CN103439668B - The charge state evaluation method of power lithium-ion battery and system - Google Patents

The charge state evaluation method of power lithium-ion battery and system Download PDF

Info

Publication number
CN103439668B
CN103439668B CN201310400509.0A CN201310400509A CN103439668B CN 103439668 B CN103439668 B CN 103439668B CN 201310400509 A CN201310400509 A CN 201310400509A CN 103439668 B CN103439668 B CN 103439668B
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mfrac
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310400509.0A
Other languages
Chinese (zh)
Other versions
CN103439668A (en
Inventor
党选举
伍锡如
姜辉
杨青
张向文
许勇
刘振丙
赵龙阳
许凯
莫妍
陈波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201310400509.0A priority Critical patent/CN103439668B/en
Publication of CN103439668A publication Critical patent/CN103439668A/en
Application granted granted Critical
Publication of CN103439668B publication Critical patent/CN103439668B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention is charge state evaluation method and the system of power lithium-ion battery, this method first step sets up the circuit model of battery eliminator, discharge and recharge is carried out to battery and obtains volt-time curve, by formula identification model parameter, the nonlinear relationship obtaining open-circuit voltage OCV and SoC with standing experiment, timing sampling; Second step, based on Kalman Algorithm, with status predication, predicated error variance, filter gain, state estimation and estimation error variance equal matrix, obtain SoC maximum likelihood estimate.Native system analog to digital converter, program storage, programmable storage, timer and display are connected with microprocessor respectively, and electric current, voltage sensor are connected in the circuit that mesuring battary is connected with load respectively, export and access analog to digital converter.Programmable storage stores the battery model parameter of experiment gained, and program storage stores the estimation program of this method.SoC estimation precision of the present invention can reach 1%, and more stable; System provides SoC estimated value in real time.

Description

Charge state estimation method and system of power lithium ion battery
Technical Field
The invention relates to the technical field of charge state estimation of automobile power lithium batteries, in particular to a charge state (SoC) estimation method and system of a power lithium battery by adopting multi-state decomposition Kalman filtering.
Background
The power battery is the key for the development of new energy automobiles, and in the field of electric automobiles, lithium ion batteries are mostly adopted as power sources. The lithium ion battery has the advantages of high energy, long cycle life, no memory effect, safety, no public hazard, quick charge and discharge, wide working temperature range and the like.
The state of charge soc (state of charge) of the battery is an important parameter in a battery Management system bms (battery Management system), which is an important parameter for ensuring the safe life of the battery. However, SoC estimation is a problem difficult to solve, and due to uncertainty of battery working conditions and influences of factors such as current, temperature, self-discharge and aging, particularly high nonlinearity of the battery in the using process, the SoC estimation difficulty of the battery is increased. The current battery SoC estimation method comprises an electric quantity accumulation method, an open-circuit voltage method impedance method, a Kalman filtering method, a neural network method and the like. In all of the methods, a battery pack used by an electric automobile can be regarded as a dynamic system consisting of input and output, a state equation of the system is established, and estimation of internal states of the system, such as a charge state and the like, which cannot be directly measured is obtained by using information of the output of a battery.
The classical Kalman (Kalman) filtering method is only applicable to linear systems. Since the chemical characteristics inside the battery are complex nonlinear processes, they cannot be directly used to estimate the SoC of the battery. The extended Kalman filtering method EKF (extended Kalman Filter) is suitable for a nonlinear system, has strong correction effect on the initial value deviation of the SoC, and is a better method in the SoC of the conventional power battery. However, the noise statistical characteristics change along with the severe fluctuation of the actual working conditions, which may cause the estimation error to become larger, and even the filtering estimation process diverges. Therefore, in order to accurately estimate the SoC of the battery and effectively improve the estimation accuracy, the conventional EKF still needs to be improved.
Disclosure of Invention
The invention aims to design a charge state estimation method of a power lithium ion battery, which comprises the steps of establishing a three-order RC equivalent Circuit model, and identifying model parameters through charging and constant current discharging experiments to obtain a nonlinear relation between an Open Circuit Voltage (OCV) (open Circuit voltage) and an SoC (system on chip); and secondly, Kalman filtering is adopted, the open-circuit voltage of the battery is separately and independently estimated for the multi-state variables, and the SoC estimation value is finally obtained by combining the nonlinear relation between the battery open-circuit voltage and the SoC.
The invention also aims to design a charge state estimation system of the power lithium ion battery based on a computer signal processing system by adopting the charge state estimation method of the power lithium ion battery, so as to realize real-time display of the charge state of the power lithium ion battery estimated online.
The charge state estimation method of the power lithium ion battery designed by the invention comprises two steps,
first, model, experiment and formula identification model parameters are established
I. Modeling
Establishing a three-order RC equivalent circuit model of an equivalent power lithium ion battery, wherein the model comprises the following components: polarization resistance R1、R2And R3Respectively and a capacitor C1、C2And C3Three RC circuits are formed, and then the three RC circuits which are connected in series with the open Circuit voltage OCV (open Circuit voltage) and the ohmic internal resistance R of the power lithium ion battery00The terminal voltage of the equivalent circuit model is the output end voltage Y of the power lithium ion batteryL
The corresponding mathematical model is as follows:
dU 1 dt = - U 1 R 1 C 1 + I C 1 dU 2 dt = - U 2 R 2 C 2 + I C 2 dU 3 dt = - U 3 R 3 C 3 + I C 3 Y L = OCV ( SoC ) - IR 00 - U 1 - U 2 - U 3 - - - ( 1 )
wherein Y isLIs the output terminal voltage, R, of the power lithium ion battery00Is ohmic internal resistance, U1、U2、U3Respectively represent a capacitor C1、C2、C3The terminal voltage of (1); r1、R2、R3For polarization internal resistance, I is the current value in the equivalent circuit model.
The charge state SoC mathematical model of the power lithium ion battery is defined as follows:
<math> <mrow> <mi>SoC</mi> <mo>=</mo> <mi>So</mi> <msub> <mi>C</mi> <mi>initial</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> <mo>&Integral;</mo> <mi>&eta;Idt</mi> </mrow> </math>
SoCinitialis an initial value of SoC, eta is coulombic efficiency, CnThe rated capacity of the power lithium ion battery.
The three-order RC equivalent circuit model of the battery has the following parameters to be identified: ohmic internal resistance R00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3The parameters are obtained by identification through experiments and a multiple nonlinear regression method.
II. Power lithium ion battery charging, constant current discharging and standing experiment
The experiment for identifying the model parameters comprises the processes of charging, constant-current discharging and standing of the power lithium ion battery, in the experiment process, the current and the output end voltage of a circuit after the power lithium ion battery is connected with a load are measured with high precision, the output end voltage of the battery is sampled according to a certain sampling frequency, the sampling frequency is 0.5-2 seconds, and a voltage and time curve in the experiment process is obtained.
II-1, charging
The power lithium ion battery is charged with constant current and constant voltage, and the voltage of the output end reaches the rated voltage U of the output end of the battery0
II-2, constant current discharge
Constant current discharging is carried out at normal temperature, when the rated capacity of the battery is M ampere, the discharging current value is 18-22% M, namely the discharging rate is 0.18-0.22, and the voltage Y of the output end of the power lithium ion battery isLxRapidly decreases, continuously discharges for 500-2000 s, stops constant current discharge, and the corresponding battery output end voltage is UB
II-3, at the moment of stopping constant current discharge, the voltage jump of the output end of the battery rises to UB,The ratio of the abrupt voltage to the constant current is ohmic internal resistance R00A parameter value;
namely, it is <math> <mrow> <msub> <mi>R</mi> <mn>00</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>U</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>B</mi> </msub> </mrow> <mi>I</mi> </mfrac> </mrow> </math>
II-4, standing
Standing after stopping constant current discharge, and controlling the voltage Y at the output end of the power lithium ion batteryLsSlowly rising, wherein the voltage difference value of the two sampling before and after the voltage is within 5 percent of the voltage value at the position, namely entering a steady state, and the steady state voltage is UC,UCIs the open circuit voltage OCV;
III, obtaining the nonlinear relation between the open-circuit voltage OCV and the SoC
III-1, in the step II-4, the voltage of the output end of the power lithium ion battery rises, and the voltage characteristics of 3 resistance-capacitance circuits are zero input response voltage output values, so that
<math> <mrow> <msub> <mi>Y</mi> <mi>Ls</mi> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mi>ex</mi> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein: y isIsIs the voltage output value of the battery rising section, tau1=R1C1,τ2=R2C2,τ3=R3C3. (2) In the formula t1The discharge end time t is any time in the time interval from the discharge end time to the voltage steady state standing end time1=0。
According to the time voltage experimental data obtained in the step II-4, a least square method is adopted to obtain a undetermined coefficient b0、b1、b2、b3、τ1、τ2、τ3
III-2, outputting voltage of a voltage reduction section at the output end of the power lithium ion battery in the step II
<math> <mrow> <msub> <mi>Y</mi> <mi>Lx</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>IR</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, YLXIs the voltage output value of the battery falling section, U0Step I, the output end voltage of the power lithium ion battery after charging is obtained, and the parameter tau obtained by the formula (2) is used1、τ2、τ2Substituting the formula (3), and obtaining the polarization resistance R by adopting a least square method according to the time voltage experimental data obtained in the step II1、R2、R3. (3) In the formula t2Is any time in the time interval from the discharge starting time to the discharge stopping time, the discharge starting time t2=0。
Repeating the experiment of the step II for 3-5 times, calculating each parameter according to III-1 and III-2 after each experiment, and respectively averaging the parameters obtained in each experiment to serve as corresponding parameter values.
III-3, in the charging and discharging processes of different constant current values, measuring the current and the corresponding open-circuit voltage U of the circuit of the power lithium ion battery connected with the load with high precisionCSimultaneously, an SoC value corresponding to the open-circuit voltage is obtained according to the definition of the SoC, and ohmic internal resistance R is obtained according to the experiment00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3The parameter value of (2) can obtain the non-linear relationship OCV (OCC) of the open-circuit voltage OCV and the SoC from the mathematical model equation set (1) of the three-order RC equivalent circuit of the batteryk-1)The following are:
OCV ( SoC k - 1 ) = k 1 So C k - 1 8 + k 2 So C k - 1 7 + k 3 So C k - 1 6 + k 4 SoC k - 1 5 + k 5 SoC k - 1 4
+ k 6 SoC k - 1 3 + k 7 So C k - 1 2 + k 8 So C k - 1 + k 9 . - - - ( 4 )
(4) in-type SoCkIs the SoC at the current sampling time and k timek-1Is the SoC at the previous sampling instant, k-1.
Solving the nonlinear relation model parameter k of OCV and SoC by adopting a least square method1~k9
Second step, SoC estimation based on Kalman filtering
And (3) separately and independently estimating the open-circuit voltage of the battery for the multi-state variables by adopting a Kalman filtering method, and estimating the current value of the SoC by combining the nonlinear relation between the open-circuit voltage of the power lithium ion battery obtained in the first step and the SoC.
Aiming at an extended Kalman (Kalman) algorithm (EKF) of a nonlinear system, and combining a mathematical model of a three-order RC equivalent circuit of the battery established in the first step, selecting an SoC and a capacitor C1、C2、C3The terminal voltage of (b) is a state variable, namely:
X k = X 1 X 2 X 3 X 4 T
= SoC k U k 1 U k 2 U k 3 T - - - ( 5 )
wherein, SoCkIs SoC at time k;is the capacitance C at time k1A terminal voltage;is the capacitance C at time k2A terminal voltage;is the capacitance C at time k3Terminal voltage, T, is a mathematical symbol transposed to vector.
Discretizing the equation set (1) of the first step according to the above equation (5), and taking system noise into consideration, obtaining a state equation (6) and a measurement equation (7) thereof, which are respectively as follows:
<math> <mrow> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&Delta;t</mi> <mo>/</mo> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&Delta;t</mi> <mo>/</mo> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&Delta;t</mi> <mo>/</mo> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&eta;</mi> <mi>i</mi> </msub> <mi>&Delta;t</mi> </mrow> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&Delta;t</mi> <mo>/</mo> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&Delta;t</mi> <mo>/</mo> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&Delta;t</mi> <mo>/</mo> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Y k = OCV ( So C k - 1 ) - I k R 00 - U k 1 - U k 2 - U k 3 + v k - - - ( 7 )
wherein: y iskIs the battery output terminal voltage at time k; Δ t is the sampling time; i iskThe current of the battery loop at the moment k is the system control input quantity; etaiIs the coulomb efficiency; OCV (SoC)k-1) Shows the battery open-circuit voltage OCV obtained by fitting experimental data and the SOC at the previous momentk-1A non-linear functional relationship therebetween; tau is1=R1C1,τ2=R2C2,τ3=R3C3;wkAnd vkProcess noise and measurement noise, respectively.
The internal characteristics of the power battery show complex nonlinearity, noise exists when the working condition of an actual hybrid electric vehicle is changed violently, the SOC of the battery is directly estimated by using an EKF algorithm, the error of the estimation result is large, and even filtering estimation divergence occurs.
The method is a novel SOC estimation method based on EKF, which can accurately estimate the SOC and other parameters of the battery. As can be seen from the third-order RC equivalent circuit model of the battery established in the first step, there is more than one state variable of the system, and when the SoC is actually estimated, a plurality of state variables need to be estimated at the same time. In the estimation process, because the plurality of state variables have correlation, coupling and influence, the more the state variables are, the more complicated the relationship among the state variables is, and the larger the operation amount of state estimation is. Especially when the system noise interference is large, the filter estimation is easy to diverge. From the measurement equation (7), the battery output terminal voltage YkIs OCV (SoC)k-1)、ikR00Is linearly combined of YkRegarded as OCV (SoC)k-1)、IkR00The measurement equation can be decomposed into four independent measurement equation subsystems through linear superposition, each subsystem independently observes corresponding state variables, estimation of the state variables is not affected mutually, coupling relation among the state variables during estimation is effectively eliminated, and estimation accuracy is improved. In particular toThe method comprises the following steps:
the measurement equation (7) is decomposed as follows:
Y k , x 1 = OCV ( SoC k - 1 ) - I k R k Y k , x 2 = - U k R 1 C 1 Y k , x 3 = - U k R 1 C 2 Y k , x 4 = - U k R 3 C 3 - - - ( 8 )
combining the formula (6) and the formula (8), and applying EKF algorithm to the state variable X1 ═ SoCkThe estimation is carried out, and the state prediction of the EKF algorithm recursive process is as follows:
i. state prediction matrix
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, IK-1Is the loop current in the circuit after the battery is connected to the load at time k-1, the state transition matrix:
<math> <mrow> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
system control input matrix:
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>&eta;&Delta;t</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> </mtd> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
ii. Prediction error variance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein QkIs the system zero mean random process noise wkThe covariance matrix of (2).
iii, a filter gain matrix
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1 - - - ( 13 )
Wherein the observation matrix is:
<math> <mrow> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Y</mi> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>X</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mi>X</mi> <mo>=</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>o</mi> <msub> <mi>C</mi> <mi>k</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
whereinIs an estimate of the SoC at time k, i.e. a state prediction matrixRow 1, column 1 data; rkIs the system measurement noise vkThe covariance of (a);
iv, state estimation matrix
X ^ k | k = X ^ k | k - 1 + K k ( Y m | k - Y ^ k ) - - - ( 15 )
Wherein the state estimation matrixRow 1, column 1 data of (a) is SoCkThe optimal estimated value of (a); y ism|kIs the observed value of the voltage at the output end of the battery at the moment k, and comprises measurement noise vkThe estimated value of the voltage of the output end of the battery at the moment k is obtained by calculating according to the following formula:
<math> <mrow> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>OCV</mi> <mrow> <mo>(</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>o</mi> <msub> <mi>C</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
in the calculation process, according toThe first step obtains a non-linear model between the open-circuit voltage OCV and the SOC, and combines the obtained open-circuit voltage OCV and the SOC at the previous momentk-1The open-circuit voltage OCV (SoC) in the formulas (8) and (16) can be obtained by estimatingk-1)。
v, estimating error variance matrix
Pk|k=(I-KkHk)Pk|k-1 (17)
Steps i to v are the state variable X1 ═ SoCkEstimation procedure, estimating the matrix at a given stateAnd estimating an error variance matrix Pk|kThe initial value of each element is 0.001-0.005, and the initial value can be obtained by recursionThe 1 st row and 1 st column data are SoCkThe optimal estimate of.
The charge state estimation system of the power lithium ion battery designed according to the charge state estimation method of the power lithium ion battery comprises a microprocessor, a current sensor, a voltage sensor, an analog-to-digital (A/D) converter, a program memory, a programmable memory, a timer and a display. The analog-to-digital converter, the program memory, the programmable memory, the timer and the display are respectively connected with the microprocessor, the current sensor is connected in series in a circuit formed by connecting the power lithium ion battery to be tested with a load, and the voltage sensor is connected in parallel on the circuit. The outputs of the current sensor and the voltage sensor are connected to an analog-to-digital converter, and the measured circuit current and the output end voltage of the power lithium ion battery after the power lithium ion battery is connected with a load are transmitted.
The programmable memory stores the equivalent model parameters of the power lithium ion battery obtained by the experiment, including the ohmic internal resistance R00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3Open circuit voltage and SoCk-1Of the nonlinear model parameter k1~k9. Storing Kalman filtering SoC in program memorykEstimation model and open-Circuit Voltage OCV (SOC)K-1) And SoCk-1A non-linear relationship model;
kalman filtering SoCkThe estimation model includes:
i. state prediction matrix
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein the state transition matrix:
<math> <mrow> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
system control input matrix:
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>&eta;&Delta;t</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> </mtd> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
ii. Prediction error variance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein QkIs the system zero mean random process noise wkThe covariance matrix of (a);
iii, a filter gain matrix
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1
Wherein the observation matrix is:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mrow> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Y</mi> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>X</mi> </mrow> </mfrac> <mo>|</mo> </mrow> <mrow> <mi>X</mi> <mo>=</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>o</mi> <msub> <mi>C</mi> <mi>k</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
whereinIs an estimate of the SoC at time k, i.e. a state prediction matrixRow 1, column 1 data; rkIs the system measurement noise vkThe covariance of (a);
iv, state estimation matrix
X ^ k | k = X ^ k | k - 1 + K k 1 ( Y m | k - Y ^ k )
Wherein the state estimation matrixRow 1, column 1 data of (a) is SoCkThe optimal estimated value of (a); y ism|kIs the observed value of the voltage at the output end of the battery at the moment k, and comprises measurement noise vkThe estimated value of the voltage of the output end of the battery at the moment k is obtained by calculating according to the following formula:
<math> <mrow> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>OCV</mi> <mrow> <mo>(</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>o</mi> <msub> <mi>C</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
wherein:is an SoCk-1Estimated value of (1), open circuit voltage OCV (SOC)K-1) And SoCk-1The nonlinear relationship model is as follows:
OCV ( SoC k - 1 ) = k 1 SoC k - 1 8 + k 2 SoC k - 1 7 + k 3 SoC k - 1 6 + k 4 SoC k - 1 5 + k 5 SoC k - 1 4
+ k 6 SoC k - 1 3 + k 7 SoC k - 1 2 + k 8 SoC k - 1 + k 9 .
according to SoCk-1Is estimated byTo obtain
v, estimating error variance matrix
Pk|k=(I-KkHk)Pk|k-1
SoC in timer control program memorykEstimating the current SoC of program start and interrupt operation and microprocessor operation resultkAnd the estimated value is displayed in real time through a display.
Compared with the prior art, the charge state estimation method and the charge state estimation system of the power lithium ion battery have the advantages that: 1. on the basis of an extended Kalman algorithm (EKF), according to the superposition principle, a measurement equation is decomposed, multiple state variables are respectively and independently estimated, the coupling among the state variables is eliminated, and the SoC is reducedkThe operation amount of state estimation is increased, and SoC is improvedkThe estimation precision is improved, and experiments prove that compared with the classical EKF, the EKF Kalman filtering gain matrix of state decomposition estimation has stronger correction effect and more stability; 2. considering the noise in the practical application of the power battery, the error of the estimation result is reduced, the filtering estimation divergence is prevented, and the experiment proves that the SoC estimation precision of the invention can reach 1%; 3. the estimation program can be stored in a microprocessor-based system, and the charge state value of the power battery can be accurately obtained in real time, so that important parameters are provided for safe operation of the power battery.
Drawings
FIG. 1 is a schematic diagram of a three-order RC equivalent circuit model of a power lithium ion battery according to an embodiment of a state of charge estimation method for a power lithium ion battery;
FIG. 2 is a graph of voltage and time obtained from the power lithium ion battery charging, constant current discharging and standing experiments according to the method for estimating the state of charge of the power lithium ion battery;
fig. 3 is a schematic structural diagram of an embodiment of a state of charge estimation system of a power lithium ion battery.
Detailed Description
Embodiment of charge state estimation method of power lithium ion battery
First, model, experiment and formula identification model parameters are established
I. Modeling
Establishing a three-order RC equivalent circuit model of an equivalent power lithium ion battery, as shown in FIG. 1, with a polarization resistance R1、R2And R3Respectively and a capacitor C1、C2And C3Three RC circuits are formed and then connected in series with the open-circuit voltage OCV and the ohmic internal resistance R of the power lithium ion battery00The terminal voltage of the equivalent circuit model is the output end voltage Y of the power lithium ion batteryL
The corresponding mathematical model is as follows:
dU 1 dt = - U 1 R 1 C 1 + I C 1 dU 2 dt = - U 2 R 2 C 2 + I C 2 dU 3 dt = - U 3 R 3 C 3 + I C 3 Y L = OCV ( SoC ) - IR 00 - U 1 - U 2 - U 3
wherein Y isLIs the output terminal voltage, R, of the power lithium ion battery00Is ohmic internal resistance, U1、U2、U3Respectively represent a capacitor C1、C2、C3The terminal voltage of (1); r1、R2、R3For polarization internal resistance, I is the current value in the equivalent circuit model.
The charge state SoC mathematical model of the power lithium ion battery is defined as follows:
<math> <mrow> <mi>SoC</mi> <mo>=</mo> <msub> <mi>SoC</mi> <mi>initial</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> <mo>&Integral;</mo> <mi>&eta;Idt</mi> </mrow> </math>
SoCinitialis an initial value of SoC, eta is coulombic efficiency, CnThe rated capacity of the power lithium ion battery.
The three-order RC equivalent circuit model of the battery has the following parameters to be identified: ohmic internal resistance R00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3The parameters are obtained by identification through experiments and a multiple nonlinear regression method.
II. Power lithium ion battery charging, constant current discharging and standing experiment
The test experimental equipment is an electric vehicle battery test system-EVTS of Arbin corporation in the United states. Rated capacity C of power lithium ion batterynη is coulombic efficiency at 60Ah, η is 0.95 at the time of charge, and η is 1 at the time of discharge.
The experiment for identifying the model parameters comprises the processes of charging, constant-current discharging and standing of the power lithium ion battery, the whole process is carried out at normal temperature, in the experiment process, the current and the output end voltage of a circuit of the power lithium ion battery connected with a load are measured at high precision, the sampling period is 1 second, and the voltage and time curve in the experiment process is obtained, as shown in fig. 2.
II-1, charging
The power lithium ion battery is charged with constant current and constant voltage, and reaches the point A in figure 2, and the rated voltage of the output end of the battery is U0=79.48V;
II-2, constant current discharge
Constant current discharging is carried out at normal temperature, the rated capacity of the battery is 60Ah, the discharging current I is 60 multiplied by 20 percent to 12A, the discharging time T is 700s, and the output end voltage Y of the power lithium ion batteryLxRapidly decreases to point B in FIG. 2, corresponding to a battery output voltage of UBWhen the voltage is 77.8V, the constant current discharge is stopped;
II-3, at the moment of stopping constant current discharge, the voltage jump of the output end of the battery rises to a point B' in figure 2, and the point is UB' -79.18V; the point B and the point B' are inflection points, and the angle between BB and a horizontal line is close to 90 degrees; the ratio of the abrupt voltage to the constant current is ohmic internal resistance R00A parameter value;
namely, it is <math> <mrow> <msub> <mi>R</mi> <mn>00</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>U</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>B</mi> </msub> </mrow> <mi>I</mi> </mfrac> </mrow> </math>
II-4, standing
Standing after stopping constant current, wherein the duration time of the example is 4300s, and the voltage Y of the output end of the power lithium ion batteryLsSlowly rises until the voltage difference value of the two previous and next samplings is within 5 percent of the voltage value at the current position, enters a steady state, namely a steady-state voltage UC79.4V, point C, U in fig. 2CIs the open circuit voltage OCV of the present battery.
III, obtaining the nonlinear relation between the open-circuit voltage OCV and the SoC
III-1, in the step II-4, the voltage characteristics of 3 resistance-capacitance links in the rising section BB' of the output end voltage of the power lithium ion battery are zero input response, and the voltage value of the output end of the battery is
<math> <mrow> <msub> <mi>Y</mi> <mi>Ls</mi> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mi>exp</mi> <mrow> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
Wherein: y isLSIs the voltage output value of the battery rising section, tau1=R1C1,τ2=R2C2,τ3=R3C3. (2) In the formula t1Ending the discharge time t to any time within the time interval from the ending of the discharge time to the ending of the voltage steady state and the standing1=0。
According to the time voltage experimental data obtained in the step II-4, the undetermined coefficient b is obtained by adopting a least square method0、b1、b2、b3、τ1、τ2、τ3
III-2, outputting the voltage of the voltage drop section AB of the power lithium ion battery output end in the step II
<math> <mrow> <msub> <mi>Y</mi> <mi>Lx</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>IR</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </math>
Wherein, YLXIs the voltage output value of the battery falling section, U0The output end voltage of the power lithium ion battery at the point A after the charging in the step I is finished, and the parameter tau obtained by the formula (2) is used1、τ2、τ2Substituting the formula (3), and obtaining the polarization resistance R by adopting a least square method according to the time voltage experimental data obtained in the step II1、R2、R3. (3) Formula t2At any time in the interval from the discharge start time to the discharge stop time, the discharge start time t2=0。
Repeating the experiment of the step II for 3 times, calculating each parameter according to III-1 and III-2 after each experiment, and respectively averaging the parameters obtained in each experiment to serve as corresponding parameter values.
III-3, in the charging and discharging processes of different constant current values, measuring the current and the corresponding open-circuit voltage of a circuit of the power lithium ion battery after the power lithium ion battery is connected with a load with high precision, obtaining an SoC value corresponding to the open-circuit voltage according to the definition of SoC, and obtaining the ohmic internal resistance R according to the experiment00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3The parameter value of (2) can obtain the non-linear relationship OCV (OCC) of the open-circuit voltage OCV and the SoC from the mathematical model equation set (1) of the three-order RC equivalent circuit of the batteryk-1) Polynomial ofThe types are as follows:
OCV ( SoC k - 1 ) = k 1 SoC k - 1 8 + k 2 SoC k - 1 7 + k 3 SoC k - 1 6 + k 4 SoC k - 1 5 + k 5 SoC k - 1 4 + k 6 SoC k - 1 3 + k 7 SoC k - 1 2 + k 8 SoC k - 1 + k 9 .
in-type SoCkIs the SoC at the current sampling moment and k momentk-1Is the SoC at the previous sampling instant, k-1.
Non-linear relationship OCV (open circuit voltage) of OCV and SoCk-1)
Solving the nonlinear relation model parameter k of OCV and SoC by adopting a least square method1~k9
Second step, SoC estimation based on Kalman filtering
i. State prediction matrix
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein the state transition matrix:
<math> <mrow> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
system control input matrix:
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>&eta;&Delta;t</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> </mtd> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
ii. Prediction error variance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein QkIs the system zero mean random process noise wkThe covariance matrix of (2).
iii, a filter gain matrix
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1
Wherein the observation matrix is:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Y</mi> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>X</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>X</mi> <mo>=</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>o</mi> <msub> <mi>C</mi> <mi>k</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
whereinIs an estimate of the SoC at time k, i.e. a state prediction matrixRow 1, column 1 data; rkIs the system measurement noise vkThe covariance of (a); in this example, when estimating X1, the estimate is defined based on test data in combination with covariance, in this example R is takenk0.0473, the system of this example is zero-mean random process noise wkCovariance matrix of (2):
Q k = 0.012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iv, state estimation matrix
X ^ k | k = X ^ k | k - 1 + K k ( Y m | k - Y ^ k )
Wherein the state estimation matrixRow 1, column 1 data of (a) is SoCkThe optimal estimated value of (a); y ism|kIs the observed value of the voltage at the output end of the battery at the moment k, and comprises measurement noise vkThe estimated value of the voltage of the output end of the battery at the moment k is obtained by calculating according to the following formula:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>OCV</mi> <mrow> <mo>(</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <msub> <mi>oC</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
v, estimating error variance matrix
Pk|k=(I-KkHk)Pk|k-1
Steps i to v are state variable X1= SoCkEstimation procedure, let k =2 be the start time, estimating the matrix in a given stateAnd estimating an error variance matrix Pk|kTaking the initial value ofAnd Pk|kThe elements of the two matrixes are 0.001, and the state estimation matrix can be obtained through recursionWith row 1, column 1 data being SoCkThe optimal estimate of. In the calculation process, according to the non-linear model between the open-circuit voltage OCV and the SOC obtained in the first step, the obtained open-circuit voltage OCV and the SOC at the previous moment are combinedk-1The open-circuit voltage OCV (SoC) in the formula (16) can be obtained by estimatingk-1)。
By recursive computation of i to v, the SoC is obtained in this examplekWith an estimation accuracy of 1%.
Charge state estimation system embodiment of power lithium ion battery
An embodiment of the present state of charge estimation system for a power lithium ion battery is shown in fig. 3 and includes a microprocessor, a current sensor, a voltage sensor, an analog-to-digital (a/D) converter, a program memory, a programmable memory, a timer, and a display. The analog-to-digital converter, the program memory, the programmable memory, the timer and the display are respectively connected with the microprocessor, the current sensor is connected in series in a circuit connecting the power lithium ion battery to be tested and the load, and the voltage sensor is connected in parallel on the circuit. The outputs of the current sensor and the voltage sensor are connected to an analog-to-digital converter, and the measured load current and the output end voltage of the power lithium ion battery are transmitted. The microprocessor, the analog-to-digital converter, the program memory, the programmable memory and the timer of the present example are installed on the same computer motherboard.
The programmable memory stores power lithium ion battery parameters including battery rated capacity and ohmic internal resistance R00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3Open circuit voltage and SoCk-1Of the nonlinear model parameter k1~k9
Storing Kalman filtering SoC in program memorykEstimation model and open-Circuit Voltage OCV (SOC)K-1) And SoCk-1A non-linear relationship model;
kalman filtering SoCkThe estimation model includes:
i. state prediction matrix
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein the state transition matrix:
<math> <mrow> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
system control input matrix:
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>&eta;&Delta;t</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> </mtd> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
ii. Prediction error variance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein QkIs the system zero mean random process noise wkThe covariance matrix of (2).
iii, a filter gain matrix
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1
Wherein the observation matrix is:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>Y</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>x</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>X</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>X</mi> <mo>=</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <msub> <mi>oC</mi> <mi>k</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
whereinIs an estimate of the SoC at time k, i.e. a state prediction matrixRow 1, column 1 data; rkIs the system measurement noise vkThe covariance of (a);
iv, state estimation matrix
X ^ k | k = X ^ k | k - 1 + K k ( Y m | k - Y ^ k )
Wherein the state estimation matrixRow 1, column 1 data of (a) is SoCkThe optimal estimated value of (a); y ism|kIs the observed value of the voltage at the output end of the battery at the moment k, and comprises measurement noise vkThe estimated value of the voltage of the output end of the battery at the moment k is obtained by calculating according to the following formula:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>OCV</mi> <mrow> <mo>(</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <msub> <mi>oC</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,is an SoCk-1Estimated value of (1), open circuit voltage OCV (SOC)K-1) And SoCk-1The nonlinear relationship model is as follows:
OCV ( SoC k - 1 ) = k 1 SoC k - 1 8 + k 2 SoC k - 1 7 + k 3 SoC k - 1 6 + k 4 SoC k - 1 5 + k 5 SoC k - 1 4
+ k 6 SoC k - 1 3 + k 7 SoC k - 1 2 + k 8 SoC k - 1 + k 9 .
v, estimating error variance matrix
Pk|k=(I-KkHk)Pk|k-1
SoC in timer control program memorykEstimating the current SoC of program start and interrupt operation and microprocessor operation resultkAnd the estimated value is displayed in real time through a display.
Display of this exampleFor LCD displays, the programmable memory is electrically erasable2PROM programmable memory.
The above-described embodiments are only specific examples for further explaining the object, technical solution and advantageous effects of the present invention in detail, and the present invention is not limited thereto. Any modification, equivalent replacement, improvement and the like made within the scope of the disclosure of the present invention are included in the protection scope of the present invention.

Claims (3)

1. The charge state estimating method for power lithium ion cell includes two steps,
first, model, experiment and formula identification model parameters are established
I, establishing a model
Establishing a three-order RC equivalent circuit model of an equivalent power lithium ion battery, wherein the model comprises the following components: polarization resistance R1、R2And R3Respectively and a capacitor C1、C2And C3Three RC circuits are formed, and the three series RC circuits are connected with the power lithium ion battery in seriesOpen circuit voltage OCV and ohmic internal resistance R00The terminal voltage of the equivalent circuit model is the output end voltage Y of the power lithium ion batteryL
The corresponding mathematical model is as follows:
dU 1 dt = - U 1 R 1 C 1 + I C 1 dU 2 dt = - U 2 R 2 C 2 + I C 2 d U 3 dt = - U 3 R 3 C 3 + I C 3 Y L = OCV ( SoC ) - IR 00 - U 1 - U 2 - U 3 - - - ( 1 )
wherein Y isLIs the output terminal voltage, R, of the power lithium ion battery00Is ohmic internal resistance, U1、U2、U3Respectively representCapacitor C1、C2、C3The terminal voltage of (1); r1、R2、R3The polarization internal resistance is, and I is a current value in the equivalent circuit model;
the charge state SoC mathematical model of the power lithium ion battery is defined as follows:
<math> <mrow> <mi>SoC</mi> <mo>=</mo> <msub> <mi>SoC</mi> <mi>initial</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> <mo>&Integral;</mo> <mi>&eta;Idt</mi> </mrow> </math>
SoCinitialis an initial value of SoC, eta is coulombic efficiency, CnThe rated capacity of the power lithium ion battery;
II, power lithium ion battery charging, constant current discharging and standing experiment
The experiment for identifying the model parameters comprises the processes of charging, constant-current discharging and standing of the power lithium ion battery, wherein in the experiment process, the current and the output end voltage of a circuit after the power lithium ion battery is connected with a load are measured with high precision, the output end voltage of the battery is sampled according to a certain sampling frequency, and the sampling period is 0.5-2 seconds, so that a voltage and time curve in the experiment process is obtained;
II-1, charging
The power lithium ion battery is charged with constant current and constant voltage, and the voltage of the output end reaches the rated voltage U of the output end of the battery0
II-2, constant current discharge
Constant current discharging is carried out at normal temperature, when the rated capacity of the battery is M ampere, the discharging current value is 18-22 percent, namely the discharging rate is 0.18-0.22, and the voltage Y of the output end of the power lithium ion battery isLxRapidly decreases, continuously discharges to 500 s-2000 s, stops constant current discharge, and the corresponding battery output end voltage is UB
II-3, at the moment of stopping constant current discharge, the voltage jump of the output end of the battery rises to UB’The ratio of the abrupt voltage to the constant current is ohmic internal resistance R00A parameter value;
namely, it is <math> <mrow> <msub> <mi>R</mi> <mn>00</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>U</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>B</mi> </msub> </mrow> <mi>I</mi> </mfrac> </mrow> </math>
II-4, standing
Standing after stopping constant current discharge, and controlling the voltage Y at the output end of the power lithium ion batteryLsSlowly rising, wherein the voltage difference value of the two sampling before and after the voltage is within 5 percent of the voltage value at the position, namely entering a steady state, and the steady state voltage is UC,UCIs the open circuit voltage OCV;
III, obtaining the nonlinear relation between the open-circuit voltage OCV and the SoC
III-1, in the step II-4, the voltage of the output end of the power lithium ion battery rises, and the voltage characteristics of 3 resistance-capacitance circuits are voltage output values with zero input response, so that
<math> <mrow> <msub> <mi>Y</mi> <mi>Ls</mi> </msub> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mi>exp</mi> <mrow> <mo>(</mo> <mrow> <mo></mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>1</mn> </msub> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
Wherein: y isLsIs the voltage output value of the battery rising section, tau1=R1C1,τ2=R2C2,τ3=R3C3(ii) a In the formula t1Ending the discharge time t to any time within the time interval from the ending of the discharge time to the ending of the voltage steady state and the standing1=0;
According to the time voltage experimental data obtained in the step II-4, a least square method is adopted to obtain a undetermined coefficient b0、b1、b2、b3、τ1、τ2、τ3
III-2, outputting voltage of the voltage reduction section at the output end of the power lithium ion battery in the step II
<math> <mrow> <msub> <mi>Y</mi> <mi>Lx</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>IR</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>IR</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>t</mi> <mn>2</mn> </msub> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, YLXIs the voltage output value of the battery falling section, U0Step I, the output end voltage of the power lithium ion battery after charging is obtained, and the parameter tau obtained by the formula (2) is used1、τ2、τ3Substituting the formula (3), and obtaining the polarization resistance R by adopting a least square method according to the time voltage experimental data obtained in the step II1、R2、R3(ii) a (3) In the formula t2Is any time in the time interval from the discharge starting time to the discharge stopping time, the discharge starting time t2=0;
III-3, in the charging and discharging processes with different constant current values, measuring the current and the corresponding open-circuit voltage U of the circuit of the power lithium ion battery connected with the load with high precisionCSimultaneously, an SoC value corresponding to the open-circuit voltage is obtained according to the definition of the SoC, and ohmic internal resistance R is obtained according to the experiment00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3The parameter value of (1) can be obtained by the mathematical model equation of the three-order RC equivalent circuit of the battery in the step I to obtain the non-linear relationship OCV (OCV) between the open-circuit voltage OCV and the SoCk-1);
OCV ( SoC k - 1 ) = k 1 SoC k - 1 8 + k 2 SoC k - 1 7 + k 3 SoC k - 1 6 + k 4 SoC k - 1 5 + k 5 SoC k - 1 4 + k 6 SoC k - 1 3 + k 7 SoC k - 1 2 + k 8 SoC k - 1 + k 9 .
Wherein the SoCkIs the SoC at the current sampling moment and k momentk-1Is the SoC at the previous sampling time, time k-1;
according to SoCk-1Is estimated byTo obtain
Solving the nonlinear relation model parameter k of OCV and SoC by adopting a least square method1~k9
Second step, SoC estimation based on Kalman filtering
The state prediction of the extended kalman algorithm recursion process of the nonlinear system is as follows:
i, state prediction matrix
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein the state transition matrix:
<math> <mrow> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
system control input matrix:
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>&eta;&Delta;t</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> </mtd> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
ii, predicting error variance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein QkIs the system zero mean random process noise wkThe covariance matrix of (a);
iii, filter gain matrix
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1
Wherein the observation matrix is:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Y</mi> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>X</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>X</mi> <mo>=</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>o</mi> <msub> <mi>C</mi> <mi>k</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
whereinIs an estimate of the SoC at time k, i.e. a state prediction matrixRow 1, column 1 data; rkIs the system measurement noise vkThe covariance of (a);
iv, state estimation matrix
X ^ k | k = X ^ k | k - 1 + K k ( Y m | k - Y ^ k )
Wherein the state estimation matrixRow 1, column 1 data of (a) is SoCkThe optimal estimated value of (a); y ism|kIs the observed value of the voltage at the output end of the battery at the moment k, and comprises measurement noise vkThe estimated value of the voltage of the output end of the battery at the moment k is obtained by calculating according to the following formula:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>OCV</mi> <mrow> <mo>(</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <msub> <mi>oC</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <msup> <mrow> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,is the capacitance C at time k1A terminal voltage;is the capacitance C at time k2A terminal voltage;is the capacitance C at time k3A terminal voltage;
v, estimating an error variance matrix
Pk|k=(I-KkHk)Pk|k-1
Steps i to v are the state variable X1 ═ SoCkEstimation procedure, estimating the matrix at a given stateAnd estimating an error variance matrix Pk|kEach element is 0.001-0.005, and SoC is obtained through recursionkThe optimal estimated value of (a); in the calculation process, according to the non-linear model between the open-circuit voltage OCV and the SOC obtained in the first step, the obtained open-circuit voltage OCV and the SOC at the previous moment are combinedk-1The value estimation yields the open-circuit voltage OCV (SoC)k-1)。
2. The state-of-charge estimation method of a power lithium ion battery of claim 1, characterized in that:
and repeating the experiment of the step II for 3-5 times, calculating each parameter according to III-1 and III-2 after each experiment, and averaging the parameters obtained in each experiment to serve as corresponding parameter values.
3. The system for estimating the state of charge of a power lithium ion battery designed according to the method for estimating the state of charge of a power lithium ion battery of claim 1 or 2, is characterized in that:
the device comprises a microprocessor, a current sensor, a voltage sensor, an analog-to-digital converter, a program memory, a programmable memory, a timer and a display; the analog-to-digital converter, the program memory, the programmable memory, the timer and the display are respectively connected with the microprocessor, the current sensor is connected in series in a circuit formed by connecting the power lithium ion battery to be tested with a load, and the voltage sensor is connected in parallel on the circuit; the outputs of the current sensor and the voltage sensor are connected to an analog-to-digital converter, and the measured load current and the output end voltage of the power lithium ion battery are transmitted;
the programmable memory stores the equivalent model parameters of the power lithium ion battery obtained by the experiment, including the ohmic internal resistance R00Capacitor C1、C2、C3Internal resistance to polarization R1、R2、R3Open circuit voltage and SoCk-1Of the nonlinear model parameter k1~k9
Storing Kalman filtering SoC in program memorykEstimation model and open-Circuit Voltage OCV (SOC)K-1) And SoCk-1A non-linear relationship model;
kalman filtering SoCkThe estimation model includes:
i, state prediction matrix
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein the state transition matrix:
<math> <mrow> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
system control input matrix:
<math> <mrow> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>&eta;&Delta;t</mi> <msub> <mi>C</mi> <mi>n</mi> </msub> </mfrac> </mtd> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
ii, predicting error variance matrix
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&psi;</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Wherein QkIs the system zero mean random process noiseSound wkThe covariance matrix of (a);
iii, filter gain matrix
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1
Wherein the observation matrix is:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>Y</mi> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>&PartialD;</mo> <mi>X</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>X</mi> <mo>=</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>o</mi> <msub> <mi>C</mi> <mi>k</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
whereinIs an estimate of the SoC at time k, i.e. a state prediction matrixRow 1, column 1 data; rkIs the system measurement noise vkThe covariance of (a);
iv, state estimation matrix
X ^ k | k = X ^ k | k - 1 + K k ( Y m | k - Y ^ k )
Wherein the state estimation matrixRow 1, column 1 data of (a) is SoCkThe optimal estimated value of (a); y ism|kIs the observed value of the voltage at the output end of the battery at the moment k, and comprises measurement noise vkThe estimated value of the voltage of the output end of the battery at the moment k is obtained by calculating according to the following formula:
<math> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>OCV</mi> <mrow> <mo>(</mo> <mover> <mi>S</mi> <mo>^</mo> </mover> <msub> <mi>oC</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>1</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>k</mi> <mn>3</mn> </msubsup> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>+</mo> <msub> <mi>R</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <msup> <mrow> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mi>&Delta;t</mi> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,is an SoCk-1Estimated value of (1), open circuit voltage OCV (SOC)K-1) And SoCk-1The nonlinear relationship model is as follows:
OCV ( SoC k - 1 ) = k 1 SoC k - 1 8 + k 2 SoC k - 1 7 + k 3 SoC k - 1 6 + k 4 SoC k - 1 5 + k 5 SoC k - 1 4 + k 6 SoC k - 1 3 + k 7 SoC k - 1 2 + k 8 SoC k - 1 + k 9 .
v, estimating an error variance matrix
Pk|k=(I-KkHk)Pk|k-1
SoC in timer control program memorykEstimating the current SoC of program start and interrupt operation and microprocessor operation resultkAnd the estimated value is displayed in real time through a display.
CN201310400509.0A 2013-09-05 2013-09-05 The charge state evaluation method of power lithium-ion battery and system Active CN103439668B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310400509.0A CN103439668B (en) 2013-09-05 2013-09-05 The charge state evaluation method of power lithium-ion battery and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310400509.0A CN103439668B (en) 2013-09-05 2013-09-05 The charge state evaluation method of power lithium-ion battery and system

Publications (2)

Publication Number Publication Date
CN103439668A CN103439668A (en) 2013-12-11
CN103439668B true CN103439668B (en) 2015-08-26

Family

ID=49693373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310400509.0A Active CN103439668B (en) 2013-09-05 2013-09-05 The charge state evaluation method of power lithium-ion battery and system

Country Status (1)

Country Link
CN (1) CN103439668B (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675706B (en) * 2013-12-13 2016-04-13 桂林电子科技大学 A kind of power battery electric charge quantity estimation method
CN103728567B (en) * 2013-12-31 2016-06-08 电子科技大学 A kind of charge state estimation method based on optimized initial value
CN103823187B (en) * 2014-01-22 2016-06-29 浙江工业大学 The monitoring method of the dump energy of wireless sensor network node and device thereof
CN104569835B (en) * 2014-12-16 2017-11-17 北京理工大学 A kind of method of the state-of-charge for the electrokinetic cell for estimating electric automobile
CN105807226B (en) * 2014-12-31 2018-07-10 北京航天测控技术有限公司 Lithium ion battery SOC Forecasting Methodologies and device based on equivalent-circuit model
CN104698253A (en) * 2015-03-16 2015-06-10 绍兴安卡汽车配件有限公司 Determination method of lithium battery open circuit voltage
GB2537406B (en) * 2015-04-16 2017-10-18 Oxis Energy Ltd Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
CN105093121B (en) * 2015-07-10 2017-09-08 桂林电子科技大学 The electrokinetic cell state of charge method of estimation and system of likelihood score function particle filter
CN105116338B (en) * 2015-07-15 2017-12-05 盐城工学院 A kind of parallel connection type battery system modeling method based on SOC compensators
CN106680720B (en) * 2015-11-11 2019-07-02 中国移动通信集团公司 Vehicular accumulator cell early warning failure system and method based on car networking
CN105259795B (en) * 2015-11-27 2018-01-23 中山大学 Internal driving parameter spread method for electrokinetic cell simulator
CN105699910A (en) * 2016-04-21 2016-06-22 中国计量大学 Method for on-line estimating residual electric quantity of lithium battery
CN105954679B (en) * 2016-04-29 2019-04-12 华中科技大学 A kind of On-line Estimation method of lithium battery charge state
CN106125000A (en) * 2016-08-18 2016-11-16 中国电力科学研究院 A kind of method of testing of lithium battery ohmic internal resistance based on dipulse electric current
CN106324523B (en) * 2016-09-26 2019-02-19 合肥工业大学 Lithium battery SOC estimation method based on discrete-time variable structure observer
CN106597308B (en) * 2016-12-16 2018-12-25 西南交通大学 A kind of power battery method for estimating remaining capacity
CN106970328B (en) * 2017-01-17 2020-05-08 深圳市沛城电子科技有限公司 SOC estimation method and device
CN107015153B (en) * 2017-03-23 2020-01-10 福建师范大学 Voltage and current sampling control method for storage battery SOH
CN107368619B (en) * 2017-06-02 2020-12-22 华南理工大学 Extended Kalman filtering SOC estimation method
CN107677965B (en) * 2017-09-21 2019-10-18 中国科学院广州能源研究所 A kind of lithium battery energy state evaluation method
CN107862124B (en) * 2017-11-02 2021-06-04 上海空间电源研究所 Lithium battery voltage-limiting charging system model establishing and calculating method
CN108037459B (en) * 2017-11-24 2022-02-11 北京机械设备研究所 Optimal order determination method and system for power battery model
CN107817451B (en) * 2017-11-24 2020-06-16 北京机械设备研究所 Method and system for identifying online parameters of power battery model and storage medium
CN108008183B (en) * 2017-11-28 2021-01-15 深圳市路畅科技股份有限公司 Electric quantity measuring method, system, equipment and computer storage medium
CN108169682B (en) * 2017-12-14 2020-02-21 江苏大学 Lithium ion battery SOC accurate estimation method based on gas-liquid dynamic model
JP6871145B2 (en) * 2017-12-14 2021-05-12 本田技研工業株式会社 Battery state estimator
CN107957560B (en) * 2017-12-19 2020-03-06 国联汽车动力电池研究院有限责任公司 Lithium ion battery SOC estimation algorithm based on equivalent circuit
CN109991553B (en) * 2017-12-29 2021-01-15 微宏动力系统(湖州)有限公司 Estimation method of battery SOC
CN108398642B (en) * 2018-01-10 2020-06-02 中山大学 Lithium ion power battery SOC online calibration method
CN108872865B (en) * 2018-05-29 2020-12-29 太原理工大学 Lithium battery SOC estimation method for preventing filtering divergence
CN108732509A (en) * 2018-06-06 2018-11-02 哈尔滨工业大学 A kind of On-line Estimation method of the charge states of lithium ion battery of space-oriented application
CN108828448B (en) * 2018-06-08 2020-08-28 江苏大学 Battery state of charge on-line estimation method based on charging voltage curve fusion Kalman filtering
CN109116251B (en) * 2018-08-06 2019-10-18 中国矿业大学 A kind of lithium battery parameter identification method based on combined type operating condition
CN110879364B (en) * 2018-08-27 2022-03-18 比亚迪股份有限公司 Method and device for correcting SOC (state of charge) display of battery and electronic equipment
CN109143097B (en) * 2018-09-05 2021-05-04 合肥工业大学 Lithium ion battery SOC estimation method considering temperature and cycle number
CN109696637B (en) * 2019-02-20 2020-12-18 广西睿奕新能源股份有限公司 Method for monitoring capacity of lithium disposable battery
CN109884528B (en) * 2019-02-25 2020-03-31 江苏大学 Lithium ion battery open-circuit voltage estimation method and system with temperature input
CN110082684A (en) * 2019-05-13 2019-08-02 南京邮电大学 A kind of lithium battery SOC estimation method based on the more new breath Extended Kalman filter of weighting
CN113075555B (en) * 2019-05-24 2024-08-23 宁德时代新能源科技股份有限公司 SOC correction method and device, battery management system and storage medium
CN110967646B (en) * 2019-05-24 2021-03-30 宁德时代新能源科技股份有限公司 SOC correction method and apparatus, battery management system, and storage medium
CN110515011A (en) * 2019-09-16 2019-11-29 华南农业大学 A kind of Accurate Estimation Method of lithium-ion-power cell SOC
CN110728103B (en) * 2019-10-11 2023-03-24 湖南科技大学 Method for identifying parameters of equivalent circuit model of super capacitor module through segmented optimization
CN113466723B (en) * 2020-03-31 2022-09-09 比亚迪股份有限公司 Method and device for determining state of charge of battery and battery management system
CN113466725B (en) * 2020-03-31 2022-09-09 比亚迪股份有限公司 Method and device for determining state of charge of battery, storage medium and electronic equipment
CN112816873B (en) * 2020-08-24 2023-08-22 江苏大学 IEKF lithium battery SOC estimation method based on improved battery model
CN112285566B (en) * 2020-09-22 2021-07-20 江苏大学 SOC online estimation method and system based on gas-liquid dynamic model
CN113447826B (en) * 2021-09-01 2021-11-16 蜂巢能源科技有限公司 SOC determination method and device based on steady-state equivalent circuit model
CN113805086B (en) * 2021-09-16 2024-04-30 安徽师范大学 Rapid estimation method for internal resistance of lithium ion battery
CN116736118B (en) * 2023-04-24 2024-01-30 广东华庄科技股份有限公司 Battery pack detection method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376995A (en) * 2010-08-02 2012-03-14 通用汽车环球科技运作有限责任公司 Method for optimized design and operation of battery cooling system in electric vehicles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354825A (en) * 2004-06-11 2005-12-22 Nissan Motor Co Ltd Soc processor for hybrid vehicle
JP4375458B2 (en) * 2007-08-01 2009-12-02 株式会社デンソー Secondary battery charge state estimation device and charge control system
US8321164B2 (en) * 2008-09-25 2012-11-27 GM Global Technology Operations LLC Method and system for determining a state of charge of a battery based on a transient response
US20120200298A1 (en) * 2011-02-09 2012-08-09 GM Global Technology Operations LLC Automotive Battery SOC Estimation Based on Voltage Decay
CN103135065A (en) * 2013-01-25 2013-06-05 文创太阳能(福建)科技有限公司 Iron phosphate lithium battery electric quantity detecting method based on feature points
CN103176139B (en) * 2013-03-08 2015-07-29 桂林电子科技大学 The charge state evaluation method that electrokinetic cell Non-smooth surface lagging characteristics compensates and system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376995A (en) * 2010-08-02 2012-03-14 通用汽车环球科技运作有限责任公司 Method for optimized design and operation of battery cooling system in electric vehicles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Li-ion battery SOC estimation method based on the reduced order extended Kalman &#64257;ltering;Jaemoon Lee 等;《Journal of Power Sources》;20071231;第174卷;第9-15页 *
Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman &#64257;ltering for EV applications;Haifeng Dai 等;《Applied Energy》;20121231;第95卷;第227-237页 *
Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries;Xiaosong Hu 等;《Journal of Power Sources》;20121231;第217卷;第209-219页 *

Also Published As

Publication number Publication date
CN103439668A (en) 2013-12-11

Similar Documents

Publication Publication Date Title
CN103439668B (en) The charge state evaluation method of power lithium-ion battery and system
Ramadan et al. Extended kalman filter for accurate state of charge estimation of lithium-based batteries: a comparative analysis
Ren et al. Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation
Li et al. A practical lithium-ion battery model for state of energy and voltage responses prediction incorporating temperature and ageing effects
Cacciato et al. Real-time model-based estimation of SOC and SOH for energy storage systems
Dong et al. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method
Huang et al. A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature
Hentunen et al. Time-domain parameter extraction method for thévenin-equivalent circuit battery models
Kollmeyer et al. Li-ion battery model performance for automotive drive cycles with current pulse and EIS parameterization
He et al. A novel Gaussian model based battery state estimation approach: State-of-Energy
CN104181470B (en) Battery state-of-charge (SOC) estimation method based on nonlinear prediction extended Kalman filtering
CN108717164B (en) SOC calibration method and system for battery
Chen et al. Battery state of charge estimation based on a combined model of Extended Kalman Filter and neural networks
Wehbe et al. Battery equivalent circuits and brief summary of components value determination of lithium ion: A review
Taborelli et al. State of charge estimation using extended Kalman filters for battery management system
CN107247235A (en) A kind of battery capacity evaluation method for considering batteries in parallel connection difference
Jiani et al. Li-ion battery SOC estimation using particle filter based on an equivalent circuit model
Hussein Kalman filters versus neural networks in battery state-of-charge estimation: A comparative study
Qiu et al. Battery hysteresis modeling for state of charge estimation based on Extended Kalman Filter
Stroe et al. Performance model for high-power lithium titanate oxide batteries based on extended characterization tests
Ciortea et al. Extended Kalman Filter for state-of-charge estimation in electric vehicles battery packs
Pózna et al. Model identification and parameter estimation of lithium ion batteries for diagnostic purposes
Zhou et al. State of charge estimation based on improved Li-ion battery model using extended Kalman filter
Zhu et al. Online state of charge EKF estimation for LiFePO 4 battery management systems
Li et al. State-of-charge estimation of lithium-ion battery using multi-state estimate technic for electric vehicle applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant