CN103436255A - Preparation method of lanthanide ion loaded metal-organic framework material capable of realizing lighting adjustability and sensing property - Google Patents

Preparation method of lanthanide ion loaded metal-organic framework material capable of realizing lighting adjustability and sensing property Download PDF

Info

Publication number
CN103436255A
CN103436255A CN2013104223678A CN201310422367A CN103436255A CN 103436255 A CN103436255 A CN 103436255A CN 2013104223678 A CN2013104223678 A CN 2013104223678A CN 201310422367 A CN201310422367 A CN 201310422367A CN 103436255 A CN103436255 A CN 103436255A
Authority
CN
China
Prior art keywords
znl
lanthanide
complex
mol
title complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013104223678A
Other languages
Chinese (zh)
Inventor
罗峰
罗明标
许文苑
刘淑娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN2013104223678A priority Critical patent/CN103436255A/en
Publication of CN103436255A publication Critical patent/CN103436255A/en
Pending legal-status Critical Current

Links

Images

Abstract

一种负载镧系离子实现发光可调和传感的金属-有机框架材料的制备方法,是以Zn(NO3)2·6H2O、(NH4)6Mo7O24·4H2O和均苯四甲酸二酐为原料,经过配位得到的一个配合物,将配合物浸泡在EuCl3或Tb(ClO4)3的溶液中,分别得到镧系掺杂配合物,再将上述掺杂配合物浸泡在MClx溶液中,分别得到配合物M–Eu[NH4]2[ZnL]·6H2O、M–Tb[NH4]2[ZnL]·6H2O。本发明是通过简单的浸泡得到一种新型具有发光可调和传感的镧系MOFs分子,这种镧系掺杂操作方便、稳定、高效、重复性强、对MOFs的发光可调和传感性能有很好的调控作用。

Figure 201310422367

A method for preparing a metal - organic framework material loaded with lanthanide ions to realize tunable luminescence and sensing . pyromellitic dianhydride as raw material, a complex obtained through coordination, the complex is soaked in the solution of EuCl 3 or Tb(ClO 4 ) 3 to obtain the lanthanide doping complex respectively, and then the above doping complex The compounds were soaked in MCl x solution to obtain complexes M–Eu[NH 4 ] 2 [ZnL]·6H 2 O and M–Tb[NH 4 ] 2 [ZnL]·6H 2 O, respectively. The present invention obtains a novel lanthanide MOFs molecule with adjustable luminescence and sensing through simple soaking. Very good regulation.

Figure 201310422367

Description

负载镧系离子实现发光可调和传感的金属-有机框架材料的制备方法Preparation method of metal-organic framework materials with lanthanide ions for tunable luminescence and sensing

技术领域 technical field

本发明属于无机化学领域,特别涉及一种负载镧系离子实现发光可调和传感的金属-有机框架材料的制备方法。 The invention belongs to the field of inorganic chemistry, and in particular relates to a preparation method of a metal-organic framework material loaded with lanthanide ions to realize adjustable luminescence and sensing.

背景技术 Background technique

由于发光金属-有机框架材料(MOFs)拥有大的比表面积、孔径大且分布均匀、合成简单、结构可以预测等优点,注定了其在生物医学、环境、分子传感、发光器件等方面具有潜在的应用价值。MOFs 材料具有有机配体和无机金属离子两种成分,并且其结构特性,相比于有机发光材料和无机发光材料来说,比较复杂。因此 MOFs 材料发光现象可以有多种起源,如:基于有机配体发光、基于镧系离子发光、基于客体分子发光、基于电荷转移引起的发光。 Due to the advantages of large specific surface area, large pore size and uniform distribution, simple synthesis, and predictable structure, luminescent metal-organic framework materials (MOFs) are destined to have potential in biomedicine, environment, molecular sensing, and light-emitting devices. application value. MOFs materials have two components, organic ligands and inorganic metal ions, and their structural characteristics are more complicated than organic light-emitting materials and inorganic light-emitting materials. Therefore, the luminescence phenomenon of MOFs materials can have multiple origins, such as: luminescence based on organic ligands, luminescence based on lanthanide ions, luminescence based on guest molecules, and luminescence based on charge transfer.

基于镧系离子的发光是 MOFs 材料最常见的发光形式之一。镧系离子的电子跃迁因其受 5d 外壳保护,很少受其周围化学环境的影响,因而形成的MOFs 材料发出的光色纯度好,基本是镧系离子窄的特征发射峰。特别是 Eu3+和Tb3+ Luminescence based on lanthanide ions is one of the most common forms of luminescence in MOFs. Because the electronic transition of lanthanide ions is protected by the 5d shell, it is rarely affected by the surrounding chemical environment. Therefore, the formed MOFs materials emit light with good color purity, which is basically a narrow characteristic emission peak of lanthanide ions. Especially Eu 3+ and Tb 3+

的发射光具有寿命长、强度强、光成线性等优点,而受到广泛研究。但是,由于镧系离子中 4f 轨道跃迁是不可能发生的,从而对光的吸收比较弱,产生低效率的电子激发,发出的光的强度非常弱。因此单独使用镧系离子发光是不现实的。在 MOFs 材料中,由于有机配体与镧系离子的配位作用的存在,恰好解决了这个难题。其发光机理能用天线效应解释,大致可以分为三步:有机配体吸收能量;能量从配体转移到镧系离子上;镧系离子产生光。有机配体的敏化效应直接影响到发光材料的好坏,因此在制备镧系发光 MOFs 时必须小心选择合适的有机配体。在考虑合适的有机配体时,必须遵循的条件是:有机配体的最低三重态能级高于或者等于镧系离子的共振能,这样才能使有机配体的电荷转移到镧系离子上去,形成镧系发光 MOFs。 The emitted light has the advantages of long life, strong intensity, and light linearity, and has been widely studied. However, since the 4f orbital transition in lanthanide ions is impossible, the absorption of light is relatively weak, resulting in low-efficiency electron excitation, and the intensity of emitted light is very weak. Therefore, it is unrealistic to use lanthanide ions alone to emit light. In MOFs materials, due to the existence of coordination between organic ligands and lanthanide ions, this problem has just been solved. The luminescence mechanism can be explained by the antenna effect, which can be roughly divided into three steps: organic ligands absorb energy; energy is transferred from ligands to lanthanide ions; lanthanide ions generate light. The sensitization effect of organic ligands directly affects the quality of light-emitting materials, so the appropriate organic ligands must be carefully selected when preparing lanthanide light-emitting MOFs. When considering a suitable organic ligand, the condition that must be followed is that the lowest triplet energy level of the organic ligand is higher than or equal to the resonance energy of the lanthanide ion, so that the charge of the organic ligand can be transferred to the lanthanide ion, Formation of lanthanide light-emitting MOFs.

虽然镧系离子的发光机制(金属-配体间的配位作用或超分子定向能力)为设计和制备镧系发光MOFs提供了思路,然而根据当前晶体工程学的研究状况来看,合理地设计和制备镧系发光MOFs仍未能很好的实现,国内外有关镧系MOFs的发光传感研究还处在不成熟阶段。目前,最大的难题就是探索出一种高效的、重复性强的制备方法来实现MOFs的发光可调和传感。 Although the luminescent mechanism of lanthanide ions (coordination between metals and ligands or supramolecular orientation ability) provides ideas for the design and preparation of lanthanide luminescent MOFs, according to the current research status of crystal engineering, it is reasonable to design And the preparation of lanthanide luminescent MOFs has not yet been well realized, and the research on luminescence sensing of lanthanide MOFs at home and abroad is still in an immature stage. At present, the biggest challenge is to explore an efficient and reproducible preparation method to realize the luminescence tunability and sensing of MOFs.

发明内容 Contents of the invention

本发明的目的就是提供一种操作方便、稳定、高效、重复性强的负载镧系离子实现发光可调和传感的金属-有机框架材料的制备方法。 The purpose of the present invention is to provide a method for preparing a metal-organic framework material that is easy to operate, stable, efficient, and highly repeatable to load lanthanide ions to realize adjustable luminescence and sensing.

本发明的负载镧系离子实现发光可调和传感的金属-有机框架材料的制备方法,是以Zn(NO3)2·6H2O、(NH4)6Mo7O24·4H2O和均苯四甲酸二酐为原料,经过配位得到的一个配合物[NH4]2[ZnL]·6H2O ,其中L为均苯四甲酸,其一维的菱形孔道被抗衡离子NH4 +所占据,将此配合物浸泡在EuCl3或Tb(ClO4)3的溶液中,可分别得到镧系离子掺杂配合物Eu[NH4]2[ZnL]·6H2O和Tb[NH4]2[ZnL]·6H2O。然后将Eu[NH4]2[ZnL]·6H2O、Tb[NH4]2[ZnL]·6H2O浸泡在MClx溶液中,(M = Na+或K+或Zn2+或Ni2+或Mn2+或Co2+或Cu2+,当M为Na+或K+时,X为1;当M为Zn2+或Ni2+或Mn2+或Co2+或Cu2+时,X为2),分别得到配合物M–Eu[NH4]2[ZnL]·6H2O和M–Tb[NH4]2[ZnL]·6H2O,其具体制备方法是: The preparation method of the metal-organic framework material that supports lanthanide ions to realize adjustable luminescence and sensing of the present invention is based on Zn(NO 3 ) 2 ·6H 2 O, (NH 4 ) 6 Mo 7 O 24 ·4H 2 O and Pyromellitic dianhydride as raw material, a complex [NH 4 ] 2 [ZnL]·6H 2 O obtained through coordination, in which L is pyromellitic acid, and its one-dimensional rhombic channel is counter ion NH 4 + Occupied by soaking this complex in EuCl 3 or Tb(ClO 4 ) 3 solution, the lanthanide ion-doped complex Eu [NH 4 ] 2 [ZnL]·6H 2 O and Tb [NH 4 ] 2 [ZnL]·6H 2 O. Then Eu [NH 4 ] 2 [ZnL]·6H 2 O, Tb [NH 4 ] 2 [ZnL]·6H 2 O were soaked in MCl x solution, (M = Na + or K + or Zn 2+ or Ni 2+ or Mn 2+ or Co 2+ or Cu 2+ , when M is Na + or K + , X is 1; when M is Zn 2+ or Ni 2+ or Mn 2+ or Co 2+ or Cu 2 + when X is 2), the complexes M–Eu [NH 4 ] 2 [ZnL]·6H 2 O and M–Tb [NH 4 ] 2 [ZnL]·6H 2 O are obtained respectively, and the specific preparation methods are:

(1)取1mmol Zn(NO3)2·6H2O,1mmol (NH4)6Mo7O24·4H2O和0.5mmol 均苯四甲酸二酐放入聚四氟乙烯反应釜中,加10ml水作溶剂,放置在马弗炉中,加热到200℃,恒温144小时,然后以每小时3摄氏度降到室温或自然风干,得到无色块状晶体配合物[NH4]2[ZnL]·6H2O,L=均苯四甲酸。 (1) Take 1mmol Zn(NO 3 ) 2 6H 2 O, 1mmol (NH 4 ) 6 Mo 7 O 24 4H 2 O and 0.5mmol pyromellitic dianhydride in a polytetrafluoroethylene reactor, add 10ml of water was used as a solvent, placed in a muffle furnace, heated to 200°C, kept at a constant temperature for 144 hours, and then cooled to room temperature at 3°C per hour or dried naturally to obtain a colorless massive crystal complex [NH 4 ] 2 [ZnL] · 6H 2 O, L = pyromellitic acid.

(2)将配合物[NH4]2[ZnL]·6H2O 浸泡在10-3–10-6mol/L EuCl3或10-3–10-7mol/L Tb(ClO4)3的溶液中,分别得到镧系离子掺杂配合物Eu[NH4]2[ZnL]·6H2O和Tb[NH4]2[ZnL]·6H2O。 (2) Soak the complex [NH 4 ] 2 [ZnL]·6H 2 O in 10 -3 -10 -6 mol/L EuCl 3 or 10 -3 -10 -7 mol/L Tb(ClO 4 ) 3 In the solution, the lanthanide ion-doped complexes Eu [NH 4 ] 2 [ZnL]·6H 2 O and Tb [NH 4 ] 2 [ZnL]·6H 2 O were obtained respectively.

(3)取上述配合物Eu[NH4]2[ZnL]·6H2O或Tb[NH4]2[ZnL]·6H2O浸泡在10-2mol/L MClx溶液中,分别得到金属离子浸入的镧系掺杂配合物M–Eu[NH4]2[ZnL]·6H2O或M–Tb[NH4]2[ZnL]·6H2O,M= Na+或K+或Zn2+或Ni2+或Mn2+或Co2+或Cu2+(3) Soak the above complex Eu [NH 4 ] 2 [ZnL]·6H 2 O or Tb [NH 4 ] 2 [ZnL]·6H 2 O in a 10 -2 mol/L MCl x solution to obtain metal Ion-immersed lanthanide-doped complex M–Eu [NH 4 ] 2 [ZnL]·6H 2 O or M–Tb [NH 4 ] 2 [ZnL]·6H 2 O, M=Na + or K + or Zn 2+ or Ni 2+ or Mn 2+ or Co 2+ or Cu 2+ .

本发明的负载镧系离子实现发光可调和传感的金属-有机框架材料的制备方法,是通构过简单的浸泡得到一种新型具有发光可调和传感的镧系MOFs分子,这种镧系离子掺杂操作方便、稳定、高效、重复性强、对MOFs的发光可调和传感性能有很好的调控作用。 The preparation method of the metal-organic framework material that supports lanthanide ions to realize adjustable luminescence and sensing of the present invention is to obtain a new type of lanthanide MOFs molecule with adjustable luminescence and sensing through simple soaking. This lanthanide The ion doping operation is convenient, stable, efficient, and highly repeatable, and it has a good control effect on the luminescence and sensing performance of MOFs.

附图说明 Description of drawings

图1为本发明的配合物[NH4]2[ZnL]·6H2O沿c轴方向的三维结构图及其一维的菱形孔道; Fig. 1 is a three-dimensional structural diagram of the complex [NH 4 ] 2 [ZnL]·6H 2 O along the c-axis direction of the present invention and its one-dimensional diamond-shaped channel;

图2为本发明的配合物[NH4]2[ZnL]·6H2O浸泡在不同浓度EuCl3水溶液中的荧光光谱图; Fig. 2 is the fluorescence spectrum diagram of the complex [NH 4 ] 2 [ZnL]·6H 2 O soaked in different concentrations of EuCl 3 aqueous solution of the present invention;

图3为本发明的配合物[NH4]2[ZnL]·6H2O浸泡在不同浓度Tb(ClO4)3水溶液中的荧光光谱图; Fig. 3 is a fluorescence spectrum diagram of the complex [NH 4 ] 2 [ZnL]·6H 2 O soaked in different concentrations of Tb(ClO 4 ) 3 aqueous solutions of the present invention;

图4为本发明的配合物Eu[NH4]2[ZnL]·6H2O浸泡在10-2mol/L MClx(M = Na+,K+,Zn2+,Ni2+,Mn2+,Co2+,Cu2+)水溶液中分别在5D0-7F25D4-7F5的跃迁强度图;     Figure 4 shows the complex Eu [NH 4 ] 2 [ZnL]·6H 2 O soaked in 10 -2 mol/L MCl x (M = Na + , K + , Zn 2+ , Ni 2+ , Mn 2 + , Co 2+ , Cu 2+ ) transition strength diagrams at 5 D 0 - 7 F 2 or 5 D 4 - 7 F 5 in aqueous solution;

图5为本发明的配合物Tb[NH4]2[ZnL]·6H2O浸泡在10-2mol/L MClx(M = Na+,K+,Zn2+,Ni2+,Mn2+,Co2+,Cu2+)水溶液中分别在5D0-7F25D4-7F5的跃迁强度图;  Figure 5 shows the complex Tb [NH 4 ] 2 [ZnL]·6H 2 O soaked in 10 -2 mol/L MCl x (M = Na + , K + , Zn 2+ , Ni 2+ , Mn 2 + , Co 2+ , Cu 2+ ) transition strength diagrams at 5 D 0 - 7 F 2 or 5 D 4 - 7 F 5 in aqueous solution;

图6为本发明的配合物Eu[NH4]2[ZnL]·6H2O浸泡在不同浓度CuCl2或CoCl2水溶液中的荧光光谱图; Fig. 6 is a fluorescence spectrum diagram of the complex Eu [NH 4 ] 2 [ZnL]·6H 2 O soaked in different concentrations of CuCl 2 or CoCl 2 aqueous solutions of the present invention;

图7为本发明的配合物Tb[NH4]2[ZnL]·6H2O浸泡在不同浓度CuCl2或CoCl2水溶液中的荧光光谱图。 Fig. 7 is a fluorescence spectrum diagram of the complex Tb [NH 4 ] 2 [ZnL]·6H 2 O soaked in different concentrations of CuCl 2 or CoCl 2 aqueous solutions of the present invention.

具体实施方式 Detailed ways

实施例1:  Example 1:

取1mmolZn(NO3)2·6H2O,1mmol(NH4)6Mo7O24·4H2O和0.5mmol均苯四甲酸二酐放入聚四氟乙烯反应釜中,加10mL水作溶剂,放置在马弗炉中,加热到200℃,恒温144小时,自然风干可得到无色块状晶体配合物[NH4]2[ZnL]·6H2O,其中L为均苯四甲酸;将配合物[NH4]2[ZnL]·6H2O 浸泡在10-3–10-6mol/L EuCl3或10-3–10-7mol/L Tb(ClO4)3的溶液中,可分别得到镧系掺杂的配合物Eu[NH4]2[ZnL]·6H2O、Tb[NH4]2[ZnL]·6H2O;将配合物Eu[NH4]2[ZnL]·6H2O、Tb[NH4]2[ZnL]·6H2O浸泡在10-2mol/L MClx((M = Na+,K+,Zn2+,Ni2+,Mn2+,Co2+,Cu2+)溶液中,又可分别得到金属离子浸入的镧系掺杂配合物M–Eu[NH4]2[ZnL]·6H2O、M–Tb[NH4]2[ZnL]·6H2O。 Take 1mmol Zn(NO 3 ) 2 6H 2 O, 1mmol (NH 4 ) 6 Mo 7 O 24 4H 2 O and 0.5mmol pyromellitic dianhydride into a polytetrafluoroethylene reactor, add 10mL water as solvent , placed in a muffle furnace, heated to 200°C, kept at a constant temperature for 144 hours, and naturally air-dried to obtain a colorless blocky crystal complex [NH 4 ] 2 [ZnL]·6H 2 O, where L is pyromellitic acid; Complex [NH 4 ] 2 [ZnL]·6H 2 O soaked in 10 -3 -10 -6 mol/L EuCl 3 or 10 -3 -10 -7 mol/L Tb(ClO 4 ) 3 solution, can The lanthanide-doped complexes Eu [NH 4 ] 2 [ZnL]·6H 2 O and Tb [NH 4 ] 2 [ZnL]·6H 2 O were respectively obtained; the complex Eu [NH 4 ] 2 [ZnL]· 6H 2 O, Tb [NH 4 ] 2 [ZnL]·6H 2 O soaked in 10 -2 mol/L MCl x ((M = Na + ,K + ,Zn 2+ ,Ni 2+ ,Mn 2+ ,Co 2+ , Cu 2+ ) solution, the lanthanide-doped complex M–Eu [NH 4 ] 2 [ZnL]·6H 2 O, M–Tb [NH 4 ] 2 [ZnL] can be obtained respectively ]·6H 2 O.

分别对这几种配合物进行EA、ICP、PXRD分析,由PXRD分析可发现Eu[NH4]2[ZnL]·6H2O、Tb[NH4]2[ZnL]·6H2O与[NH4]2[ZnL]·6H2O的晶格不同,而M–Eu[NH4]2[ZnL]·6H2O、M–Tb[NH4]2[ZnL]·6H2O (M = Co2+,Cu2+)的晶格也分别与Eu[NH4]2[ZnL]·6H2O、Tb[NH4]2[ZnL]·6H2O不相同;通过ICP分析可知,由配合物[NH4]2[ZnL]·6H2O到Eu[NH4]2[ZnL]·6H2O、Tb[NH4]2[ZnL]·6H2O,发生了Eu(Ⅲ)或 Tb(Ⅲ)与(NH4)+的阳离子交换,而Eu[NH4]2[ZnL]·6H2O、Tb[NH4]2[ZnL]·6H2O到M–Eu[NH4]2[ZnL]·6H2O、M–Tb[NH4]2[ZnL]·6H2O,Co2+或Cu2+取代了 Eu(Ⅲ)/Tb(Ⅲ)和(NH4)+。发光性、传感性能研究表明:(1)配合物在[NH4]2[ZnL]·6H2O 在波长为437nm处具有强荧光性,呈蓝光发射,这可能是配体到金属的电荷转移所致。(2)配合物[NH4]2[ZnL]·6H2O浸泡在10-3 mol/L EuCl3所得的Eu[NH4]2[ZnL]·6H2O发光为红光发射;当EuCl3的溶液浓度在10-6 mol/L以下时,镧系离子掺杂的配合物对发光可调的作用微乎其微。(3)配合物[NH4]2[ZnL]·6H2O浸泡在10-3 mol/L Tb(ClO4)3所得的Tb[NH4]2[ZnL]·6H2O为绿光发射;当Tb(ClO4)3的溶液浓度在10-7 mol/L以下时,镧系离子掺杂的配合物对发光可调的作用微不足道。这两种镧系离子掺杂的配合物的发射光谱呈现出Eu(Ⅲ)或 Tb(Ⅲ)离子的特征发射光谱。(4)金属离子浸入的镧系掺杂配合物M–Eu[NH4]2[ZnL]·6H2O、M–Tb[NH4]2[ZnL]·6H2O的发光性主要取决于金属离子特性:Na+,K+,Zn2+对配合物的发光强度没有影响,而其他几种金属离子则对配合物的发光强度具有猝灭效应。特别是,在M–Eu[NH4]2[ZnL]·6H2O中,Cu2+具有最明显的影响,而在M–Tb[NH4]2[ZnL]·6H2O中,Co2+具有最显著的影响。镧系离子掺杂的配合物Eu[NH4]2[ZnL]·6H2O或Tb[NH4]2[ZnL]·6H2O可作为高选择性、高灵敏度、低检测限的发光传感器来检测水溶液中的Cu2+或Co2+EA, ICP, and PXRD analysis were carried out on these complexes respectively. From the PXRD analysis, it can be found that Eu [NH 4 ] 2 [ZnL]·6H 2 O, Tb [NH 4 ] 2 [ZnL]·6H 2 O and [NH 4 4 ] 2 [ZnL]·6H 2 O has a different lattice, while M–Eu [NH 4 ] 2 [ZnL]·6H 2 O, M–Tb [NH 4 ] 2 [ZnL]·6H 2 O (M = Co 2+ , Cu 2+ ) are also different from Eu [NH 4 ] 2 [ZnL]·6H 2 O and Tb [NH 4 ] 2 [ZnL]·6H 2 O; Complex [NH 4 ] 2 [ZnL]·6H 2 O to Eu [NH 4 ] 2 [ZnL]·6H 2 O, Tb [NH 4 ] 2 [ZnL]·6H 2 O, Eu(Ⅲ) or Cation exchange of Tb(Ⅲ) with (NH 4 ) + , while Eu [NH 4 ] 2 [ZnL]·6H 2 O, Tb [NH 4 ] 2 [ZnL]·6H 2 O to M–Eu [NH 4 ] 2 [ZnL]·6H 2 O, M–Tb [NH 4 ] 2 [ZnL]·6H 2 O, Co 2+ or Cu 2+ replaced Eu(Ⅲ)/Tb(Ⅲ) and (NH 4 ) + . The study of luminescence and sensing performance shows: (1) The complex has strong fluorescence at the wavelength of 437nm in [NH 4 ] 2 [ZnL]·6H 2 O, and emits blue light, which may be the charge from the ligand to the metal. caused by transfer. (2) Eu [NH 4 ] 2 [ZnL]·6H 2 O obtained by soaking the complex [NH 4 ] 2 [ZnL]·6H 2 O in 10 -3 mol/L EuCl 3 emits red light; when EuCl When the solution concentration of 3 is below 10 -6 mol/L, the lanthanide ion-doped complex has little effect on the luminescence adjustment. (3) Tb [ NH 4 ] 2 [ZnL]·6H 2 O obtained by soaking complex [NH 4 ] 2 [ZnL]·6H 2 O in 10 -3 mol/L Tb(ClO 4 ) 3 emits green light ; When the solution concentration of Tb(ClO 4 ) 3 is below 10 -7 mol/L, the effect of lanthanide ion-doped complexes on luminescence adjustment is insignificant. The emission spectra of these two lanthanide ion-doped complexes exhibit the characteristic emission spectra of Eu(Ⅲ) or Tb(Ⅲ) ions. (4) The luminescence of the lanthanide-doped complex M–Eu [NH 4 ] 2 [ZnL]·6H 2 O and M–Tb [NH 4 ] 2 [ZnL]·6H 2 O mainly depends on Metal ion characteristics: Na + , K + , Zn 2+ have no effect on the luminescence intensity of the complex, while other metal ions have quenching effects on the luminescence intensity of the complex. In particular, in M–Eu [NH 4 ] 2 [ZnL]·6H 2 O, Cu 2+ has the most pronounced effect, while in M–Tb [NH 4 ] 2 [ZnL]·6H 2 O, Co 2+ has the most significant impact. Lanthanide ion-doped complex Eu [NH 4 ] 2 [ZnL]·6H 2 O or Tb [NH 4 ] 2 [ZnL]·6H 2 O can be used as a luminescent sensor with high selectivity, high sensitivity and low detection limit To detect Cu 2+ or Co 2+ in aqueous solution.

Claims (1)

1. the preparation method of the existing luminous metal-organic framework materials that is in harmonious proportion sensing of a load group of the lanthanides ion core, it is characterized in that: concrete steps are to get 1mmolZn (NO 3) 26H 2o, 1mmol (NH 4) 6mo 7o 244H 2o and 0.5mmol pyromellitic acid anhydride are put into the tetrafluoroethylene reactor, add the 10mL water as solvent, be placed in retort furnace, be heated to 200 ℃, constant temperature 144 hours, then with per hour 3 degrees centigrade drop to room temperature or natural air drying can obtain colourless bulk crystals title complex [NH 4] 2[ZnL] 6H 2o, wherein L is Pyromellitic Acid; By title complex [NH 4] 2[ZnL] 6H 2o is immersed in 10 -3– 10 -6mol/L EuCl 3or 10 -3– 10 -7mol/L Tb (ClO 4) 3solution in, obtain respectively the title complex of lanthanide ion doping eu@[NH 4] 2[ZnL] 6H 2o, tb@[NH 4] 2[ZnL] 6H 2o; By title complex eu@[NH 4] 2[ZnL] 6H 2o, tb@[NH 4] 2[ZnL] 6H 2o is immersed in 10 -2mol/L MCl xin solution, obtain respectively the lanthanide doped title complex that metal ion immerses m – Eu@[NH 4] 2[ZnL] 6H 2o, m – Tb@[NH 4] 2[ZnL] 6H 2o, M=Na +or K +or Zn 2+or Ni 2+or Mn 2+or Co 2+or Cu 2+.
CN2013104223678A 2013-09-17 2013-09-17 Preparation method of lanthanide ion loaded metal-organic framework material capable of realizing lighting adjustability and sensing property Pending CN103436255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013104223678A CN103436255A (en) 2013-09-17 2013-09-17 Preparation method of lanthanide ion loaded metal-organic framework material capable of realizing lighting adjustability and sensing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013104223678A CN103436255A (en) 2013-09-17 2013-09-17 Preparation method of lanthanide ion loaded metal-organic framework material capable of realizing lighting adjustability and sensing property

Publications (1)

Publication Number Publication Date
CN103436255A true CN103436255A (en) 2013-12-11

Family

ID=49689975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013104223678A Pending CN103436255A (en) 2013-09-17 2013-09-17 Preparation method of lanthanide ion loaded metal-organic framework material capable of realizing lighting adjustability and sensing property

Country Status (1)

Country Link
CN (1) CN103436255A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109663575A (en) * 2019-01-22 2019-04-23 内蒙古农业大学 A kind of adsorbable rare earth special metal La-MOFs adsorbent material of australene targeting intelligence and preparation method thereof
CN109810256A (en) * 2019-01-30 2019-05-28 江苏理工学院 A kind of ternary heteronuclear metal organic framework luminescent material and its preparation method and application
CN110498930A (en) * 2019-09-17 2019-11-26 江西省吉安市水文局(江西省吉安市水资源监测中心) Preparation method and application of a kind of lanthanide coordination polymer nanomaterial
CN112816414A (en) * 2021-01-07 2021-05-18 武汉大学 Alkaline phosphatase detection kit based on dual-emission lanthanide MOF and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081779A2 (en) * 2009-12-15 2011-07-07 Uop Llc Metal organic framework polymer mixed matrix membranes
WO2011133999A1 (en) * 2010-04-30 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Crystallisation facilitators for the synthesis of metal organic frameworks
CN102584865A (en) * 2012-01-30 2012-07-18 东华理工大学 Preparation method of zinc complex with light emitting adjustability and white light emitting property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081779A2 (en) * 2009-12-15 2011-07-07 Uop Llc Metal organic framework polymer mixed matrix membranes
WO2011133999A1 (en) * 2010-04-30 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Crystallisation facilitators for the synthesis of metal organic frameworks
CN102584865A (en) * 2012-01-30 2012-07-18 东华理工大学 Preparation method of zinc complex with light emitting adjustability and white light emitting property

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG LUO等: "Metal–organic framework (MOF): lanthanide(III)-doped approach for luminescence modulation and luminescent sensing", 《DALTON TRANSACTIONS》 *
SHUJUAN LIU等: "The first transition-metal metal–organic framework showing cation exchange for highly selectively sensing of aqueous Cu(II) ions", 《INORGANIC CHEMISTRY COMMUNICATIONS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109663575A (en) * 2019-01-22 2019-04-23 内蒙古农业大学 A kind of adsorbable rare earth special metal La-MOFs adsorbent material of australene targeting intelligence and preparation method thereof
CN109663575B (en) * 2019-01-22 2021-10-26 内蒙古农业大学 Special rare earth metal La-MOFs adsorption material for alpha-pinene targeted intelligent adsorption and preparation method thereof
CN109810256A (en) * 2019-01-30 2019-05-28 江苏理工学院 A kind of ternary heteronuclear metal organic framework luminescent material and its preparation method and application
CN109810256B (en) * 2019-01-30 2021-08-24 江苏理工学院 A kind of ternary heteronuclear metal organic framework luminescent material and its preparation method and application
CN110498930A (en) * 2019-09-17 2019-11-26 江西省吉安市水文局(江西省吉安市水资源监测中心) Preparation method and application of a kind of lanthanide coordination polymer nanomaterial
CN112816414A (en) * 2021-01-07 2021-05-18 武汉大学 Alkaline phosphatase detection kit based on dual-emission lanthanide MOF and detection method

Similar Documents

Publication Publication Date Title
Wu et al. A dual-emission probe to detect moisture and water in organic solvents based on green-Tb 3+ post-coordinated metal–organic frameworks with red carbon dots
Yang et al. 2D lanthanide MOFs driven by a rigid 3, 5-bis (3-carboxy-phenyl) pyridine building block: Solvothermal syntheses, structural features, and photoluminescence and sensing properties
Shang et al. Blue emitting Ca8La2 (PO4) 6O2: Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties
Xu et al. Eu 3+/Tb 3+ functionalized Bi-based metal–organic frameworks toward tunable white-light emission and fluorescence sensing applications
Cheng et al. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission
Binh et al. Study on preparation and characterization of MOF based lanthanide doped luminescent coordination polymers
CN105198737B (en) Rare earth-organic framework material for fluorescence temperature detection in high temperature area and preparation method thereof
Feng et al. A transparent and luminescent ionogel based on organosilica and ionic liquid coordinating to Eu3+ ions
Wang et al. 3D-hierachical spherical LuVO4: Tm3+, Dy3+, Eu3+ microcrystal: synthesis, energy transfer, and tunable color
Ma et al. Two 3D metal− organic frameworks as multi-functional materials to detect Fe3+ ions and nitroaromatic explosives and to encapsulate Ln3+ ions for white-light emission
CN103436255A (en) Preparation method of lanthanide ion loaded metal-organic framework material capable of realizing lighting adjustability and sensing property
CN103275110B (en) Highly stable Tb coordination polymer green luminous material and preparation method thereof
Łyszczek et al. Microwave-assisted synthesis of lanthanide 2, 6-naphthalenedicarboxylates: Thermal, luminescent and sorption characterization
Xie et al. Luminescent properties of sol–gel processed red-emitting phosphor Eu 3+, Bi 3+ co-doped (Ca, Sr)(Mo, W) O 4
Zhang et al. Lanthanide coordination frameworks: crystal structure, down-and up-conversion luminescence and white light emission
CN111234252B (en) Cadmium-organic supermolecule fluorescent polymer and preparation method and application thereof
CN106589397B (en) A kind of crystalline material, its synthetic method and the application in fluorescent crystal material
CN107298691B (en) A kind of lead complex based on rigid bis-imidazole ligand and its preparation method and application
CN112592358B (en) Blue light luminescent crystal material and preparation method and application thereof
CN105949224B (en) A kind of self calibration fluorescence temperature sensing material suitable for ultralow temperature
CN105061480A (en) Mellitic acid rare-earth coordination polymer as well as preparation method and application
Zhou et al. A highly connected (5, 5, 18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission
CN106317092B (en) A kind of europium complex, preparation method and the application of Pyromellitic Acid ligand
CN107216345A (en) Magnesium transition metal different metal base fluorescence is with polymers probe material and preparation method thereof
CN107201222A (en) A kind of two-dimentional rare earth coordination polymer fluorescent material and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131211