CN103447025A - A kind of Dy/BiVO4 photocatalyst and its preparation method and application - Google Patents
A kind of Dy/BiVO4 photocatalyst and its preparation method and application Download PDFInfo
- Publication number
- CN103447025A CN103447025A CN2013103570549A CN201310357054A CN103447025A CN 103447025 A CN103447025 A CN 103447025A CN 2013103570549 A CN2013103570549 A CN 2013103570549A CN 201310357054 A CN201310357054 A CN 201310357054A CN 103447025 A CN103447025 A CN 103447025A
- Authority
- CN
- China
- Prior art keywords
- bivo
- photochemical catalyst
- preparation
- microwave
- photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 239000011941 photocatalyst Substances 0.000 title abstract description 51
- 229910002915 BiVO4 Inorganic materials 0.000 title abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 21
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 229910001868 water Inorganic materials 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims description 55
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- 239000008367 deionised water Substances 0.000 claims description 20
- 229910021641 deionized water Inorganic materials 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000002243 precursor Substances 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 230000007935 neutral effect Effects 0.000 claims description 8
- 238000007792 addition Methods 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 229910052845 zircon Inorganic materials 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims 3
- 238000003760 magnetic stirring Methods 0.000 claims 3
- 230000001105 regulatory effect Effects 0.000 claims 3
- 238000009938 salting Methods 0.000 claims 3
- 150000003839 salts Chemical class 0.000 claims 3
- 238000010792 warming Methods 0.000 claims 3
- 239000013049 sediment Substances 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 239000000356 contaminant Substances 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000012266 salt solution Substances 0.000 abstract description 34
- 239000011259 mixed solution Substances 0.000 abstract description 19
- 150000001621 bismuth Chemical class 0.000 abstract description 17
- 150000003681 vanadium Chemical class 0.000 abstract description 17
- 239000013078 crystal Substances 0.000 abstract description 15
- 230000001699 photocatalysis Effects 0.000 abstract description 9
- 239000003344 environmental pollutant Substances 0.000 abstract description 4
- 239000000843 powder Substances 0.000 abstract description 3
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 abstract description 2
- FBXVOTBTGXARNA-UHFFFAOYSA-N bismuth;trinitrate;pentahydrate Chemical compound O.O.O.O.O.[Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FBXVOTBTGXARNA-UHFFFAOYSA-N 0.000 abstract description 2
- DCKWZDOAGNMKMX-UHFFFAOYSA-N dysprosium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Dy+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O DCKWZDOAGNMKMX-UHFFFAOYSA-N 0.000 abstract description 2
- 230000035484 reaction time Effects 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 20
- 230000015556 catabolic process Effects 0.000 description 17
- 238000006731 degradation reaction Methods 0.000 description 17
- 239000000243 solution Substances 0.000 description 16
- 239000002244 precipitate Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- 238000011049 filling Methods 0.000 description 7
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 7
- 229940043267 rhodamine b Drugs 0.000 description 7
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
一种Dy/BiVO4光催化剂及其制备方法和应用,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+。分别将五水硝酸铋和偏钒酸铵溶于水中得铋盐溶液和钒盐溶液,按Bi与V的摩尔比为1:1将钒盐溶液加入铋盐溶液中得混合液,调节混合液的pH值为8,再加入六水硝酸镝,Dy与Bi的摩尔比为(2.04~13.64):100,采用微波水热法以300W的功率在180℃保温40min制备出Dy/BiVO4。本发明结合了微波加热和水热法合成粉体的优点,加热速度快,加热均匀,缩短了反应时间,提高了工作效率,合成的Dy/BiVO4光催化剂具有较高的光催化活性,能够应用于环境污染物处理。A Dy/BiVO 4 photocatalyst and its preparation method and application, its main component is BiVO 4 , which is a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ . Dissolve bismuth nitrate pentahydrate and ammonium metavanadate in water respectively to obtain a bismuth salt solution and a vanadium salt solution, add the vanadium salt solution to the bismuth salt solution at a molar ratio of Bi and V of 1:1 to obtain a mixed solution, adjust the mixed solution Dy/BiVO 4 was prepared by adding dysprosium nitrate hexahydrate, the molar ratio of Dy to Bi was (2.04~13.64):100, and the Dy/BiVO 4 was prepared by microwave hydrothermal method at 180°C for 40min with a power of 300W. The invention combines the advantages of microwave heating and hydrothermal method to synthesize powder, with fast heating speed, uniform heating, shortened reaction time and improved work efficiency. The synthesized Dy/ BiVO4 photocatalyst has higher photocatalytic activity and can Applied to the treatment of environmental pollutants.
Description
技术领域technical field
本发明属于光催化剂材料领域,涉及一种Dy/BiVO4光催化剂及其制备方法和应用。The invention belongs to the field of photocatalyst materials, and relates to a Dy/ BiVO4 photocatalyst, a preparation method and application thereof.
背景技术Background technique
近年来,半导体光催化氧化法在废水治理中的应用受到了学者们的重视,它是利用半导体光催化剂在光照的条件下产生的强氧化性的自由基将有机污染物彻底降解,并最终生成H2O和CO2等无机小分子。这种方法的反应设备简单、二次污染小、操作易于控制、运行成本低、可有效利用太阳光作为反应光源。In recent years, the application of semiconductor photocatalytic oxidation method in wastewater treatment has attracted the attention of scholars. It uses the strong oxidizing free radicals generated by semiconductor photocatalysts under the condition of light to completely degrade organic pollutants and eventually generate Inorganic small molecules such as H2O and CO2 . The method has simple reaction equipment, less secondary pollution, easy operation control, low operation cost, and can effectively use sunlight as a reaction light source.
然而,BiVO4是一种环境友好的半导体光催化材料,它有三种晶体结构:单斜白钨矿型、四方白钨矿型和四方锆石型,其中,用于研究光催化性能的BiVO4主要是四方锆石型和单斜白钨矿型的BiVO4。单斜相BiVO4禁带宽度较小(2.40eV),能吸收更多的可见光,并且其晶格中Bi-O键发生了畸变,这种畸变提高了光生电子和空穴的分离效率,进而在一定程度上提高了光催化性能,所以在BiVO4的三种晶型里,单斜相BiVO4的可见光催化活性最高,这使其成为人们研究的焦点之一,而四方相BiVO4在可见光下几乎没有光催化效果,很少被研究。但是,由于光生电子和空穴的分离效率较低,纯相的单斜白钨矿型结构BiVO4的光催化效果并不理想。掺杂可改善BiVO4的光催化反应效率和选择性,目前对BiVO4进行掺杂改性的方法多为浸渍法,即在传统的固相反应法、化学共沉淀法、溶胶-凝胶法及水热法等制备出纯相BiVO4后,再选择适当的金属源采用浸渍的方法对其进行掺杂,该方法流程多,工艺复杂。However, BiVO 4 is an environmentally friendly semiconductor photocatalytic material, which has three crystal structures: monoclinic scheelite type, tetragonal scheelite type and tetragonal zirconite type. Among them, BiVO 4 used to study photocatalytic performance Mainly tetragonal zircon type and monoclinic scheelite type BiVO 4 . The monoclinic phase BiVO 4 has a smaller band gap (2.40eV), can absorb more visible light, and the Bi-O bond in its lattice is distorted, which improves the separation efficiency of photogenerated electrons and holes, and then To a certain extent, the photocatalytic performance is improved, so among the three crystal forms of BiVO 4 , the visible light catalytic activity of the monoclinic BiVO 4 is the highest, which makes it one of the focuses of people's research, while the tetragonal BiVO 4 has the highest visible light catalytic activity. There is almost no photocatalytic effect under this condition, and it has rarely been studied. However, due to the low separation efficiency of photogenerated electrons and holes, the photocatalytic effect of the pure-phase monoclinic scheelite structure BiVO4 is not ideal. Doping can improve the photocatalytic reaction efficiency and selectivity of BiVO 4. At present, the method of doping and modifying BiVO 4 is mostly the impregnation method, that is, in the traditional solid-phase reaction method, chemical co-precipitation method, sol-gel method, etc. After the pure phase BiVO 4 is prepared by the hydrothermal method, etc., an appropriate metal source is selected and impregnated to dope it. This method has many processes and complicated processes.
发明内容Contents of the invention
本发明的目的在于提供一种Dy/BiVO4光催化剂及其制备方法和应用,该方法结合了微波加热的优点与水热反应的特点,且合成的Dy/BiVO4光催化剂具有较高的光催化活性。The purpose of the present invention is to provide a Dy/ BiVO4 photocatalyst and its preparation method and application, the method combines the advantages of microwave heating and the characteristics of hydrothermal reaction, and the synthesized Dy/ BiVO4 photocatalyst has higher catalytic activity.
为达到上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种Dy/BiVO4光催化剂,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+,其中Dy元素与Bi元素的摩尔比为(2.04~13.64):100。A Dy/BiVO 4 photocatalyst, its main component is BiVO 4 , which is a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ , wherein the molar ratio of Dy element to Bi element is (2.04~13.64) :100.
其形貌为短柱状,尺寸为纳米级。Its shape is short columnar, and its size is nanoscale.
一种Dy/BiVO4光催化剂的制备方法,包括以下步骤:A preparation method of Dy/ BiVO photocatalyst, comprises the following steps:
步骤1:将Bi(NO3)3·5H2O溶于水中,搅拌均匀,得到铋盐溶液;将NH4VO3溶于100℃的水中,加热搅拌均匀,得到钒盐溶液;Step 1: dissolving Bi(NO 3 ) 3 ·5H 2 O in water, and stirring evenly to obtain a bismuth salt solution; dissolving NH 4 VO 3 in water at 100°C, heating and stirring evenly, to obtain a vanadium salt solution;
步骤2:按Bi与V的摩尔比为1:1将钒盐溶液加到铋盐溶液中,搅拌均匀,得到混合液;Step 2: Add the vanadium salt solution to the bismuth salt solution according to the molar ratio of Bi and V of 1:1, and stir evenly to obtain a mixed solution;
步骤3:调节混合液的pH值为8,搅拌均匀;Step 3: adjust the pH value of the mixture to 8, and stir evenly;
步骤4:将Dy(NO3)3·6H2O加入到调节了pH值后的混合液中,搅拌均匀,得前驱液,其中Dy与Bi的摩尔比为(2.04~13.64):100;Step 4: Add Dy(NO 3 ) 3 ·6H 2 O to the mixed solution after adjusting the pH value, and stir evenly to obtain a precursor solution, wherein the molar ratio of Dy to Bi is (2.04-13.64):100;
步骤5:将前驱液加入微波水热反应釜中,将微波水热反应釜密封后置于微波辅助水热合成仪中,设定压力为1.1MPa,在300W的微波功率下,从室温升温至100℃,在100℃保温8min;然后从100℃升温至150℃,在150℃保温8min;再从150℃升温至180℃,在180℃保温40min后结束反应;Step 5: Add the precursor liquid into the microwave hydrothermal reaction kettle, seal the microwave hydrothermal reaction kettle and place it in the microwave-assisted hydrothermal synthesis instrument, set the pressure at 1.1MPa, and raise the temperature from room temperature to 100°C, hold at 100°C for 8 minutes; then raise the temperature from 100°C to 150°C, hold at 150°C for 8 minutes; then raise the temperature from 150°C to 180°C, and finish the reaction after holding at 180°C for 40 minutes;
步骤6:待反应结束后,冷却至室温,取出微波水热反应釜中的沉淀物,洗涤,干燥,得到Dy/BiVO4光催化剂。Step 6: After the reaction is finished, cool to room temperature, take out the precipitate in the microwave hydrothermal reaction kettle, wash and dry to obtain Dy/BiVO 4 photocatalyst.
所述的铋盐溶液中Bi(NO3)3·5H2O的浓度为0.4mol/L;钒盐溶液中NH4VO3的浓度为0.4mol/L。The concentration of Bi(NO 3 ) 3 ·5H 2 O in the bismuth salt solution is 0.4 mol/L; the concentration of NH 4 VO 3 in the vanadium salt solution is 0.4 mol/L.
所述的步骤1中将Bi(NO3)3·5H2O溶于水中搅拌20min;将NH4VO3溶于100℃的水中在90-100℃下加热搅拌20min;所述的步骤2中的搅拌均匀是在磁力搅拌器上搅拌15min。In step 1, dissolve Bi(NO 3 ) 3 ·5H 2 O in water and stir for 20 min; dissolve NH 4 VO 3 in water at 100°C and heat and stir at 90-100°C for 20 min; in step 2 Stir evenly on a magnetic stirrer for 15 min.
所述的步骤3中用浓度为5mol/L的NaOH溶液调节混合液的pH值,NaOH溶液的滴加速度小于等于1mL/min。In the step 3, the pH value of the mixed solution is adjusted with a NaOH solution having a concentration of 5 mol/L, and the dropping rate of the NaOH solution is less than or equal to 1 mL/min.
所述的步骤3中的搅拌均匀是在磁力搅拌器上搅拌25min;所述的步骤4中的搅拌均匀是在磁力搅拌器上搅拌20min。The uniform stirring in the step 3 is to stir on a magnetic stirrer for 25 minutes; the uniform stirring in the described step 4 is to stir on a magnetic stirrer for 20 minutes.
所述的步骤5中微波水热反应釜的填充比为55%。The filling ratio of the microwave hydrothermal reactor in the step 5 is 55%.
所述的步骤6中的洗涤是用去离子水和无水乙醇洗涤沉淀物至中性;所述的干燥是在75℃下恒温干燥24h。The washing in step 6 is to wash the precipitate with deionized water and absolute ethanol until neutral; the drying is to dry at a constant temperature at 75° C. for 24 hours.
Dy/BiVO4光催化剂在环境污染物处理方面的应用。Application of Dy/BiVO 4 photocatalyst in the treatment of environmental pollutants.
相对于现有技术,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供的Dy/BiVO4光催化剂的制备方法,以五水硝酸铋(Bi(NO3)3·5H2O)为铋源,偏钒酸铵(NH4VO3)为钒源,制备BiVO4,再以六水硝酸镝(Dy(NO3)3·6H2O)为镝源,制备出尺寸在纳米级的高活性Dy/BiVO4光催化剂粉体。本发明将Dy3+引入BiVO4的晶格中,提高了纯相BiVO4在降解有机污染物方面的效率。本发明采用微波水热法合成了高活性Dy/BiVO4光催化剂,该方法结合了微波加热与水热法的优点,可实现分子水平上的搅拌,加热速度快,加热均匀,无温度梯度,无滞后效应,克服了水热容器加热不均匀的缺点,缩短了反应时间,提高了工作效率,且反应条件温和,工艺流程简单,操作方便,制备周期短。The preparation method of the Dy/BiVO 4 photocatalyst provided by the present invention uses bismuth nitrate pentahydrate (Bi(NO 3 ) 3 5H 2 O) as the bismuth source and ammonium metavanadate (NH 4 VO 3 ) as the vanadium source to prepare BiVO 4 and dysprosium nitrate hexahydrate (Dy(NO 3 ) 3 ·6H 2 O) as dysprosium source to prepare highly active Dy/BiVO 4 photocatalyst powder in the nanometer scale. The present invention introduces Dy 3+ into the crystal lattice of BiVO 4 and improves the efficiency of pure phase BiVO 4 in degrading organic pollutants. In the present invention, a highly active Dy/ BiVO4 photocatalyst is synthesized by a microwave hydrothermal method. This method combines the advantages of microwave heating and hydrothermal method, and can realize stirring at the molecular level. The heating speed is fast, the heating is uniform, and there is no temperature gradient. It has no hysteresis effect, overcomes the disadvantage of uneven heating of the hydrothermal container, shortens the reaction time, improves work efficiency, and has mild reaction conditions, simple process flow, convenient operation and short preparation cycle.
本发明提供的Dy/BiVO4光催化剂为四方锆石型结构,其主要成分为BiVO4,且BiVO4的晶格中含有Dy3+,具有较高的光催化活性,能够应用于环境污染物处理方面,改善了纯相BiVO4的光催化性能,达到了对纯相BiVO4进行改性的目的,具有良好的应用前景。The Dy/BiVO 4 photocatalyst provided by the present invention has a tetragonal zircon structure, its main component is BiVO 4 , and the crystal lattice of BiVO 4 contains Dy 3+ , which has high photocatalytic activity and can be applied to environmental pollutants In terms of treatment, the photocatalytic performance of pure phase BiVO 4 has been improved, and the purpose of modifying pure phase BiVO 4 has been achieved, which has a good application prospect.
进一步的,本发明提供的Dy/BiVO4光催化剂的形貌为短柱状,尺寸为纳米级。Furthermore, the shape of the Dy/BiVO 4 photocatalyst provided by the present invention is short columnar, and the size is nanoscale.
附图说明Description of drawings
图1是本发明实施例5制备的Dy/BiVO4光催化剂的FE-SEM图;Fig. 1 is the FE-SEM figure of the Dy/BiVO photocatalyst prepared in Example 5 of the present invention;
图2是本发明不同Dy3+加入量下制备的Dy/BiVO4光催化剂的XRD谱图,其中a为未加入Dy的纯相BiVO4的XRD图谱,b~g分别为实施例1~实施例6制备的Dy/BiVO4光催化剂的XRD图谱;Figure 2 is the XRD spectrum of the Dy/ BiVO4 photocatalyst prepared under different Dy 3+ additions in the present invention, where a is the XRD spectrum of the pure phase BiVO 4 without adding Dy, and b~g are respectively The Dy/ BiVO4 photocatalyst XRD spectrum that example 6 prepares;
图3是本发明不同Dy3+加入量下制备的Dy/BiVO4光催化剂的降解罗丹明B的降解率-时间曲线,其中RhB为不加催化剂时罗丹明B自身的降解曲线;a为未加入Dy的纯相BiVO4的降解曲线,b~g分别为实施例1~实施例6制备的Dy/BiVO4光催化剂的降解曲线。Fig. 3 is the degradation rate-time curve of the degradation Rhodamine B of the Dy/ BiVO photocatalyst prepared under different Dy 3+ additions of the present invention-time curve, wherein RhB is the degradation curve of Rhodamine B self when not adding catalyst; The degradation curve of the pure phase BiVO 4 with Dy added, b~g are the degradation curves of the Dy/BiVO 4 photocatalysts prepared in Examples 1 to 6, respectively.
具体实施方式Detailed ways
下面结合具体实施例和附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with specific embodiments and accompanying drawings.
实施例1:Example 1:
一种Dy/BiVO4光催化剂,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+,其中Dy元素与Bi元素的摩尔比为2.04:100。A Dy/BiVO 4 photocatalyst whose main component is BiVO 4 with a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ , wherein the molar ratio of Dy element to Bi element is 2.04:100.
一种Dy/BiVO4光催化剂的制备方法,包括以下步骤:A preparation method of Dy/ BiVO photocatalyst, comprises the following steps:
步骤1:将Bi(NO3)3·5H2O溶于去离子水中,在磁力搅拌器上搅拌20min,得到Bi(NO3)3·5H2O浓度为0.4mol/L的铋盐溶液;将NH4VO3溶于100℃的去离子水中,在100℃下加热搅拌20min,得到NH4VO3浓度为0.4mol/L的钒盐溶液;Step 1: Dissolve Bi(NO 3 ) 3 ·5H 2 O in deionized water, and stir on a magnetic stirrer for 20 minutes to obtain a bismuth salt solution with a Bi(NO 3 ) 3 ·5H 2 O concentration of 0.4 mol/L; Dissolve NH 4 VO 3 in deionized water at 100°C, heat and stir at 100°C for 20 minutes to obtain a vanadium salt solution with an NH 4 VO 3 concentration of 0.4mol/L;
步骤2:按Bi与V的摩尔比为1:1将钒盐溶液缓慢滴加到铋盐溶液中,在磁力搅拌器上搅拌15min,得到混合液;Step 2: slowly drop the vanadium salt solution into the bismuth salt solution according to the molar ratio of Bi and V of 1:1, and stir on a magnetic stirrer for 15 minutes to obtain a mixed solution;
步骤3:以1mL/min的滴加速度向混合液中滴加浓度为5mol/L的NaOH溶液,调节混合液的pH为8,并在磁力搅拌器上搅拌25min;Step 3: Add dropwise NaOH solution with a concentration of 5 mol/L to the mixture at a rate of 1 mL/min, adjust the pH of the mixture to 8, and stir on a magnetic stirrer for 25 minutes;
步骤4:将Dy(NO3)3·6H2O加入到调节了pH值后的混合液中,在磁力搅拌器上搅拌20min,配制成前驱液,其中Dy与Bi的摩尔比为2.04:100;Step 4: Add Dy(NO 3 ) 3 6H 2 O to the mixed solution after adjusting the pH value, stir on a magnetic stirrer for 20 minutes, and prepare a precursor solution, wherein the molar ratio of Dy to Bi is 2.04:100 ;
步骤5:将前驱液加入微波水热反应釜中,控制微波水热反应釜的填充比为55%,然后将微波水热反应釜密封后置于微波水热合成仪中,选择微波控温模式,设定压力为1.1MPa,在300W的微波功率下,从室温升温至100℃,在100℃保温8min;然后从100℃升温至150℃,在150℃保温8min;再从150℃升温至180℃,在180℃保温40min后结束反应;Step 5: Add the precursor liquid into the microwave hydrothermal reactor, control the filling ratio of the microwave hydrothermal reactor to 55%, then seal the microwave hydrothermal reactor and place it in the microwave hydrothermal synthesizer, select the microwave temperature control mode , set the pressure at 1.1MPa, under the microwave power of 300W, raise the temperature from room temperature to 100°C, keep it at 100°C for 8 minutes; then raise the temperature from 100°C to 150°C, keep it at 150°C for 8 minutes; ℃, finish the reaction after incubating at 180℃ for 40min;
步骤6:待反应结束后,冷却至室温,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤沉淀物至中性,再在75℃下恒温干燥24h,得到Dy/BiVO4光催化剂。Step 6: After the reaction is finished, cool to room temperature, take out the precipitate in the microwave hydrothermal reaction kettle, wash the precipitate with deionized water and absolute ethanol until it is neutral, and then dry it at a constant temperature at 75°C for 24 hours to obtain Dy/ BiVO4 photocatalyst.
实施例2:Example 2:
一种Dy/BiVO4光催化剂,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+,其中Dy元素与Bi元素的摩尔比为4.17:100。A Dy/BiVO 4 photocatalyst whose main component is BiVO 4 with a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ , wherein the molar ratio of Dy element to Bi element is 4.17:100.
一种Dy/BiVO4光催化剂的制备方法,包括以下步骤:A preparation method of Dy/ BiVO photocatalyst, comprises the following steps:
步骤1:将Bi(NO3)3·5H2O溶于去离子水中,在磁力搅拌器上搅拌20min,得到Bi(NO3)3·5H2O浓度为0.4mol/L的铋盐溶液;将NH4VO3溶于100℃的去离子水中,在90℃下加热搅拌20min,得到NH4VO3浓度为0.4mol/L的钒盐溶液;Step 1: Dissolve Bi(NO 3 ) 3 ·5H 2 O in deionized water, and stir on a magnetic stirrer for 20 minutes to obtain a bismuth salt solution with a Bi(NO 3 ) 3 ·5H 2 O concentration of 0.4 mol/L; Dissolve NH 4 VO 3 in deionized water at 100°C, heat and stir at 90°C for 20 minutes to obtain a vanadium salt solution with an NH 4 VO 3 concentration of 0.4mol/L;
步骤2:按Bi与V的摩尔比为1:1将钒盐溶液缓慢滴加到铋盐溶液中,在磁力搅拌器上搅拌15min,得到混合液;Step 2: slowly drop the vanadium salt solution into the bismuth salt solution according to the molar ratio of Bi and V of 1:1, and stir on a magnetic stirrer for 15 minutes to obtain a mixed solution;
步骤3:以0.5mL/min的滴加速度向混合液中滴加浓度为5mol/L的NaOH溶液,调节混合液的pH为8,并在磁力搅拌器上搅拌25min;Step 3: Add dropwise NaOH solution with a concentration of 5 mol/L to the mixture at a rate of 0.5 mL/min, adjust the pH of the mixture to 8, and stir on a magnetic stirrer for 25 minutes;
步骤4:将Dy(NO3)3·6H2O加入到调节了pH值后的混合液中,在磁力搅拌器上搅拌20min,配制成前驱液,其中Dy与Bi的摩尔比为4.17:100;Step 4: Add Dy(NO 3 ) 3 ·6H 2 O to the mixed solution after adjusting the pH value, stir on a magnetic stirrer for 20 minutes, and prepare a precursor solution, wherein the molar ratio of Dy to Bi is 4.17:100 ;
步骤5:将前驱液加入微波水热反应釜中,控制微波水热反应釜的填充比为55%,然后将微波水热反应釜密封后置于微波水热合成仪中,选择微波控温模式,设定压力为1.1MPa,在300W的微波功率下,从室温升温至100℃,在100℃保温8min;然后从100℃升温至150℃,在150℃保温8min;再从150℃升温至180℃,在180℃保温40min后结束反应;Step 5: Add the precursor liquid into the microwave hydrothermal reactor, control the filling ratio of the microwave hydrothermal reactor to 55%, then seal the microwave hydrothermal reactor and place it in the microwave hydrothermal synthesizer, select the microwave temperature control mode , set the pressure at 1.1MPa, under the microwave power of 300W, raise the temperature from room temperature to 100°C, keep it at 100°C for 8 minutes; then raise the temperature from 100°C to 150°C, keep it at 150°C for 8 minutes; ℃, finish the reaction after incubating at 180℃ for 40min;
步骤6:待反应结束后,冷却至室温,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤沉淀物至中性,再在75℃下恒温干燥24h,得到Dy/BiVO4光催化剂。Step 6: After the reaction is finished, cool to room temperature, take out the precipitate in the microwave hydrothermal reaction kettle, wash the precipitate with deionized water and absolute ethanol until it is neutral, and then dry it at a constant temperature at 75°C for 24 hours to obtain Dy/ BiVO4 photocatalyst.
实施例3:Example 3:
一种Dy/BiVO4光催化剂,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+,其中Dy元素与Bi元素的摩尔比为6.38:100。A Dy/BiVO 4 photocatalyst, its main component is BiVO 4 , which is a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ , wherein the molar ratio of Dy element to Bi element is 6.38:100.
一种Dy/BiVO4光催化剂的制备方法,包括以下步骤:A preparation method of Dy/ BiVO photocatalyst, comprises the following steps:
步骤1:将Bi(NO3)3·5H2O溶于去离子水中,在磁力搅拌器上搅拌20min,得到Bi(NO3)3·5H2O浓度为0.4mol/L的铋盐溶液;将NH4VO3溶于100℃的去离子水中,在95℃下加热搅拌20min,得到NH4VO3浓度为0.4mol/L的钒盐溶液;Step 1: Dissolve Bi(NO 3 ) 3 ·5H 2 O in deionized water, and stir on a magnetic stirrer for 20 minutes to obtain a bismuth salt solution with a Bi(NO 3 ) 3 ·5H 2 O concentration of 0.4 mol/L; Dissolve NH 4 VO 3 in deionized water at 100°C, heat and stir at 95°C for 20 minutes to obtain a vanadium salt solution with an NH 4 VO 3 concentration of 0.4mol/L;
步骤2:按Bi与V的摩尔比为1:1将钒盐溶液缓慢滴加到铋盐溶液中,在磁力搅拌器上搅拌15min,得到混合液;Step 2: slowly drop the vanadium salt solution into the bismuth salt solution according to the molar ratio of Bi and V of 1:1, and stir on a magnetic stirrer for 15 minutes to obtain a mixed solution;
步骤3:以0.8mL/min的滴加速度向混合液中滴加浓度为5mol/L的NaOH溶液,调节混合液的pH为8,并在磁力搅拌器上搅拌25min;Step 3: Add dropwise NaOH solution with a concentration of 5 mol/L to the mixed solution at a rate of 0.8 mL/min, adjust the pH of the mixed solution to 8, and stir on a magnetic stirrer for 25 minutes;
步骤4:将Dy(NO3)3·6H2O加入到调节了pH值后的混合液中,在磁力搅拌器上搅拌20min,配制成前驱液,其中Dy与Bi的摩尔比为6.38:100;Step 4: Add Dy(NO 3 ) 3 6H 2 O to the mixed solution after adjusting the pH value, stir on a magnetic stirrer for 20 minutes, and prepare a precursor solution, wherein the molar ratio of Dy to Bi is 6.38:100 ;
步骤5:将前驱液加入微波水热反应釜中,控制微波水热反应釜的填充比为55%,然后将微波水热反应釜密封后置于微波水热合成仪中,选择微波控温模式,设定压力为1.1MPa,在300W的微波功率下,从室温升温至100℃,在100℃保温8min;然后从100℃升温至150℃,在150℃保温8min;再从150℃升温至180℃,在180℃保温40min后结束反应;Step 5: Add the precursor liquid into the microwave hydrothermal reactor, control the filling ratio of the microwave hydrothermal reactor to 55%, then seal the microwave hydrothermal reactor and place it in the microwave hydrothermal synthesizer, select the microwave temperature control mode , set the pressure at 1.1MPa, under the microwave power of 300W, raise the temperature from room temperature to 100°C, keep it at 100°C for 8 minutes; then raise the temperature from 100°C to 150°C, keep it at 150°C for 8 minutes; ℃, finish the reaction after incubating at 180℃ for 40min;
步骤6:待反应结束后,冷却至室温,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤沉淀物至中性,再在75℃下恒温干燥24h,得到Dy/BiVO4光催化剂。Step 6: After the reaction is finished, cool to room temperature, take out the precipitate in the microwave hydrothermal reaction kettle, wash the precipitate with deionized water and absolute ethanol until it is neutral, and then dry it at a constant temperature at 75°C for 24 hours to obtain Dy/ BiVO4 photocatalyst.
实施例4:Example 4:
一种Dy/BiVO4光催化剂,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+,其中Dy元素与Bi元素的摩尔比为8.70:100。A Dy/BiVO 4 photocatalyst, the main component of which is BiVO 4 , which is a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ , wherein the molar ratio of Dy element to Bi element is 8.70:100.
一种Dy/BiVO4光催化剂的制备方法,包括以下步骤:A preparation method of Dy/ BiVO photocatalyst, comprises the following steps:
步骤1:将Bi(NO3)3·5H2O溶于去离子水中,在磁力搅拌器上搅拌20min,得到Bi(NO3)3·5H2O浓度为0.4mol/L的铋盐溶液;将NH4VO3溶于100℃的去离子水中,在100℃下加热搅拌20min,得到NH4VO3浓度为0.4mol/L的钒盐溶液;Step 1: Dissolve Bi(NO 3 ) 3 ·5H 2 O in deionized water, and stir on a magnetic stirrer for 20 minutes to obtain a bismuth salt solution with a Bi(NO 3 ) 3 ·5H 2 O concentration of 0.4 mol/L; Dissolve NH 4 VO 3 in deionized water at 100°C, heat and stir at 100°C for 20 minutes to obtain a vanadium salt solution with an NH 4 VO 3 concentration of 0.4mol/L;
步骤2:按Bi与V的摩尔比为1:1将钒盐溶液缓慢滴加到铋盐溶液中,在磁力搅拌器上搅拌15min,得到混合液;Step 2: slowly drop the vanadium salt solution into the bismuth salt solution according to the molar ratio of Bi and V of 1:1, and stir on a magnetic stirrer for 15 minutes to obtain a mixed solution;
步骤3:以1mL/min的滴加速度向混合液中滴加浓度为5mol/L的NaOH溶液,调节混合液的pH为8,并在磁力搅拌器上搅拌25min;Step 3: Add dropwise NaOH solution with a concentration of 5 mol/L to the mixture at a rate of 1 mL/min, adjust the pH of the mixture to 8, and stir on a magnetic stirrer for 25 minutes;
步骤4:将Dy(NO3)3·6H2O加入到调节了pH值后的混合液中,在磁力搅拌器上搅拌20min,配制成前驱液,其中Dy与Bi的摩尔比为8.70:100;Step 4: Add Dy(NO 3 ) 3 ·6H 2 O to the mixed solution after adjusting the pH value, stir on a magnetic stirrer for 20 minutes, and prepare a precursor solution, wherein the molar ratio of Dy to Bi is 8.70:100 ;
步骤5:将前驱液加入微波水热反应釜中,控制微波水热反应釜的填充比为55%,然后将微波水热反应釜密封后置于微波水热合成仪中,选择微波控温模式,设定压力为1.1MPa,在300W的微波功率下,从室温升温至100℃,在100℃保温8min;然后从100℃升温至150℃,在150℃保温8min;再从150℃升温至180℃,在180℃保温40min后结束反应;Step 5: Add the precursor liquid into the microwave hydrothermal reactor, control the filling ratio of the microwave hydrothermal reactor to 55%, then seal the microwave hydrothermal reactor and place it in the microwave hydrothermal synthesizer, select the microwave temperature control mode , set the pressure at 1.1MPa, under the microwave power of 300W, raise the temperature from room temperature to 100°C, keep it at 100°C for 8 minutes; then raise the temperature from 100°C to 150°C, keep it at 150°C for 8 minutes; ℃, finish the reaction after incubating at 180℃ for 40min;
步骤6:待反应结束后,冷却至室温,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤沉淀物至中性,再在75℃下恒温干燥24h,得到Dy/BiVO4光催化剂。Step 6: After the reaction is finished, cool to room temperature, take out the precipitate in the microwave hydrothermal reaction kettle, wash the precipitate with deionized water and absolute ethanol until it is neutral, and then dry it at a constant temperature at 75°C for 24 hours to obtain Dy/ BiVO4 photocatalyst.
实施例5:Example 5:
一种Dy/BiVO4光催化剂,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+,其中Dy元素与Bi元素的摩尔比为11.11:100。A Dy/BiVO 4 photocatalyst whose main component is BiVO 4 with a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ , wherein the molar ratio of Dy element to Bi element is 11.11:100.
一种Dy/BiVO4光催化剂的制备方法,包括以下步骤:A preparation method of Dy/ BiVO photocatalyst, comprises the following steps:
步骤1:将Bi(NO3)3·5H2O溶于去离子水中,在磁力搅拌器上搅拌20min,得到Bi(NO3)3·5H2O浓度为0.4mol/L的铋盐溶液;将NH4VO3溶于100℃的去离子水中,在98℃下加热搅拌20min,得到NH4VO3浓度为0.4mol/L的钒盐溶液;Step 1: Dissolve Bi(NO 3 ) 3 ·5H 2 O in deionized water, and stir on a magnetic stirrer for 20 minutes to obtain a bismuth salt solution with a Bi(NO 3 ) 3 ·5H 2 O concentration of 0.4 mol/L; Dissolve NH 4 VO 3 in deionized water at 100°C, heat and stir at 98°C for 20 minutes to obtain a vanadium salt solution with an NH 4 VO 3 concentration of 0.4mol/L;
步骤2:按Bi与V的摩尔比为1:1将钒盐溶液缓慢滴加到铋盐溶液中,在磁力搅拌器上搅拌15min,得到混合液;Step 2: slowly drop the vanadium salt solution into the bismuth salt solution according to the molar ratio of Bi and V of 1:1, and stir on a magnetic stirrer for 15 minutes to obtain a mixed solution;
步骤3:以0.3mL/min的滴加速度向混合液中滴加浓度为5mol/L的NaOH溶液,调节混合液的pH为8,并在磁力搅拌器上搅拌25min;Step 3: Add dropwise NaOH solution with a concentration of 5 mol/L to the mixture at a rate of 0.3 mL/min, adjust the pH of the mixture to 8, and stir on a magnetic stirrer for 25 minutes;
步骤4:将Dy(NO3)3·6H2O加入到调节了pH值后的混合液中,在磁力搅拌器上搅拌20min,配制成前驱液,其中Dy与Bi的摩尔比为11.11:100;Step 4: Add Dy(NO 3 ) 3 6H 2 O to the mixed solution after adjusting the pH value, stir on a magnetic stirrer for 20 minutes, and prepare a precursor solution, wherein the molar ratio of Dy to Bi is 11.11:100 ;
步骤5:将前驱液加入微波水热反应釜中,控制微波水热反应釜的填充比为55%,然后将微波水热反应釜密封后置于微波水热合成仪中,选择微波控温模式,设定压力为1.1MPa,在300W的微波功率下,从室温升温至100℃,在100℃保温8min;然后从100℃升温至150℃,在150℃保温8min;再从150℃升温至180℃,在180℃保温40min后结束反应;Step 5: Add the precursor liquid into the microwave hydrothermal reactor, control the filling ratio of the microwave hydrothermal reactor to 55%, then seal the microwave hydrothermal reactor and place it in the microwave hydrothermal synthesizer, select the microwave temperature control mode , set the pressure at 1.1MPa, under the microwave power of 300W, raise the temperature from room temperature to 100°C, keep it at 100°C for 8 minutes; then raise the temperature from 100°C to 150°C, keep it at 150°C for 8 minutes; ℃, finish the reaction after incubating at 180℃ for 40min;
步骤6:待反应结束后,冷却至室温,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤沉淀物至中性,再在75℃下恒温干燥24h,得到Dy/BiVO4光催化剂。Step 6: After the reaction is finished, cool to room temperature, take out the precipitate in the microwave hydrothermal reaction kettle, wash the precipitate with deionized water and absolute ethanol until it is neutral, and then dry it at a constant temperature at 75°C for 24 hours to obtain Dy/ BiVO4 photocatalyst.
图1是实施例5制备的Dy/BiVO4光催化剂的FE-SEM图,从图中可以看出其晶体形貌为短柱状,且在短径方向尺寸为50nm左右,可见制备的粉体尺寸已达纳米级。Figure 1 is the FE-SEM image of the Dy/ BiVO4 photocatalyst prepared in Example 5. It can be seen from the figure that its crystal morphology is short columnar, and the size in the short diameter direction is about 50nm. It can be seen that the size of the prepared powder is reached the nanoscale.
实施例6:Embodiment 6:
一种Dy/BiVO4光催化剂,其主要成分为BiVO4,为四方锆石型结构,且BiVO4的晶格中含有Dy3+,其中Dy元素与Bi元素的摩尔比为13.64:100。A Dy/BiVO 4 photocatalyst whose main component is BiVO 4 with a tetragonal zircon structure, and the crystal lattice of BiVO 4 contains Dy 3+ , wherein the molar ratio of Dy element to Bi element is 13.64:100.
一种Dy/BiVO4光催化剂的制备方法,包括以下步骤:A preparation method of Dy/ BiVO photocatalyst, comprises the following steps:
步骤1:将Bi(NO3)3·5H2O溶于去离子水中,在磁力搅拌器上搅拌20min,得到Bi(NO3)3·5H2O浓度为0.4mol/L的铋盐溶液;将NH4VO3溶于100℃的去离子水中,在96℃下加热搅拌20min,得到NH4VO3浓度为0.4mol/L的钒盐溶液;Step 1: Dissolve Bi(NO 3 ) 3 ·5H 2 O in deionized water, and stir on a magnetic stirrer for 20 minutes to obtain a bismuth salt solution with a Bi(NO 3 ) 3 ·5H 2 O concentration of 0.4 mol/L; Dissolve NH 4 VO 3 in deionized water at 100°C, heat and stir at 96°C for 20 minutes to obtain a vanadium salt solution with an NH 4 VO 3 concentration of 0.4mol/L;
步骤2:按Bi与V的摩尔比为1:1将钒盐溶液缓慢滴加到铋盐溶液中,在磁力搅拌器上搅拌15min,得到混合液;Step 2: slowly drop the vanadium salt solution into the bismuth salt solution according to the molar ratio of Bi and V of 1:1, and stir on a magnetic stirrer for 15 minutes to obtain a mixed solution;
步骤3:以0.4mL/min的滴加速度向混合液中滴加浓度为5mol/L的NaOH溶液,调节混合液的pH为8,并在磁力搅拌器上搅拌25min;Step 3: Add dropwise NaOH solution with a concentration of 5 mol/L to the mixture at a rate of 0.4 mL/min, adjust the pH of the mixture to 8, and stir on a magnetic stirrer for 25 minutes;
步骤4:将Dy(NO3)3·6H2O加入到调节了pH值后的混合液中,在磁力搅拌器上搅拌20min,配制成前驱液,其中Dy与Bi的摩尔比为13.64:100;Step 4: Add Dy(NO 3 ) 3 ·6H 2 O to the mixed solution after adjusting the pH value, stir on a magnetic stirrer for 20 minutes, and prepare a precursor solution, wherein the molar ratio of Dy to Bi is 13.64:100 ;
步骤5:将前驱液加入微波水热反应釜中,控制微波水热反应釜的填充比为55%,然后将微波水热反应釜密封后置于微波水热合成仪中,选择微波控温模式,设定压力为1.1MPa,在300W的微波功率下,从室温升温至100℃,在100℃保温8min;然后从100℃升温至150℃,在150℃保温8min;再从150℃升温至180℃,在180℃保温40min后结束反应;Step 5: Add the precursor liquid into the microwave hydrothermal reactor, control the filling ratio of the microwave hydrothermal reactor to 55%, then seal the microwave hydrothermal reactor and place it in the microwave hydrothermal synthesizer, select the microwave temperature control mode , set the pressure at 1.1MPa, under the microwave power of 300W, raise the temperature from room temperature to 100°C, keep it at 100°C for 8 minutes; then raise the temperature from 100°C to 150°C, keep it at 150°C for 8 minutes; ℃, finish the reaction after incubating at 180℃ for 40min;
步骤6:待反应结束后,冷却至室温,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤沉淀物至中性,再在75℃下恒温干燥24h,得到Dy/BiVO4光催化剂。Step 6: After the reaction is finished, cool to room temperature, take out the precipitate in the microwave hydrothermal reaction kettle, wash the precipitate with deionized water and absolute ethanol until it is neutral, and then dry it at a constant temperature at 75°C for 24 hours to obtain Dy/ BiVO4 photocatalyst.
图2是不同Dy3+加入量下制备的Dy/BiVO4光催化剂的XRD图谱,其中a为未加入Dy的纯相BiVO4的XRD图谱,未加入Dy的纯相BiVO4是按照本发明的制备方法,在步骤4中不加入Dy(NO3)3·6H2O得到的;b~g分别为实施例1~实施例6制备的Dy/BiVO4光催化剂的XRD图谱。图2中纵坐标的强度为相对强度,横坐标的2-Theta为衍射角度。从图中可以看出,未加入Dy的纯相BiVO4所有衍射峰与PDF卡片(JCPDS NO.75-1866)吻合,说明其晶相为单斜白钨矿相,加入Dy后的Dy/BiVO4光催化剂的所有衍射峰均与PDF卡片(JCPDSNO.14-0133)吻合,说明其晶相皆为四方锆石相。Fig. 2 is the XRD spectrum of the Dy/ BiVO photocatalyst prepared under different Dy 3+ additions, wherein a is the XRD spectrum of the pure phase BiVO without adding Dy, and the pure phase BiVO without adding Dy is according to the present invention The preparation method is obtained without adding Dy(NO 3 ) 3 ·6H 2 O in step 4; b-g are the XRD spectra of the Dy/BiVO 4 photocatalysts prepared in Examples 1-6, respectively. The intensity on the ordinate in Figure 2 is the relative intensity, and the 2-Theta on the abscissa is the diffraction angle. It can be seen from the figure that all the diffraction peaks of the pure phase BiVO 4 without Dy added are consistent with the PDF card (JCPDS NO.75-1866), indicating that its crystal phase is monoclinic scheelite phase, and the Dy/BiVO after adding Dy 4 All the diffraction peaks of the photocatalyst are consistent with the PDF card (JCPDSNO.14-0133), indicating that its crystal phase is all tetragonal zircon phase.
图3是不同Dy3+加入量下制备的Dy/BiVO4光催化剂的降解罗丹明B的降解率-时间曲线,其中RhB为不加催化剂时罗丹明B自身的降解曲线;a为未加入Dy的纯相BiVO4的降解曲线,未加入Dy的纯相BiVO4是按照本发明的制备方法,在步骤4中不加入Dy(NO3)3·6H2O得到的;b~g分别为实施例1~实施例6制备的Dy/BiVO4光催化剂的降解曲线。图3中纵坐标的C/C0为某时刻罗丹明B降解后的浓度与其初始浓度的比值。从图中可以看出,除了实施例3制备的Dy/BiVO4光催化剂的降解效果低于纯相BiVO4的降解效果,其他实施例制备的Dy/BiVO4光催化剂的降解效果均比纯相BiVO4的降解效果好,且实施例5制备的Dy/BiVO4光催化剂在120min的光照射下对罗丹明B的降解率达到94.40%,而纯相BiVO4在120min的光照射后对罗丹明B的降解率仅为37.26%。可见实施例5制备的Dy/BiVO4光催化剂比纯单斜相BiVO4在120min光照射后的降解率提高了57.14%。因此本发明制备的四方相Er/BiVO4可见光光催化剂能够用于降解有机物,并且能够应用于环境污染物处理方面。Figure 3 is the degradation rate-time curve of the degradation of Rhodamine B by Dy/ BiVO photocatalysts prepared under different Dy 3+ additions, where RhB is the degradation curve of Rhodamine B itself when no catalyst is added; a is the degradation curve without adding Dy The degradation curve of the pure phase BiVO 4 without adding Dy is obtained according to the preparation method of the present invention without adding Dy(NO 3 ) 3 ·6H 2 O in step 4 ; Degradation curves of the Dy/BiVO 4 photocatalysts prepared in Examples 1 to 6. The C/C 0 on the ordinate in Figure 3 is the ratio of the degraded concentration of rhodamine B to its initial concentration at a certain moment. It can be seen from the figure that, except that the degradation effect of the Dy/BiVO 4 photocatalyst prepared in Example 3 is lower than that of the pure phase BiVO 4 , the degradation effect of the Dy/BiVO 4 photocatalyst prepared in other examples is lower than that of the pure phase BiVO 4 . The degradation effect of BiVO 4 is good, and the degradation rate of Rhodamine B by the Dy/BiVO 4 photocatalyst prepared in Example 5 reaches 94.40% under 120min of light irradiation, while the pure phase BiVO 4 can degrade Rhodamine B after 120min of light irradiation The degradation rate of B is only 37.26%. It can be seen that the degradation rate of the Dy/BiVO 4 photocatalyst prepared in Example 5 is 57.14% higher than that of the pure monoclinic BiVO 4 after 120 min of light irradiation. Therefore, the tetragonal phase Er/BiVO 4 visible light photocatalyst prepared by the present invention can be used to degrade organic matter, and can be applied to the treatment of environmental pollutants.
以上所述仅为本发明的一种实施方式,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。The above is only one embodiment of the present invention, not all or the only embodiment. Any equivalent transformation of the technical solution of the present invention adopted by those of ordinary skill in the art by reading the description of the present invention is the right of the present invention. covered by the requirements.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310357054.9A CN103447025B (en) | 2013-08-15 | 2013-08-15 | A kind of Dy/BiVO4 photocatalyst and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310357054.9A CN103447025B (en) | 2013-08-15 | 2013-08-15 | A kind of Dy/BiVO4 photocatalyst and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103447025A true CN103447025A (en) | 2013-12-18 |
CN103447025B CN103447025B (en) | 2015-06-17 |
Family
ID=49730104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310357054.9A Expired - Fee Related CN103447025B (en) | 2013-08-15 | 2013-08-15 | A kind of Dy/BiVO4 photocatalyst and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103447025B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105148899A (en) * | 2015-09-29 | 2015-12-16 | 陕西科技大学 | A rare earth co-doped BiVO4 photocatalyst with up-conversion properties and its preparation method and application |
CN109569650A (en) * | 2018-11-14 | 2019-04-05 | 河北瑞克新能源科技有限公司 | One kind is for CO coupling catalyst for synthesizing oxalic ester and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249305A (en) * | 2011-05-24 | 2011-11-23 | 陕西科技大学 | Method for synthesizing monoclinic phase and tetragonal phase mixed high-catalytic-activity bismuth vanadate powder by microwave hydrothermal process |
CN102641732A (en) * | 2012-04-17 | 2012-08-22 | 淮阴师范学院 | Multi-morphology rare earth doped BiVO4 composite photocatalyst and its preparation method |
-
2013
- 2013-08-15 CN CN201310357054.9A patent/CN103447025B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249305A (en) * | 2011-05-24 | 2011-11-23 | 陕西科技大学 | Method for synthesizing monoclinic phase and tetragonal phase mixed high-catalytic-activity bismuth vanadate powder by microwave hydrothermal process |
CN102641732A (en) * | 2012-04-17 | 2012-08-22 | 淮阴师范学院 | Multi-morphology rare earth doped BiVO4 composite photocatalyst and its preparation method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105148899A (en) * | 2015-09-29 | 2015-12-16 | 陕西科技大学 | A rare earth co-doped BiVO4 photocatalyst with up-conversion properties and its preparation method and application |
CN105148899B (en) * | 2015-09-29 | 2017-12-22 | 陕西科技大学 | A kind of rare earth codope BiVO with upper transfer characteristic4Photochemical catalyst and its preparation method and application |
CN109569650A (en) * | 2018-11-14 | 2019-04-05 | 河北瑞克新能源科技有限公司 | One kind is for CO coupling catalyst for synthesizing oxalic ester and preparation method thereof |
CN109569650B (en) * | 2018-11-14 | 2021-11-23 | 河北瑞克新能源科技有限公司 | Catalyst for synthesizing oxalate through CO coupling and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103447025B (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103011288B (en) | A preparation method of BiVO4 powder with visible light photocatalytic performance | |
CN103433019B (en) | A kind of Sm doping BiVO 4photochemical catalyst and its preparation method and application | |
CN105148974B (en) | A kind of high activity mpg C3N4/RE‑BiVO4Heterojunction photocatalyst and its preparation method and application | |
CN102275988B (en) | Microwave hydrothermal method for synthesizing monoclinic-phase bismuth vanadate photocatalyst powder | |
CN106745226B (en) | Micro-nano titanium dioxide and preparation method and application based on eutectic solvent synthesis | |
CN105195198B (en) | A kind of mpg-C3N4/Bi0.9Nd0.1VO4Composite photo-catalyst and its preparation method and application | |
CN106179441B (en) | A kind of carbonitride-carbon-doped mesoporous TiO 2 composite photo-catalyst and preparation method thereof | |
CN102249305A (en) | Method for synthesizing monoclinic phase and tetragonal phase mixed high-catalytic-activity bismuth vanadate powder by microwave hydrothermal process | |
CN104014326A (en) | Efficient photocatalyst for bismuth vanadate nanorod and preparation method of catalyst | |
CN103007921B (en) | A method for synthesizing carbon-doped BiVO4 photocatalyst by microwave hydrothermal method | |
CN103464138B (en) | Ytterbium doped bismuth vanadate visible light photocatalyst, and preparation method and application thereof | |
CN103240074A (en) | Bismuth vanadate light catalyst for exposing high-activity crystal face and preparation method for bismuth vanadate light catalyst | |
CN103464137B (en) | Multi-morphology Ho/BiVO4 composite photocatalyst and its preparation method and application | |
CN103601253B (en) | A disc-shaped α-Fe2O3 photocatalyst and its preparation method and application | |
CN103433023B (en) | A kind of Gd-doped BiVO4 photocatalyst and its preparation method and application | |
CN106012018A (en) | Preparation method for bismuth vanadate mesoporous single crystal | |
CN103464136B (en) | Y/BiVO4 composite photocatalyst, and preparation method and application thereof | |
CN110745864B (en) | Perovskite type lanthanum titanate material and preparation method and application thereof | |
CN103447025B (en) | A kind of Dy/BiVO4 photocatalyst and its preparation method and application | |
CN104707616B (en) | A kind of nonmetal doping MxFe3‑xO4@TiO2The preparation method of magnetic composite | |
CN105032394A (en) | Pucherite visible-light-driven photocatalyst, preparing method and application | |
CN102557133A (en) | A method for preparing fishbone-like and firewood-like BiVO4 powders by microwave hydrothermal method | |
CN103433020B (en) | A kind of Eu/BiVO 4photochemical catalyst and its preparation method and application | |
CN103433022B (en) | A kind of visible light response type Tb/BiVO4 catalyst and its preparation method and application | |
CN102583535A (en) | Method for synthesizing bismuth vanadate by phonochemistry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201228 Address after: Room 102 and 103, building 1, No. 53, Renmin Road, Huangjian Town, Tinghu District, Yancheng City, Jiangsu Province 224000 (20) Patentee after: Yancheng Heye Industrial Investment Co.,Ltd. Address before: 518000 No.6 Qinglong Road, Qinglong Road, Qinghua community, Longhua street, Longhua District, Shenzhen City, Guangdong Province Patentee before: Shenzhen Pengbo Information Technology Co.,Ltd. Effective date of registration: 20201228 Address after: 518000 No.6 Qinglong Road, Qinglong Road, Qinghua community, Longhua street, Longhua District, Shenzhen City, Guangdong Province Patentee after: Shenzhen Pengbo Information Technology Co.,Ltd. Address before: No. 1, Weiyang District university garden, Xi'an, Shaanxi Province, Shaanxi Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150617 |