CN103474776A - Method for generating radio frequency orbital angular momentum beams based on annular traveling wave antenna - Google Patents
Method for generating radio frequency orbital angular momentum beams based on annular traveling wave antenna Download PDFInfo
- Publication number
- CN103474776A CN103474776A CN2013104330631A CN201310433063A CN103474776A CN 103474776 A CN103474776 A CN 103474776A CN 2013104330631 A CN2013104330631 A CN 2013104330631A CN 201310433063 A CN201310433063 A CN 201310433063A CN 103474776 A CN103474776 A CN 103474776A
- Authority
- CN
- China
- Prior art keywords
- ring
- radio frequency
- antenna
- traveling wave
- wave antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000005284 excitation Effects 0.000 claims abstract description 12
- 230000005855 radiation Effects 0.000 claims abstract description 10
- 238000004891 communication Methods 0.000 abstract description 22
- 238000005516 engineering process Methods 0.000 abstract description 11
- 230000005684 electric field Effects 0.000 description 13
- 238000001228 spectrum Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明涉及一种基于环形行波天线产生射频轨道角动量波束的方法。本发明环形行波天线在空间分布上呈圆环形,圆环绕Z轴对称,圆环上各点激励源幅度一致,相位沿着圆周满足exp(il
)的分布,天线激励源在圆环上呈行波传播,这种环形行波天线在空间的辐射可产生跟其相位分布中l相同阶数的射频OAM波束,调整圆环上各点相位的分布,则可产生不同l阶数的射频OAM波束。本发明提出的方法可用于OAM无线通信系统,与现有通信技术相集成,大大提高了通信系统的容量。The invention relates to a method for generating radio frequency orbital angular momentum beams based on a ring traveling wave antenna. The annular traveling wave antenna of the present invention is in the form of a circular ring in spatial distribution, and the circle is symmetrical around the Z axis. The amplitude of the excitation source at each point on the circular ring is consistent, and the phase satisfies exp( il
), the antenna excitation source propagates as a traveling wave on the ring, and the radiation of this ring traveling wave antenna in space can produce a radio frequency OAM beam of the same order as l in its phase distribution, and adjust the phase of each point on the ring distribution, different l- order radio frequency OAM beams can be generated. The method proposed by the invention can be used in the OAM wireless communication system, is integrated with the existing communication technology, and greatly improves the capacity of the communication system.Description
技术领域technical field
本发明属于OAM无线通信技术领域,涉及一种基于环形行波天线的射频OAM波束的产生方法。The invention belongs to the technical field of OAM wireless communication, and relates to a method for generating a radio frequency OAM beam based on a ring traveling wave antenna.
背景技术Background technique
随着全球进入移动互联网时代,移动通信业务的频谱缺口日益严重。由于低频段的优质频谱资源十分有限,仅通过划分新频谱难以满足移动通信的新需求。在这种情况下,发展新技术以提高比特/赫兹的使用效率显得尤为重要。目前,人们在基于电磁波的频谱、相位、振幅等维度以扩大信息容量资源方面进行了大量的研究,如提高频谱利用率新型智能无线通信技术——认知无线电;提高单个载波的频谱效率的信号的高阶相干调制,使频谱效率比串行系统提高近一倍的多载波技术,以及既可增加频谱效率又成倍增加信道容量的MIMO通信技术等等。显然基于频谱、相位、振幅这些维度的容量资源已经得到较为充分的开发和利用。虽然在这些维度的渐进式扩容还可以继续进行,但是要实现几个数量级的大幅度扩容,已经没有足够空间。因此,寻找新的物理参数维度实现电磁波通信技术,在有限频谱资源内满足通信容量呈数量级增长的需求,是一个重大科学和技术挑战。轨道角动量(OAM)无线通信就是在这个契机中应运而生。As the world enters the mobile Internet era, the spectrum gap for mobile communication services is becoming increasingly serious. Due to the limited high-quality spectrum resources in the low frequency band, it is difficult to meet the new demands of mobile communications only by allocating new spectrum. In this case, it is particularly important to develop new technologies to improve the efficiency of the use of bits/Hz. At present, people have done a lot of research on expanding information capacity resources based on the dimensions of frequency spectrum, phase, and amplitude of electromagnetic waves, such as improving the spectrum utilization rate of a new intelligent wireless communication technology - cognitive radio; improving the spectrum efficiency of a single carrier signal High-order coherent modulation, multi-carrier technology that nearly doubles the spectral efficiency compared with serial systems, and MIMO communication technology that can both increase spectral efficiency and double channel capacity, etc. Obviously, capacity resources based on the dimensions of frequency spectrum, phase, and amplitude have been fully developed and utilized. Although the gradual expansion in these dimensions can continue, there is not enough room to achieve a large expansion of several orders of magnitude. Therefore, it is a major scientific and technical challenge to find new physical parameter dimensions to realize electromagnetic wave communication technology and meet the demand of order-of-magnitude increase in communication capacity within limited spectrum resources. Orbital Angular Momentum (OAM) wireless communication came into being at this opportunity.
电磁波不仅具有能量,而且还有轨道角动量,轨道角动量是电磁波的基本物理属性,反映电磁波围绕传播方向轴的方位角方向的相位变化参数。对于任意频率的电磁波,全部OAM波束构成一组相互正交的、数目无限多的本征模式。OAM通信就是利用OAM模式这一组电磁波本征模式的阶数(取值l),作为新的可供调制或复用的参数维度资源,即利用不同l值代表不同编码状态或不同信息通道,从而开辟进一步提高频谱效率的新途径。由于l值具有无限取值范围,理论上OAM通信具有可无限增加电磁波承载信息量的潜力。Electromagnetic waves not only have energy, but also have orbital angular momentum. Orbital angular momentum is the basic physical property of electromagnetic waves, reflecting the phase change parameters of electromagnetic waves around the azimuth direction of the propagation direction axis. For electromagnetic waves of any frequency, all OAM beams constitute a set of mutually orthogonal and infinitely many eigenmodes. OAM communication is to use the order (value l) of the OAM mode, a group of electromagnetic wave eigenmodes, as a new parameter dimension resource that can be modulated or multiplexed, that is, to use different l values to represent different encoding states or different information channels. Thereby opening up a new way to further improve the spectral efficiency. Since the value of l has an infinite value range, theoretically OAM communication has the potential to increase the amount of information carried by electromagnetic waves infinitely.
目前利用射频OAM这一参数维度应用于无线通信领域尚处于起步阶段,大多数研究侧重于理论分析,开发和研制不同阶数射频OAM波束的产生方法及相应器件是验证OAM波自由空间信道特性,实现射频OAM无线通信系统的基础。迄今为止,大多数OAM波束产生方法均来自于2007年Thide等设计的圆环阵列天线思路,但是该方法产生的OAM波束阶数受到圆环阵列天线数量的限制,假设圆环阵列天线的个数为N,其产生的OAM波束阶数l必须小于N/2,所以寻求一种简单易行的射频OAM波束产生方法对于未来的射频OAM高速通信具有非常重要的意义。At present, the application of the parameter dimension of radio frequency OAM in the field of wireless communication is still in its infancy. Most of the research focuses on theoretical analysis. The development and development of different order radio frequency OAM beam generation methods and corresponding devices is to verify the OAM wave free space channel characteristics. Realize the basis of radio frequency OAM wireless communication system. So far, most OAM beam generation methods come from the circular array antenna idea designed by Thide et al. in 2007, but the order of the OAM beam generated by this method is limited by the number of circular array antennas. Assuming that the number of circular array antennas is N, the generated OAM beam order l must be smaller than N/2, so finding a simple and feasible radio frequency OAM beam generation method is of great significance for future radio frequency OAM high-speed communication.
发明内容Contents of the invention
本发明的目的在于提供一种基于环形行波天线的射频OAM波束的产生方法及基于此方法实现的OAM波束复用。The object of the present invention is to provide a method for generating a radio frequency OAM beam based on a ring traveling wave antenna and OAM beam multiplexing based on the method.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
一种基于环形行波天线的射频OAM波束的产生方法:A method for generating a radio frequency OAM beam based on a ring traveling wave antenna:
任何一种天线,不管是电型源天线还是磁型源天线,只要它的空间分布呈圆环形,圆环绕Z轴对称,圆环上各点激励源幅度一致,相位沿圆环圆周各点连续变化,满足的分布,其中是圆周角,l为整数,可为正或者为负,该类天线可定义为环形行波天线。即天线激励源在圆环上呈行波传播,l的符号不同表示天线激励源在圆环上呈顺时针或者逆时针方向的行波传播。经过电磁数值计算,这类环形行波天线在空间中的辐射可产生具有螺旋相位的l阶射频OAM波束,l亦可为正或者为负。其中的射频包含微波波段和毫米波波段。Any kind of antenna, whether it is an electric source antenna or a magnetic source antenna, as long as its spatial distribution is circular, the circle is symmetrical around the Z axis, the amplitude of the excitation source at each point on the ring is the same, and the phase is along the circumference of the ring. Continuously changing, satisfying distribution, where is the circular angle, l is an integer, which can be positive or negative, and this type of antenna can be defined as a ring traveling wave antenna. That is, the antenna excitation source propagates as a traveling wave on the ring, and the different signs of l indicate that the antenna excitation source propagates as a traveling wave in a clockwise or counterclockwise direction on the ring. Through electromagnetic numerical calculations, the radiation of this type of annular traveling wave antenna in space can produce a spiral phase The l-order radio frequency OAM beam, l can also be positive or negative. The radio frequency includes the microwave band and the millimeter wave band.
本发明与背景技术相比具有的有益效果是:The beneficial effect that the present invention has compared with background technology is:
本发明针对通信业务频谱资源缺口严重问题,提出了一种新的射频OAM波束的产生方法,该发明可用于OAM无线通信系统,与现有通信技术相集成,大大提高通信系统的容量。与背景技术中常用的圆环阵列天线实现OAM波束产生方法相比,本发明提出的射频OAM波束产生方法不受限于阵列天线个数,可实现任意阶数射频OAM波束的产生。另外,通过多个环形行波天线的集成,可实现OAM高速通信必需的OAM波束复用器的设计,达到不同阶数射频OAM波束的复用。本发明中要求的环形行波天线上的相位分布很容易实现,且可通过多种技术达到要求,避免背景技术中利用圆环阵列天线产生OAM方法中对每个阵列单元精确相位控制的需求。本发明对于构建射频OAM无线通信系统,促进射频OAM无线通信系统的实用化具有非常重要的作用。The invention proposes a new method for generating radio frequency OAM beams aimed at the serious problem of spectrum resource gaps in communication services. The invention can be used in OAM wireless communication systems, and is integrated with existing communication technologies to greatly increase the capacity of the communication system. Compared with the OAM beam generation method commonly used by circular array antennas in the background technology, the radio frequency OAM beam generation method proposed by the present invention is not limited to the number of array antennas, and can realize the generation of radio frequency OAM beams of any order. In addition, through the integration of multiple annular traveling wave antennas, the design of the OAM beam multiplexer necessary for OAM high-speed communication can be realized, and the multiplexing of different orders of radio frequency OAM beams can be achieved. Phase distribution on the annular traveling wave antenna required in the present invention It is easy to implement, and the requirements can be met through a variety of technologies, avoiding the need for precise phase control of each array element in the OAM method of using a circular ring array antenna in the background art. The invention plays a very important role in constructing the radio frequency OAM wireless communication system and promoting the practical application of the radio frequency OAM wireless communication system.
附图说明Description of drawings
图1是电型源行波环形天线结构示意图;Fig. 1 is a structural schematic diagram of an electrical source traveling wave loop antenna;
图2是数值计算中球坐标与直角坐标的转换关系;Figure 2 is the conversion relationship between spherical coordinates and rectangular coordinates in numerical calculation;
图3是天线电流满足分布,l=2时,z=1000λ电场的相位分布图;Figure 3 is the antenna current satisfying Distribution, when l=2, the phase distribution diagram of z=1000λ electric field;
图4是天线电流满足分布,l=3时,z=1000λ电场的相位分布图;Figure 4 is the antenna current satisfying Distribution, when l=3, the phase distribution diagram of z=1000λ electric field;
图5是天线电流满足分布,l=4时,z=1000λ电场的相位分布图;Figure 5 is the antenna current satisfying Distribution, when l=4, the phase distribution diagram of z=1000λ electric field;
图6是天线电流满足分布,l=5时,z=1000λ电场的相位分布图;Figure 6 is the antenna current satisfying Distribution, when l=5, the phase distribution diagram of z=1000λ electric field;
图7是一种产生射频OAM波束的环形行波天线实例结构图。Fig. 7 is a structural diagram of an example of a ring traveling wave antenna for generating radio frequency OAM beams.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
1.基于环形行波天线的射频OAM波束的产生。1. Generation of radio frequency OAM beams based on ring traveling wave antennas.
假设环形行波天线为电型源天线,如图1所示,天线上的电流分布满足的分布,计算该环形行波天线在空间中的辐射场。Assuming that the loop traveling wave antenna is an electrical source antenna, as shown in Figure 1, the current distribution on the antenna satisfies , calculate the radiation field of the loop traveling wave antenna in space.
基本思路为:把圆环天线分割成N段,保证每一小段天线长度ΔL<<波长λ,因为该小段天线上电流幅度相同,相位也可视为相同,则该小天线可当作电偶极子,其在空间的远场辐射可用电偶极子天线的远场辐射公式来计算,如下:The basic idea is: divide the circular antenna into N sections, and ensure that the length of each small section of antenna ΔL<<wavelength λ, because the current amplitude on the small section of antenna is the same, and the phase can also be regarded as the same, then the small antenna can be used as a galvanic couple pole, its far-field radiation in space can be calculated by the far-field radiation formula of the electric dipole antenna, as follows:
上式中,球坐标单位矢量r0,θ0,与直角坐标x0,y0,z0的转换见图2,电偶极子天线沿z轴放置在原点。In the above formula, the spherical coordinate unit vector r 0 ,θ 0 , The transformation with rectangular coordinates x 0 , y 0 , z 0 is shown in Fig. 2, and the electric dipole antenna is placed at the origin along the z-axis.
要计算环形行波天线的辐射场,必须把整个圆环上N段小天线的辐射场相叠加。考虑每一小段天线的放置位置不同,即上述辐射场公司的坐标不同,坐标变换后很难得到解析解,本发明中采用数值求解方法,计算得到该环形行波天线在空间的电场分布图,通过电场的相位变化判断是否产生不同l阶数的射频OAM波束。To calculate the radiation field of a ring traveling wave antenna, the radiation fields of N segments of small antennas on the entire ring must be superimposed. Considering that the placement positions of each small segment antenna are different, that is, the coordinates of the above-mentioned radiation field companies are different, and it is difficult to obtain an analytical solution after coordinate transformation. In the present invention, a numerical solution method is adopted to calculate the electric field distribution diagram of the annular traveling wave antenna in space, It is judged by the phase change of the electric field whether to generate radio frequency OAM beams of different l orders.
图3~图6给出了环形行波天线电流满足分布,l=2,3,4,5时天线辐射沿z轴传播1000λ时电场的相位分布图。可见,电场相位围绕传播方向轴的圆周角的变化呈现涡旋特性,且电场相位沿圆周一圈变化满足2πl,即l=2时,电场相位沿圆周一圈变化4π;l=3时,电场相位沿圆周一圈变化6π;l=4时,电场相位沿圆周一圈变化8π;l=5时,电场相位沿圆周一圈变化10π,以此类推。这一特点证明这类环形行波天线可以产生任意l阶数的射频OAM波束,只要天线上的电流分布满足l为整数即可。Figures 3 to 6 show that the current of the ring traveling wave antenna satisfies Distribution, when l=2, 3, 4, 5, the phase distribution diagram of the electric field when the antenna radiation propagates 1000λ along the z-axis. It can be seen that the change of the electric field phase around the angle of the propagation direction axis exhibits a vortex characteristic, and the change of the electric field phase along the circle satisfies 2πl, that is, when l=2, the electric field phase changes 4π along the circle; when l=3, the electric field The phase changes by 6π around the circle; when l=4, the phase of the electric field changes by 8π around the circle; when l=5, the phase of the electric field changes by 10π around the circle, and so on. This feature proves that this type of annular traveling wave antenna can generate any RF OAM beam of order l, as long as the current distribution on the antenna satisfies l is an integer.
当此类环形行波天线为磁型源天线时,根据电磁对偶原理,可以得到同样的结论,只要天线的激励源满足环形行波分布,即满足分布,在空间中就可以产生l阶数的射频OAM波束。When this type of annular traveling wave antenna is a magnetic source antenna, according to the principle of electromagnetic duality, the same conclusion can be obtained, as long as the excitation source of the antenna satisfies the annular traveling wave distribution, that is, Distribution, in the space can generate l-order radio frequency OAM beams.
2.一种环形行波天线实施例2. An embodiment of an annular traveling wave antenna
本发明定义的可产生射频OAM波束的环形行波天线很容易通过结构的设计实现,相比于背景技术中常用的圆环阵列天线实现OAM波束产生方法需要对每个阵列的相位精确控制这一点,本发明的方法更为简便。图7是一个可产生射频OAM波束的环形行波天线的实施例。该天线主体结构为一个顶面开一圆环缝隙的金属环形腔,金属环型腔可看成由矩形波导弯折而成,侧面高度为矩形波导的宽边,顶面宽度为矩形波导的窄边,工作在TE10模式,开缝处为窄边的中间。在金属环型腔侧面相距1/4圆周处开口外接两个金属波导作为激励端口1和激励端口2,当激励端口1和2中输入同频率,相位相差±90°的微波源,金属环形腔中的电磁场绕圆周成顺时针或者逆时针传播的行波分布。合理设计金属环型腔的尺寸,使得原矩形波导的纵向传播常数kz满足kzR=l,l为整数,R为环型腔开缝的半径,则开缝处的磁流沿圆周满足分布,此时金属腔上的圆环开缝相当于一个磁型源天线,向外辐射电磁波,在空间中产生阶数为l的OAM波束。同样也可以设计电型源天线,只要天线上的电流相位分布满足分布,则可以产生阶数为l的射频OAM波束。The annular traveling-wave antenna defined by the present invention that can generate radio frequency OAM beams is easy to realize through the design of the structure, compared to the commonly used ring array antenna in the background technology to realize the OAM beam generation method that requires precise control of the phase of each array , the method of the present invention is more convenient. Fig. 7 is an embodiment of a ring traveling wave antenna capable of generating radio frequency OAM beams. The main structure of the antenna is a metal ring cavity with a ring gap on the top surface. The metal ring cavity can be regarded as being bent from a rectangular waveguide. Side, working in TE 10 mode, the slit is in the middle of the narrow side. Two metal waveguides are externally connected to the 1/4 circumference of the side of the metal ring cavity as the excitation port 1 and the
3.OAM波束复用的实现3. Implementation of OAM beam multiplexing
基于环形行波天线产生射频OAM波束的方法,一种相位具有分布的天线产生阶数为l的OAM波束,如果有一个器件,通过结构和材料的合理设计,实现多个相位具有分布的环形行波天线的组合,那么该器件即可作为OAM波束复用器,可在空间产生多个不同l阶数的OAM波束,从而实现OAM波束的复用,为OAM高速通信打下基础。如图7所示的环形行波天线实例,可以通过大小不同的的金属环型腔实现环形行波天线的叠加,在空间中实现OAM波束的复用功能。A method for generating radio frequency OAM beams based on a ring traveling wave antenna, a phase with Distributed antennas generate OAM beams with an order of l. If there is a device, through reasonable design of structure and materials, multiple phases can be realized. The combination of distributed annular traveling wave antennas, then the device can be used as an OAM beam multiplexer, which can generate multiple OAM beams of different l-orders in space, thereby realizing the multiplexing of OAM beams and laying the foundation for OAM high-speed communication. In the example of the annular traveling wave antenna shown in Fig. 7, the superposition of the annular traveling wave antenna can be realized through metal ring cavities of different sizes, and the multiplexing function of the OAM beam can be realized in space.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310433063.1A CN103474776B (en) | 2013-09-22 | 2013-09-22 | A kind of method producing radio frequency orbital angular momentum wave beam based on annular traveling wave antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310433063.1A CN103474776B (en) | 2013-09-22 | 2013-09-22 | A kind of method producing radio frequency orbital angular momentum wave beam based on annular traveling wave antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103474776A true CN103474776A (en) | 2013-12-25 |
CN103474776B CN103474776B (en) | 2015-08-19 |
Family
ID=49799526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310433063.1A Active CN103474776B (en) | 2013-09-22 | 2013-09-22 | A kind of method producing radio frequency orbital angular momentum wave beam based on annular traveling wave antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103474776B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103812543A (en) * | 2014-01-27 | 2014-05-21 | 华中科技大学 | Method of improving wireless communication capacity by orbital angular momentum |
CN103986531A (en) * | 2014-04-28 | 2014-08-13 | 北京邮电大学 | An axis alignment adjustment method and system for an orbital angular momentum wireless communication system |
CN104319434A (en) * | 2014-10-13 | 2015-01-28 | 浙江大学 | Design method of ultralow-reflectivity rotary phase plate capable of generating orbital angular momentum wave beams |
WO2015039580A1 (en) * | 2013-09-22 | 2015-03-26 | 浙江大学 | Metal annular cavity-based annular traveling-wave antenna for generating radio frequency orbital angular momentum (oam) |
CN104601214A (en) * | 2014-12-30 | 2015-05-06 | 浙江大学 | Sampling receiving method for demultiplexing RF track angular momentum mode |
CN104953254A (en) * | 2015-07-09 | 2015-09-30 | 浙江大学 | Antenna capable of producing radio frequency orbital angular momentum beams based on dielectric resonator |
CN105049169A (en) * | 2015-07-31 | 2015-11-11 | 上海卫星工程研究所 | High-code-rate satellite-ground data secure transmission method based on OAM same frequency multiplexing |
CN105470638A (en) * | 2016-01-13 | 2016-04-06 | 复旦大学 | Radial array orbital angular momentum multimode multiplexing antenna |
CN105471803A (en) * | 2015-12-09 | 2016-04-06 | 深圳大学 | Millimeter wave high speed modulation and demodulation system and method based on antenna array |
CN106025566A (en) * | 2016-05-30 | 2016-10-12 | 哈尔滨工业大学 | Lens and method for generating vortex beam based on reflecting super-surface |
CN106229618A (en) * | 2016-08-10 | 2016-12-14 | 电子科技大学 | For producing annular ellipse microstrip structure antenna and the multiplexer of radio frequency OAM wave beam |
CN106329105A (en) * | 2016-09-27 | 2017-01-11 | 华中科技大学 | Annular slit antenna for generating OAM (orbital angular momentum) waves |
CN107611600A (en) * | 2017-08-08 | 2018-01-19 | 西安电子科技大学 | A kind of SIW annular slot antennas for producing bimodulus OAM vortex electromagnetic waves |
CN108282208A (en) * | 2017-12-15 | 2018-07-13 | 西安电子科技大学 | The beam alignmetn method of Homogeneous Circular phased antenna array in OAM communication systems |
CN110165407A (en) * | 2019-05-30 | 2019-08-23 | 浙江大学 | A kind of multimode snail OAM antenna of TM ring resonator and the paraboloid of revolution |
CN110336123A (en) * | 2019-05-13 | 2019-10-15 | 浙江大学 | Radial Propagation Multimode OAM Beam Antenna Based on Dielectric Integrated Waveguide |
CN111276805A (en) * | 2020-02-11 | 2020-06-12 | 浙江大学 | A Method for Generating Structured Electromagnetic Beam Based on Partial Ring Traveling Wave Antenna Theory |
CN111293422A (en) * | 2020-02-20 | 2020-06-16 | 浙江大学 | An antenna for generating OAM mode groups based on partial slits in curved waveguides |
CN112930667A (en) * | 2018-10-19 | 2021-06-08 | 华为技术有限公司 | Pseudo-doppler receive architecture for OAM and MIMO transmissions |
WO2022036577A1 (en) * | 2020-08-19 | 2022-02-24 | Qualcomm Incorporated | Generating and steering orbital angular momentum beams |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2410130A (en) * | 2004-01-19 | 2005-07-20 | Roke Manor Research | Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes |
WO2012084039A1 (en) * | 2010-12-22 | 2012-06-28 | Telefonaktiebolaget Lm Ericsson (Publ) | An antenna arrangement |
WO2012175629A1 (en) * | 2011-06-24 | 2012-12-27 | Università Degli Studi Di Padova | A telecommunication method and apparatus exploiting the transmission and reception of electromagnetic waves |
US20130306276A1 (en) * | 2007-04-23 | 2013-11-21 | David D Duchesneau | Computing infrastructure |
-
2013
- 2013-09-22 CN CN201310433063.1A patent/CN103474776B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2410130A (en) * | 2004-01-19 | 2005-07-20 | Roke Manor Research | Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes |
US20130306276A1 (en) * | 2007-04-23 | 2013-11-21 | David D Duchesneau | Computing infrastructure |
WO2012084039A1 (en) * | 2010-12-22 | 2012-06-28 | Telefonaktiebolaget Lm Ericsson (Publ) | An antenna arrangement |
WO2012175629A1 (en) * | 2011-06-24 | 2012-12-27 | Università Degli Studi Di Padova | A telecommunication method and apparatus exploiting the transmission and reception of electromagnetic waves |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015039580A1 (en) * | 2013-09-22 | 2015-03-26 | 浙江大学 | Metal annular cavity-based annular traveling-wave antenna for generating radio frequency orbital angular momentum (oam) |
US9705200B2 (en) | 2013-09-22 | 2017-07-11 | Zhejiang University | Traveling-wave loop antenna based on metal ring cavity for generating radio frequency orbital angular momentum |
CN103812543B (en) * | 2014-01-27 | 2017-01-11 | 华中科技大学 | Method of improving wireless communication capacity by orbital angular momentum |
CN103812543A (en) * | 2014-01-27 | 2014-05-21 | 华中科技大学 | Method of improving wireless communication capacity by orbital angular momentum |
CN103986531A (en) * | 2014-04-28 | 2014-08-13 | 北京邮电大学 | An axis alignment adjustment method and system for an orbital angular momentum wireless communication system |
CN103986531B (en) * | 2014-04-28 | 2019-04-02 | 北京邮电大学 | A kind of the axis alignment adjusting method and its system of orbital angular momentum wireless communication system |
CN104319434A (en) * | 2014-10-13 | 2015-01-28 | 浙江大学 | Design method of ultralow-reflectivity rotary phase plate capable of generating orbital angular momentum wave beams |
CN104319434B (en) * | 2014-10-13 | 2017-01-25 | 浙江大学 | Design method of ultralow-reflectivity rotary phase plate capable of generating orbital angular momentum wave beams |
CN104601214B (en) * | 2014-12-30 | 2017-10-13 | 浙江大学 | A kind of sampling method of reseptance demultiplexed for radio frequency orbital angular momentum pattern |
CN104601214A (en) * | 2014-12-30 | 2015-05-06 | 浙江大学 | Sampling receiving method for demultiplexing RF track angular momentum mode |
CN104953254A (en) * | 2015-07-09 | 2015-09-30 | 浙江大学 | Antenna capable of producing radio frequency orbital angular momentum beams based on dielectric resonator |
CN104953254B (en) * | 2015-07-09 | 2018-01-05 | 浙江大学 | The antenna of radio frequency orbital angular momentum wave beam is produced based on dielectric resonator |
CN105049169B (en) * | 2015-07-31 | 2019-01-18 | 上海卫星工程研究所 | Based on the OAM high bit rate star being multiplexed with frequency data safe transmission method |
CN105049169A (en) * | 2015-07-31 | 2015-11-11 | 上海卫星工程研究所 | High-code-rate satellite-ground data secure transmission method based on OAM same frequency multiplexing |
CN105471803A (en) * | 2015-12-09 | 2016-04-06 | 深圳大学 | Millimeter wave high speed modulation and demodulation system and method based on antenna array |
CN105471803B (en) * | 2015-12-09 | 2019-02-01 | 深圳大学 | A kind of millimeter wave High Speed Modulation demodulating system and method based on antenna array |
CN105470638A (en) * | 2016-01-13 | 2016-04-06 | 复旦大学 | Radial array orbital angular momentum multimode multiplexing antenna |
CN105470638B (en) * | 2016-01-13 | 2019-04-02 | 复旦大学 | A kind of radial direction battle array orbital angular momentum multimode multiplexing antenna |
CN106025566A (en) * | 2016-05-30 | 2016-10-12 | 哈尔滨工业大学 | Lens and method for generating vortex beam based on reflecting super-surface |
CN106025566B (en) * | 2016-05-30 | 2018-10-02 | 哈尔滨工业大学 | Surpass the lens and method that surface generates vortex wave beam based on reflection-type |
CN106229618A (en) * | 2016-08-10 | 2016-12-14 | 电子科技大学 | For producing annular ellipse microstrip structure antenna and the multiplexer of radio frequency OAM wave beam |
CN106329105B (en) * | 2016-09-27 | 2017-09-12 | 华中科技大学 | A kind of annular slot antenna for being used to produce OAM ripples |
CN106329105A (en) * | 2016-09-27 | 2017-01-11 | 华中科技大学 | Annular slit antenna for generating OAM (orbital angular momentum) waves |
CN107611600A (en) * | 2017-08-08 | 2018-01-19 | 西安电子科技大学 | A kind of SIW annular slot antennas for producing bimodulus OAM vortex electromagnetic waves |
CN108282208A (en) * | 2017-12-15 | 2018-07-13 | 西安电子科技大学 | The beam alignmetn method of Homogeneous Circular phased antenna array in OAM communication systems |
CN108282208B (en) * | 2017-12-15 | 2020-11-10 | 西安电子科技大学 | Wave beam calibration method of uniform circular phased antenna array in OAM communication system |
CN112930667A (en) * | 2018-10-19 | 2021-06-08 | 华为技术有限公司 | Pseudo-doppler receive architecture for OAM and MIMO transmissions |
CN110336123A (en) * | 2019-05-13 | 2019-10-15 | 浙江大学 | Radial Propagation Multimode OAM Beam Antenna Based on Dielectric Integrated Waveguide |
CN110336123B (en) * | 2019-05-13 | 2020-12-25 | 浙江大学 | Antenna based on medium integrated waveguide radial propagation multimode OAM wave beam |
CN110165407A (en) * | 2019-05-30 | 2019-08-23 | 浙江大学 | A kind of multimode snail OAM antenna of TM ring resonator and the paraboloid of revolution |
CN110165407B (en) * | 2019-05-30 | 2020-10-16 | 浙江大学 | A Multimode Planar Helical OAM Antenna with TM Ring Resonator and Rotating Paraboloid |
CN111276805A (en) * | 2020-02-11 | 2020-06-12 | 浙江大学 | A Method for Generating Structured Electromagnetic Beam Based on Partial Ring Traveling Wave Antenna Theory |
CN111293422A (en) * | 2020-02-20 | 2020-06-16 | 浙江大学 | An antenna for generating OAM mode groups based on partial slits in curved waveguides |
WO2022036577A1 (en) * | 2020-08-19 | 2022-02-24 | Qualcomm Incorporated | Generating and steering orbital angular momentum beams |
Also Published As
Publication number | Publication date |
---|---|
CN103474776B (en) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103474776B (en) | A kind of method producing radio frequency orbital angular momentum wave beam based on annular traveling wave antenna | |
US9705200B2 (en) | Traveling-wave loop antenna based on metal ring cavity for generating radio frequency orbital angular momentum | |
Ren et al. | Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna | |
CN105762507B (en) | Monopole antenna array generating vortex electromagnetic waves and feed system of antenna array | |
CN108767495B (en) | Vortex electromagnetic wave generating device based on super surface | |
Guerboukha et al. | Efficient leaky-wave antennas at terahertz frequencies generating highly directional beams | |
CN110265789A (en) | An all-dielectric silicon terahertz vortex metasurface based on multi-order phase factors | |
Liang et al. | Orbital angular momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications | |
CN105071034A (en) | Multi-modal orbital angular momentum (OAM) vortex electromagnetic wave microstrip array antenna | |
CN105356065B (en) | The antenna of generation radial propagation radio frequency OAM wave beams based on annular traveling wave antenna | |
Zhu et al. | Unified time-and frequency-domain study on time-modulated arrays | |
CN204966687U (en) | Multimode OAM vortex electromagnetic wave microstrip array antenna | |
Kim et al. | Numerical analysis of the propagation characteristics of multiangle multislot coaxial cable using moment method | |
CN109546319B (en) | Electromagnetic vortex generator based on multi-arm spiral structure | |
Meng et al. | Generating dual-polarization beams carrying dual orbital angular momentum modes based on anisotropic holographic metasurfaces | |
Meng et al. | Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic metasurface | |
CN109301505A (en) | An ultra-wideband OAM vortex electromagnetic wave antenna | |
CN105977630A (en) | Ultrathin orbital angular momentum spiral phase plate antenna and design method thereof | |
Yang et al. | Bifunctional Integration Performed by a Broadband High‐Efficiency Spin‐Decoupled Metasurface | |
CN106229618A (en) | For producing annular ellipse microstrip structure antenna and the multiplexer of radio frequency OAM wave beam | |
Ming et al. | A mode reconfigurable orbital angular momentum water antenna | |
Zhu et al. | A non-uniform travelling-wave current source model for designing OAM antenna: Theory, analysis and application | |
Wang et al. | Multi-mode vortex beams generation with single-layer transmissive metasurface | |
CN209001147U (en) | An ultra-wideband OAM vortex electromagnetic wave antenna | |
Ba et al. | Metasurface for generating high-order millimeter wave orbital angular momentum beams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |