CN103438804B - 一种阶梯轴承界面滑移长度的测量方法 - Google Patents

一种阶梯轴承界面滑移长度的测量方法 Download PDF

Info

Publication number
CN103438804B
CN103438804B CN201310324896.4A CN201310324896A CN103438804B CN 103438804 B CN103438804 B CN 103438804B CN 201310324896 A CN201310324896 A CN 201310324896A CN 103438804 B CN103438804 B CN 103438804B
Authority
CN
China
Prior art keywords
slide block
ladder
glass plate
length
oil film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310324896.4A
Other languages
English (en)
Other versions
CN103438804A (zh
Inventor
郭峰
白清华
黄柏林
杨淑燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qindao University Of Technology
Qingdao Kerun Time Advanced Lubrication Technology Co ltd
Original Assignee
Qindao University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qindao University Of Technology filed Critical Qindao University Of Technology
Priority to CN201310324896.4A priority Critical patent/CN103438804B/zh
Publication of CN103438804A publication Critical patent/CN103438804A/zh
Application granted granted Critical
Publication of CN103438804B publication Critical patent/CN103438804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明提供一种阶梯轴承界面滑移长度的测量方法,包括第一步,设定测量工作参数并进行预调节;第二步,测量油膜厚度;第三步,计算滑移速度;第四步,计算滑移长度。本发明的阶梯轴承界面滑移长度的测量方法可靠易行,利用微型滑块轴承润滑油膜测量仪测量在微米/亚微米膜厚条件下阶梯轴承界面滑移长度,从而为精密机电系统设计中减小摩擦力与表面阻力,降低功耗,提高系统寿命,提供重要的指导性数据。

Description

一种阶梯轴承界面滑移长度的测量方法
技术领域
本发明涉及一种界面滑移长度的测量方法,具体的说是指一种在微米或亚微米膜厚条件下阶梯轴承界面滑移长度的测量方法,属于面接触流体润滑实验测量技术领域。
背景技术
经典的润滑理论一般认为液体在固体表面流动时,与固体表面相邻的流体会以相同的速度随固体运动,即润滑油膜与固体表面间无界面滑移存在,称为“无滑移边界条件”。随着微/纳米科技及其相关领域的发展,人们借助于一些现代测试手段(如原子力显微镜(AFM)、表面力仪(SFA)、近场激光速度仪(NFLV)、微颗粒显影技术(μ-PIV)等)及分子动力学模拟(MDS)技术,研究发现无滑移边界条件假设在某些情况下不再成立,即:界面滑移在许多情况下都会存在,例如:在精密机械系统中润滑膜的厚度低至亚微米,产生的高压、高粘度和高剪切率会造成界面滑移。
目前,人们通过多种手段证明了微米/亚微米膜厚条件下界面滑移的存在,但是滑移长度的测量是公认的难点。界面科学领域采用间接测量的毛细管技术、直接测量的TIR-FRAP方法,PIV方法等,但是,这些测量方法得到的数据均很难应用于流体动压油膜界面滑移的分析,如TIR-FRAP法只能获得相对滑移,表面力仪或原子力显微镜测量的膜厚尺度与剪应变率与实际流体动压油膜相差很大,数据外推可能会导致出现错误的模型。
青岛理工大学郭峰、栗心明等人通过弹流冲击及光干涉条纹追踪技术成功实现了弹流接触条件下油膜界面滑移的测量,结果给出了滑移长度随剪应变率的非线性变化。但该方法仅可用于弹流油膜的界面滑移测量。对于工程中常见的面接触阶梯轴承件,必须寻找新的测量方法。郭峰等人研制的微型滑块轴承润滑油膜测量仪(如图1所示),为测量阶梯轴承中润滑油膜的界面滑移长度提供了实验设备基础。在实际的工程应用中,测量阶梯轴承中润滑油膜的界面滑移长度,对于精密机电系统设计中如何减小摩擦力,减小表面阻力,降低功耗,提高系统寿命具有重要的指导意义。因此,探索一种简单易行的在微米/亚微米膜厚条件下阶梯轴承界面滑移长度的测量方法是很有必要的。
发明内容
针对现有技术存在的不足,本发明所要解决的技术问题是,提供一种阶梯轴承界面滑移长度的测量方法,可靠易行,利用微型滑块轴承润滑油膜测量仪测量在微米/亚微米膜厚条件下阶梯轴承界面滑移长度,从而为精密机电系统设计中减小摩擦力与表面阻力,降低功耗,提高系统寿命,提供重要的指导性数据。
为解决上述技术问题,本发明所采取的技术方案是,一种阶梯轴承界面滑移长度的测量方法,包括如下步骤:
第一步,设定测量工作参数并进行预调节:
在玻璃盘上加入待测量润滑油,固定阶梯滑块,使阶梯滑块与玻璃盘表面均匀接触;施加预定载荷并以预定速度旋转玻璃盘,通过观察接触区域内的干涉条纹,调整阶梯滑块与玻璃盘的倾角,使转动过程阶梯滑块表面与玻璃盘表面相互平行,即倾角为零;
第二步,测量油膜厚度:
当玻璃盘的稳定旋转速度达到设定值后,使其停止转动,记录光强变化并进行处理,获得阶梯滑块出口区油膜厚度;
第三步,计算滑移速度:
由如下公式计算得出滑移速度
上述公式中:
—滑移速度,—阶梯滑块出口区油膜厚度,—盘速,—阶梯高度,—载荷,—阶梯轴承长度,—滑块总宽,—润滑油粘度,—几何参数;
第四步,计算滑移长度:
由如下公式计算得出滑移长度
上述公式中:
—滑移长度,—滑移速度,—阶梯滑块出口区油膜厚度,—盘速。
上述的阶梯轴承界面滑移长度的测量方法,在第一步设定测量工作参数并进行预调节中,反复调整阶梯滑块与玻璃盘的倾角,使转动过程中阶梯滑块表面与玻璃盘表面相互平行,是通过如下方式实现的:在加载杠杆上施加预定的载荷,观察干涉条纹的疏密程度和方向的变化,根据观察到的干涉条纹调整阶梯滑块,使阶梯滑块与玻璃盘平行;旋转玻璃盘,在干涉条纹的疏密程度和方向发生变化的位置使玻璃盘停止转动;再次调整阶梯滑块,使干涉条纹的疏密程度和方向恢复到设定状态,重复该过程,直到阶梯滑块和玻璃盘平面达到平行。
上述的阶梯轴承界面滑移长度的测量方法,第四步计算滑移长度中,如果计算所得滑移长度时,说明此时盘速过低,需要调整后再行测量。
本发明具有如下优点及有益技术效果:
本发明利用微型滑块轴承润滑油膜测量仪测量在微米/亚微米膜厚条件下的阶梯轴承界面滑移长度,与现有技术中的方法相比,可靠易行,数据获取方便,实用性强,能够为精密机电系统设计中减小摩擦力与表面阻力,降低功耗,提高系统寿命,提供重要的指导性数据。
附图说明
图1为本发明用到的微型滑块轴承润滑油膜测量仪;
图2为本发明测试结构原理示意图;
图3为本发明所用阶梯滑块结构和润滑情况图;
图4为本发明阶梯滑块滑移模型示意图;
图5为本发明界面滑移长度计算原理图;
上述图中:
101-阶梯滑块,102-微滑块固定调整单元,103-载荷,104-加载杠杆,105-铬膜,106-玻璃盘,107-显微干涉测量单元,108-单色光,—滑块总宽,—几何参数,—阶梯高度,—出口润滑油膜厚度,—盘速,—滑移速度,—滑移长度。
具体实施方式
本实施例的具体实施条件:
环境温度20±1℃,相对湿度50±5%;
玻璃盘为K9玻璃盘,玻璃盘表面加镀铬膜与二氧化硅膜(Cr+SiO2),反射率20%,表面粗糙度Ra为4nm;
阶梯滑块材料选为轴承钢,工作面尺寸为18mm×6mm,,其工作面为高反射率的精密研抛表面,表面粗糙度Ra为8~12nm;
润滑油为二甲基硅油-200,其动力粘度(20℃)为200mPa.s,折射率为1.4,载荷为4N。
下面结合附图做进一步说明。
本发明测量时使用的微型滑块轴承润滑油膜测量仪如图1所示。
本发明主要测试结构如图2所示,由阶梯滑块(101),微滑块固定调整单元(102),载荷(103),加载杠杆(104),铬膜(105),玻璃盘(106),显微干涉测量单元(107),单色光(108)等组成,按测量原理组装成一体化装置,在玻璃盘上加入适量待测润滑油,调整阶梯滑块固定调整单元(102),使阶梯滑块(101)与玻璃盘(106)表面接触,通过观察接触区内干涉条纹,使阶梯滑块(102)与玻璃盘(106)达到基本平行;然后,在加载杠杆(104)上施加预定的载荷,由于加载,一般会使阶梯滑块(101)与玻璃盘(106)平行破坏,此时观察干涉条纹的疏密程度和方向的变化,根据观察到的干涉条纹,调整阶梯滑块固定调整单元(102),使阶梯滑块(101)与玻璃盘(106)再次达到基本平行;旋转玻璃盘(106),由于轴承系统产生跳动和旋摆,两平面间的倾角会产生变化,表现为所观察到的干涉条纹的疏密程度和方向的变化,在干涉条纹的疏密程度和方向变化的位置使玻璃盘(106)停止转动,再次调整阶梯滑块调整单元(102),使干涉条纹的疏密程度和方向恢复到设定状态;重复该过程,直到干涉条纹的疏密程度和方向的变化在误差范围以内,此时可认为阶梯滑块(101)与玻璃盘(106)表面达到动态平行;实验开始,速度达到设定值后,使玻璃盘(106)停止转动,记录光强变化并进行处理,获得阶梯滑块出口区最小油膜厚度,然后利用滑移长度计算模型见图3,图4,图5,计算滑移速度和滑移长度。
本发明所用阶梯滑块滑移模型如图4所示,一般地,阶梯轴承中运动下表面(玻璃盘表面)与滑块入口阶梯表面(高膜厚)为强亲和表面,无油膜的相对滑动。滑块出口区阶梯表面为均匀的弱亲和面,会产生油膜界面滑移。可以证明,在流体动压润滑状态,且忽略轻载下压力对滑动影响,则在整个出口区沿阶梯表面中心线,油膜的滑动速度为一定值,且对应的油膜压力梯度仍为常数。
由阶梯轴承的流体润滑理论可得到滑移发生时出口区膜厚与滑移速度的关系。特别地,对于一维的无限长阶梯轴承,可以得到以下解析关系:
(1)
式中:—载荷,—阶梯轴承长度,—润滑油粘度
进一步可导出,如下关系式:
(2)
上述公式中:
—滑移速度,—阶梯滑块出口区油膜厚度,—盘速,—阶梯高度,—载荷,—阶梯轴承长度,—滑块总宽,—润滑油粘度,—几何参数;
因此,可由测量得到的出口区膜厚计算得出滑移速度
然后,根据图5界面滑移长度计算原理图所示,可计算得到滑移长度:
 (3)
上述公式中:
—滑移长度,—滑移速度,—阶梯滑块出口区油膜厚度,—盘速。
本实施例测得的一组与滑移速度的关系如表1所示。其中滑移速度列标有*号的数据和滑移长度的单元格中数据为非法结果不可适用。
表1实测膜厚与计算滑移速度、滑移长度表
由上表可知,本发明利用微型滑块轴承润滑油膜测量仪测量在微米/亚微米膜厚条件下的阶梯轴承界面滑移长度,可靠易行,数据获取方便,实用性强,能够为精密机电系统设计中减小摩擦力与表面阻力,降低功耗,提高系统寿命,提供重要的指导性数据。
以上所述,仅是对本发明的较佳实施例而已,并非是对本发明做其他形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是,凡是未脱离本发明方案内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与改型,仍属于本发明的保护范围。

Claims (2)

1.一种阶梯轴承界面滑移长度的测量方法,其特征在于:包括如下步骤:
第一步,设定测量工作参数并进行预调节:
在玻璃盘上加入待测量润滑油,使阶梯滑块与玻璃盘表面均匀接触,固定阶梯滑块;在加载杠杆上施加预定的载荷,观察干涉条纹的疏密程度和方向的变化,根据观察到的干涉条纹调整阶梯滑块,使阶梯滑块与玻璃盘平行;以预定速度旋转玻璃盘,在干涉条纹的疏密程度和方向发生变化的位置使玻璃盘停止转动,再次调整阶梯滑块,使干涉条纹的疏密程度和方向恢复到设定状态,重复该过程,直到玻璃盘以预定速度旋转过程中阶梯滑块和玻璃盘表面达到平行,
第二步,测量油膜厚度:
当玻璃盘的稳定旋转速度达到设定值后,使其停止转动,记录光强变化并进行处理,获得阶梯滑块出口区油膜厚度;
第三步,计算滑移速度:
由如下公式计算得出滑移速度
上述公式中:
—滑移速度,—阶梯滑块出口区油膜厚度,—盘速,—阶梯高度,—载荷,—阶梯轴承长度,—滑块总宽,—润滑油粘度,—几何参数;
第四步,计算滑移长度:
由如下公式计算得出滑移长度
上述公式中:—滑移长度,—滑移速度,—阶梯滑块出口区油膜厚度,—盘速。
2.根据权利要求1所述的阶梯轴承界面滑移长度的测量方法,其特征在于:在第四步计算滑移长度中,如果计算所得滑移长度时,说明此时盘速过低,需要调整后再行测量。
CN201310324896.4A 2013-07-30 2013-07-30 一种阶梯轴承界面滑移长度的测量方法 Active CN103438804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310324896.4A CN103438804B (zh) 2013-07-30 2013-07-30 一种阶梯轴承界面滑移长度的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310324896.4A CN103438804B (zh) 2013-07-30 2013-07-30 一种阶梯轴承界面滑移长度的测量方法

Publications (2)

Publication Number Publication Date
CN103438804A CN103438804A (zh) 2013-12-11
CN103438804B true CN103438804B (zh) 2016-05-04

Family

ID=49692500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310324896.4A Active CN103438804B (zh) 2013-07-30 2013-07-30 一种阶梯轴承界面滑移长度的测量方法

Country Status (1)

Country Link
CN (1) CN103438804B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872309A (zh) * 2017-02-27 2017-06-20 青岛理工大学 一种微型滑块面接触润滑油粘度的测量方法
CN107144228B (zh) * 2017-05-18 2023-01-31 青岛理工大学 微型滑块轴承润滑油膜测量倾角调节装置及其调节方法
CN108645757B (zh) * 2018-05-03 2019-12-24 华中科技大学 一种测量超疏水表面有效滑移长度的装置及方法
CN108757721A (zh) * 2018-05-15 2018-11-06 袁虹娣 整个运动表面处和入口区静止表面处皆出现界面滑移的节能阶梯轴承
CN109708584B (zh) * 2018-12-30 2020-07-28 南京航空航天大学 一种油膜干涉法条纹间距图像识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458068A (zh) * 2008-12-27 2009-06-17 青岛理工大学 微型滑块轴承润滑油膜测量仪及其滑块调节方法
CN101738166A (zh) * 2010-01-09 2010-06-16 青岛理工大学 一种高压润滑油界面滑移长度测量方法
CN101819126A (zh) * 2010-03-24 2010-09-01 江苏大学 基于状态转换的超疏水表面流体滑移长度自比较测量方法
CN102707038A (zh) * 2012-06-28 2012-10-03 青岛理工大学 微型滑块轴承润滑油膜承载量测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597173B2 (ja) * 2011-09-08 2014-10-01 大同メタル工業株式会社 内燃機関のコンロッド軸受

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458068A (zh) * 2008-12-27 2009-06-17 青岛理工大学 微型滑块轴承润滑油膜测量仪及其滑块调节方法
CN101738166A (zh) * 2010-01-09 2010-06-16 青岛理工大学 一种高压润滑油界面滑移长度测量方法
CN101819126A (zh) * 2010-03-24 2010-09-01 江苏大学 基于状态转换的超疏水表面流体滑移长度自比较测量方法
CN102707038A (zh) * 2012-06-28 2012-10-03 青岛理工大学 微型滑块轴承润滑油膜承载量测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
润滑薄油膜承载力的测量;李霞等;《摩擦学学报》;20120331;第32卷(第2期);全文 *

Also Published As

Publication number Publication date
CN103438804A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
CN103438804B (zh) 一种阶梯轴承界面滑移长度的测量方法
Vlădescu et al. Lubricant film thickness and friction force measurements in a laser surface textured reciprocating line contact simulating the piston ring–liner pairing
Zou et al. Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation
CN102445406B (zh) 一种测量液相扩散系数的方法及装置
Kasolang et al. Preliminary study of pressure profile in hydrodynamic lubrication journal bearing
CN103063355B (zh) 基于光弹性的弹流润滑线接触压力测量方法及装置
Zhang et al. Influence of geometric errors of guide rails and table on motion errors of hydrostatic guideways under quasi-static condition
Zhao et al. A modeling method for predicting the precision loss of the preload double-nut ball screw induced by raceway wear based on fractal theory
Wu et al. The effect of contact interface on dynamic characteristics of composite structures
Chai et al. Non-contact measurement method of coaxiality for the compound gear shaft composed of bevel gear and spline
Chen et al. Simulation and experiment of carburized gear scuffing under oil jet lubrication
CN105223108A (zh) 一种石油粘度测量装置及测量方法
Zhang et al. Simultaneous in situ measurements of contact behavior and friction to understand the mechanism of lubrication with nanometer-thick liquid lubricant films
Li et al. Effect of air inlet flow rate on flow uniformity under oil-air lubrication
Krupka et al. Deformation of rough surfaces in point EHL contacts
CN101738166B (zh) 一种高压润滑油界面滑移长度测量方法
Qi et al. Accuracy decay mechanism of ball screw in CNC machine tools for mixed sliding-rolling motion under non-constant operating conditions
CN206208436U (zh) 空气静压轴承平面压力分布测试装置
De Moerlooze et al. Experimental investigation into the tractive prerolling behavior of balls in V-grooved tracks
Wang et al. Optimization of Oil Pads on a Hydrostatic Turntable for Supporting Energy Conservation Based on Particle Swarm Optimization.
Lecoq Boundary conditions for creeping flow along periodic or random rough surfaces: experimental and theoretical results
Keirsbulck et al. Scaling of statistics in wall-bounded turbulent flows
Shapovalov et al. The dynamic monitoring of friction systems
Furtuna Study of film formation in EHD contacts using a novel method based on electrical capacitance
Chen et al. Effect of gas slip on the behavior of the aerostatic guideway

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220530

Address after: No. 11, Fushun Road, North District, Qingdao, Shandong

Patentee after: Qindao University of Technology

Patentee after: Qingdao Kerun time advanced lubrication technology Co.,Ltd.

Address before: No. 11, Fushun Road, North District, Qingdao, Shandong

Patentee before: Qindao University of Technology

TR01 Transfer of patent right