,形成第三环形激光束9;第三环形激光束9通过聚焦透镜4聚焦,形成第四环形激光束10并同轴照射在紧固孔12的孔端周围;该两个同轴的第二环形激光束8和第四环形激光束10耦合并叠加在紧固孔12孔端周围表面上,形成新的第五环形激光束11。
在本实施方式中,调节L1-2和L2-12的大小,即可调节第二环形激光束8的外径Ф1和内径Ф2
当L2-12不变时,增大L1-2会减小Ф12比值,减小L1-2会增大Ф12比值。
当L1-2不变时,增大L2-12会同比例缩小Ф1和内径Ф2,减小L2-12会同比例扩大Ф1和内径Ф2
在本实施方式中,调节L3-4和L4-12的大小,即可调节第四环形激光束10的外径Ф3和内径Ф4
当L4-12不变时,增大L3-4会减小Ф12比值,减小L1-2会增大Ф12比值。
当L3-4不变时,增大L4-12会同比例缩小Ф1和内径Ф2,减小L4-12会同比例扩大Ф1和内径Ф2
在本实施方式中,当各间距调整到位并固定L1-2、L2-12、L3-4、L4-12后,即确定了第二环形激光束8和第四环形激光束10的尺寸和叠加位置,第二环形激光束8和第四环形激光束10相互搭接耦合形成新的环形激光束11;由于新的环形激光束11与紧固孔12同心分布,可用新的环形激光束11进行紧固孔12的激光冲击强化;一般情况下,紧固孔12的直径不大于新的环形激光束11的内径;第二环形激光束8和第四环形激光束10的相互位置关系决定了新的环形激光束11内的激光功率密度分布情况;如图5所示,为第二环形激光束8和第四环形激光束10的典型位置关系。
调整第二环形激光束8和第四环形激光束10的相对位置,即可对新的环形激光束11的能量分布进行调控;此外,通过改变带中心孔的内凹锥透镜1的第一圆孔101的孔径,可改变圆形光束6和第一环形激光束7的能量比例,由此,可以改变第二环形激光束8和第四环形激光束10的能量比例。
由上所述,本发明能够将圆形激光束(光斑)空间分离后再耦合形成新的环形激光束(光斑),并实现该新的环形激光束的空间能量分布调节,使其可承受的激光功率密度提高,通过该环形激光束冲击强化调控紧固孔端周围的残余应力分布,从而进一步提高紧固孔的疲劳性能。本发明对激光偏振性无要求,操作简单,便于推广使用。
在本实施方式中,所述紧固孔12的直径为Φ2mm~Φ6mm;所有透镜均双面镀激光增透膜。
本发明与现有技术相比具有以下优势:
(1)通过对环形光斑进行能量调控,改变环形光斑内的激光功率密度分布,从而改变紧固孔端周围材料的受力状态和残余压应力分布。例如,如图5所示,能量调控后的环形光斑在内径和外径附近的激光功率密度相对较低,而处于内径和外径中间部分的激光功率密度相对较高,这样不仅能量产生有利疲劳性能的高幅值残余压应力,而且能够减小紧固孔边缘变形;
(2)本发明中的光斑转换过程中几乎无能量损失,转换后的环形光斑作用在紧固孔端周围材料表面,所有激光脉冲能量完全参与紧固孔激光冲击强化,与圆形光斑激光冲击强化相比,本发明提高了激光脉冲能量的利用率。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作出的等同变化与修改,均应属于本发明保护的范围。

Claims (9)

1.一种环形激光冲击强化紧固孔的装置,该装置设置在激光冲击强化的对象上方,该激光冲击强化的对象设有紧固孔;其特征在于:所述装置包括有由上至下依次顺序同轴设置的带中心孔的内凹锥透镜、带中心孔的聚焦透镜、外凸锥透镜和聚焦透镜;所述各透镜均设置在一光学镜片调整架上;所述各透镜与所述紧固孔同轴设置;直径大于内凹锥透镜中心孔孔径的圆形激光束由带中心孔的内凹锥透镜上方轴向射入;
所述带中心孔的内凹锥透镜为上表面呈平面、下表面呈内凹圆锥面的圆形玻璃镜片,该镜片中心具有第一圆孔;
所述带中心孔的聚焦透镜为中心具有第二圆孔的聚焦透镜;所述第二圆孔直径大于第一圆孔直径。
2.如权利要求1所述的环形激光冲击强化紧固孔的装置,其特征在于:所述光学镜片调整架上设有调节所述各透镜之间轴向间距以及各透镜与紧固孔孔端面之间距离的调整机构。
3.如权利要求1所述的环形激光冲击强化紧固孔的装置,其特征在于:所述带中心孔的内凹锥透镜中,所述平面与内凹圆锥面母线的夹角为α,0.05弧度<α<0.5弧度。
4.如权利要求1所述的环形激光冲击强化紧固孔的装置,其特征在于:所述外凸锥透镜为上表面呈平面、下表面呈外凸圆锥面的圆形玻璃镜片;所述平面与外凸圆锥面母线的夹角为β,0.05弧度<β<0.5弧度。
5.如权利要求4所述的环形激光冲击强化紧固孔的装置,其特征在于:所述聚焦透镜为一面呈球面、另一面呈平面或两面均为球面的圆形玻璃镜片。
6.如权利要求1所述的环形激光冲击强化紧固孔的装置,其特征在于:所述紧固孔的直径为Φ2mm~Φ6mm。
7.一种利用权利要求1~6任一项装置进行环形激光冲击强化紧固孔的方法,圆形激光束轴向通过所述环形激光冲击强化紧固孔的装置中各透镜后,分解为两个同轴的圆环形光束并叠加在紧固孔孔端周围表面上;通过调节各透镜之间轴向间距以及各透镜与紧固孔孔端面之间距离,进而调节两个同轴环形光斑在紧固孔孔端周围表面的叠加位置和能量分布,由耦合的环形光斑激光冲击强化调控紧固孔端周围的残余应力分布,提高紧固孔的疲劳性能。
8.如权利要求7所述的环形激光冲击强化紧固孔的方法,其特征在于:该方法至少包括以下步骤:
(1)依序设置各透镜,并使各透镜与紧固孔呈同轴位置;
(2)开启激光发射器,使圆形激光束由带中心孔的内凹锥透镜上方轴向射入;
(3)根据要求调整各透镜之间轴向间距以及各透镜与紧固孔孔端面之间距离,以调节在紧固孔孔端周围表面上的两个同轴环形光斑的尺寸和叠加位置,进而调节耦合后的两个同轴环形光斑的激光能量分布,以提高紧固孔的疲劳性能。
9.如权利要求8所述的环形激光冲击强化紧固孔的方法,其特征在于:在步骤(2)中,首先将带中心孔的内凹锥透镜放置在入射圆形激光束的光路上,圆形激光束的直径大于内凹锥透镜中心孔的孔径;通过光学镜片调整架调整带中心孔的内凹锥透镜的位置,使带中心孔的内凹锥透镜的中心轴与入射圆形激光束的光轴重合;再将带中心孔的聚焦透镜与带中心孔的内凹锥透镜同光轴间隔放置;之后将外凸锥透镜、聚焦透镜依次放置在带中心孔的聚焦透镜下方的圆形激光束的光路上,调整外凸锥透镜和聚焦透镜的位置,使镜片中心轴与圆形激光束的光轴重合。
CN201310397715.0A 2013-09-04 2013-09-04 环形激光冲击强化紧固孔的装置和方法 Active CN103484653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310397715.0A CN103484653B (zh) 2013-09-04 2013-09-04 环形激光冲击强化紧固孔的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310397715.0A CN103484653B (zh) 2013-09-04 2013-09-04 环形激光冲击强化紧固孔的装置和方法

Publications (2)

Publication Number Publication Date
CN103484653A CN103484653A (zh) 2014-01-01
CN103484653B true CN103484653B (zh) 2015-09-09

Family

ID=49825242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310397715.0A Active CN103484653B (zh) 2013-09-04 2013-09-04 环形激光冲击强化紧固孔的装置和方法

Country Status (1)

Country Link
CN (1) CN103484653B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014037281A2 (en) 2012-09-06 2014-03-13 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece
WO2015135715A1 (en) 2014-03-11 2015-09-17 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece
WO2016146646A1 (en) 2015-03-17 2016-09-22 Ikergune A.I.E. Method and system for heat treatment of sheet metal
CN105586486A (zh) * 2015-11-17 2016-05-18 中国航空工业集团公司北京航空制造工程研究所 一种激光冲击强化金属零件表面的功率密度补偿方法
CN110026686B (zh) * 2019-05-28 2021-07-02 广东工业大学 一种激光冲击方法、装置及设备
CN112280956B (zh) * 2020-11-03 2021-07-06 吉林大学 三维多向同时施力的材料表面强化方法与装置
CN113943856B (zh) * 2021-09-07 2023-06-20 中国科学院宁波材料技术与工程研究所 一种智能化的光斑形状及能量可调的激光冲击强化系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061362A (zh) * 2010-12-24 2011-05-18 江苏大学 一种环形激光冲击强化紧固孔的方法和装置
CN102409156A (zh) * 2011-11-17 2012-04-11 江苏大学 一种中空激光诱导冲击波的小孔构件强化方法
CN102747214A (zh) * 2012-06-29 2012-10-24 中国科学院力学研究所 一种多光路组合冲击强化系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287362A (ja) * 1992-04-15 1993-11-02 Brother Ind Ltd 円周表面の熱処理方法
US6664498B2 (en) * 2001-12-04 2003-12-16 General Atomics Method and apparatus for increasing the material removal rate in laser machining

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061362A (zh) * 2010-12-24 2011-05-18 江苏大学 一种环形激光冲击强化紧固孔的方法和装置
CN102409156A (zh) * 2011-11-17 2012-04-11 江苏大学 一种中空激光诱导冲击波的小孔构件强化方法
CN102747214A (zh) * 2012-06-29 2012-10-24 中国科学院力学研究所 一种多光路组合冲击强化系统

Also Published As

Publication number Publication date
CN103484653A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
CN103484653B (zh) 环形激光冲击强化紧固孔的装置和方法
CN105382411B (zh) 一种t型接头双侧激光扫描焊接方法
CN103639590B (zh) 一种基于空心光束激光冲击的薄金属板材曲率半径调整方法及装置
CN102409156B (zh) 一种中空激光诱导冲击波的小孔构件强化方法
CN210103765U (zh) 一种用于切割玻璃的红外激光切割装置
CN104141035B (zh) 一种环形激光带冲击强化孔壁的方法和装置
CN103645563A (zh) 激光整形装置
CN103309044B (zh) 一种用于实现圆形光束整形为环形光束的方法
CN103336368A (zh) 一种环形激光束的能量调控装置
CN107824959A (zh) 一种激光打孔方法及系统
CN207547871U (zh) 一种激光打孔系统
CN105689890A (zh) 环形激光焊接头及环形激光焊接方法
CN102409157A (zh) 一种中空激光强化方法
CN109207713A (zh) 一种零件转角区的激光冲击强化方法
CN103805769A (zh) 一种棱柱异型孔水下激光冲击强化的方法和装置
CN107363416A (zh) 一种激光环切割装置及其控制方法
Wu et al. Controllable annulus micro-/nanostructures on copper fabricated by femtosecond laser with spatial doughnut distribution
CN104526157B (zh) 一种旋转光束预热的激光冲击波微造型加工装置及方法
CN112159978A (zh) 可预热回火的中心送粉式熔覆头
CN201864747U (zh) 光水同轴的激光冲击强化头
CN102465195B (zh) 一种光水同轴的激光冲击强化头
CN105044861B (zh) 一种双光路调整激光与光纤耦合的方法
CN111352249B (zh) 实现平顶光束的侧泵信号合束器及其制备方法
CN207020405U (zh) 一种产生椭圆空心聚焦光束的光学系统
CN203630445U (zh) 激光整形装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190612

Address after: 100024 North East military villa, eight Li bridge, Chaoyang District, Beijing

Patentee after: China Institute of Aeronautical Manufacturing Technology

Address before: 100024 North East military villa, eight Li bridge, Chaoyang District, Beijing

Patentee before: Beijing Aviation Manufacturing Engineering Institute of China Aviation Industry Group Company