CN103430036A - Earth leakage detection device - Google Patents
Earth leakage detection device Download PDFInfo
- Publication number
- CN103430036A CN103430036A CN2012800144079A CN201280014407A CN103430036A CN 103430036 A CN103430036 A CN 103430036A CN 2012800144079 A CN2012800144079 A CN 2012800144079A CN 201280014407 A CN201280014407 A CN 201280014407A CN 103430036 A CN103430036 A CN 103430036A
- Authority
- CN
- China
- Prior art keywords
- pulse
- unit
- leakage detection
- output
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 227
- 238000004364 calculation method Methods 0.000 claims abstract description 171
- 230000010354 integration Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 7
- 230000000630 rising effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000004907 flux Effects 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Emergency Protection Circuit Devices (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种漏电检测装置。特别是涉及一种根据零相变流器的检测输出来判定交流电路中是否产生漏电的漏电检测装置。The invention relates to a leakage detection device. In particular, it relates to a leakage detection device for judging whether leakage occurs in an AC circuit according to the detection output of a zero-phase current transformer.
背景技术Background technique
漏电切断装置具有由环状的铁芯(芯)和卷绕在该芯上的环面(toroidal)状的线圈构成的零相变流器(ZCT),其中,该铁芯由软磁性材料等磁性体形成,构成交流电路的多个一次导体贯通该铁芯,该漏电切断装置根据该零相变流器的该线圈两端的检测输出即输出电压,来判定该多个一次导体中是否产生了漏电。The leakage interruption device has a zero-phase current transformer (ZCT) composed of an annular iron core (core) and a toroidal (toroidal) coil wound on the core, wherein the iron core is made of a soft magnetic material, etc. The magnetic body is formed, and a plurality of primary conductors constituting an AC circuit pass through the iron core, and the leakage cut-off device determines whether there is a fault in the plurality of primary conductors based on the detection output at both ends of the coil of the zero-phase current transformer, that is, the output voltage. Leakage.
在某一个一次导体中产生了漏电的情况下,交流电路的沿往路方向流动的电流与沿归路方向流动的电流之间产生差异,从而产生基于该差异的漏电电流。并且,由于多个一次导体的通电电流整体上不平衡,因此,由于通过该漏电电流所产生的磁通,零相变流器的芯的磁通的状态发生变化。由此,在零相变流器的线圈两端检测到与漏电电流对应的感应电压。When leakage occurs in a certain primary conductor, a difference occurs between the current flowing in the outward direction and the current flowing in the return direction of the AC circuit, and a leakage current based on the difference occurs. Furthermore, since the passing currents of the plurality of primary conductors are unbalanced as a whole, the state of the magnetic flux of the core of the zero-phase converter changes due to the magnetic flux generated by the leakage current. Thus, an induced voltage corresponding to the leakage current is detected at both ends of the coil of the zero-phase current transformer.
另外,在任一个一次导体都没有产生漏电的情况下,处于所谓的平衡状态,即该多个一次导体的通电电流的矢量和为零。在该平衡状态下,虽然零相变流器的芯处存在磁通,但是这些磁通相互抵消,不会通过零相变流器检测到如前所述的感应电压。因而,通过将零相变流器的线圈两端的输出电压作为检测输出而输出,能够判定交流电路中是否产生了漏电电流。In addition, when no leakage occurs in any of the primary conductors, it is in a so-called balanced state, that is, the vector sum of the energized currents of the plurality of primary conductors is zero. In this balanced state, although there is magnetic flux at the core of the zero-phase converter, these magnetic fluxes cancel each other out, and the induced voltage as mentioned above will not be detected through the zero-phase converter. Therefore, by outputting the output voltage at both ends of the coil of the zero-phase current transformer as a detection output, it is possible to determine whether or not a leakage current has occurred in the AC circuit.
作为检测到漏电电流的漏电的情况,考虑普通漏电的状态和雷涌(雷サージ)的状态。普通漏电是指漏电电流的电流值周期性地出现的漏电。雷涌是指漏电电流的电流值比较大、且该电流值暂时性地出现的漏电。As a case where a leakage of a leakage current is detected, a state of a normal leakage and a state of a lightning surge are considered. The normal leakage refers to a leakage in which the current value of the leakage current periodically appears. The lightning surge refers to a leakage current in which the current value of the leakage current is relatively large and the current value temporarily appears.
在两种漏电中的普通漏电的情况下,预计会长时间产生漏电,因此优选的是尽早切断通过交流电路进行的电力供给。另一方面,在雷涌的情况下,只是暂时性地产生漏电,因此在每次雷涌时都切断通过交流电路进行的电力供给是不理想的。In the case of an ordinary leakage among the two types of leakage, it is expected that the leakage will occur for a long time, so it is preferable to cut off the power supply through the AC circuit as soon as possible. On the other hand, in the case of a lightning surge, the electric leakage occurs only temporarily, so it is not preferable to cut off the power supply through the AC circuit every time a lightning surge occurs.
作为以往的漏电切断器,已知一种能够防止雷涌所导致的不必要的切断的漏电切断器(例如参照专利文献1)。该漏电切断器利用与检测漏电电流的第一比较器相比阈值更大的第二比较器,将雷涌或严重接地(普通漏电中的特别是漏电电流的电流值比较大的漏电)所导致的接地电流与漏电电流加以区分。并且,在根据第二比较器的输出而启动的单稳态多谐振荡器所制作的时间门(time gate)的期间内,由3波计数器来检测是否从第一比较器输出了3波以上的脉冲,从而对雷涌与严重接地加以区分。由此,仅在包括严重接地的普通漏电的情况下从切断信号输出电路输出切断信号。As a conventional earth leakage breaker, an earth leakage breaker capable of preventing unnecessary disconnection due to a lightning surge is known (for example, refer to Patent Document 1). The leakage circuit breaker uses the second comparator with a larger threshold than the first comparator that detects the leakage current to prevent the damage caused by lightning surge or severe grounding (especially the leakage current with a relatively large leakage current among common leakage currents). The ground current and the leakage current are distinguished. And, during the period of the time gate (time gate) made by the monostable multivibrator activated according to the output of the second comparator, it is detected by the 3-wave counter whether or not more than 3 waves are output from the first comparator. pulse, so as to distinguish lightning surge from severe grounding. As a result, the cutoff signal is output from the cutoff signal output circuit only in the case of normal earth leakage including severe grounding.
专利文献1:日本特开平10-094161号公报Patent Document 1: Japanese Unexamined Patent Application Publication No. H10-094161
然而,在专利文献1所示的漏电切断器中,为了区分雷涌和普通漏电,根据情况的不同,需要对电流值比较大的漏电电流进行三次计数。也就是说,在交流电路中,漏电电流伴随交流电源的波形而产生,在正侧或负侧的漏电电流为规定值以上时产生脉冲,通过连续三次计数这种脉冲来判定为漏电。像这样通过对漏电电流进行三次计数来判定为漏电的方法中漏电检测时间长。在普通漏电中的特别是严重接地的情况下,比较大的漏电电流有可能会持续流动,因此从人体保护等观点出发,优选的是更加尽快地判定出是普通漏电还是雷涌。However, in the earth leakage breaker disclosed in
但是,专利文献1所示的漏电切断器虽然进行漏电切断,但是并不根据零相变流器的输出电压来利用有效值等进行漏电显示。因而,管理者等无法识别出产生了什么程度的漏电。另外,如果要同时实施漏电切断和漏电显示,则期望能够设为尽量简单的结构来实现成本降低。However, the leakage interrupter disclosed in
本发明是鉴于上述情况而完成的,提供一种能够尽快识别出普通漏电和雷涌的漏电检测装置。The present invention has been made in view of the above circumstances, and provides a leakage detection device capable of identifying common leakage and lightning surge as quickly as possible.
本发明是鉴于上述情况而完成的,提供一种能够以简单且廉价的结构来同时实施漏电切断和漏电显示的漏电检测装置。The present invention has been made in view of the above circumstances, and provides an electric leakage detection device capable of performing both leakage interruption and leakage display with a simple and inexpensive structure.
发明内容Contents of the invention
基于本发明的一个实施方式的漏电检测装置具备:零相变流器,交流电路贯通该零相变流器;积分运算部,其对上述零相变流器的输出电压进行积分;积分值比较部,其在上述积分运算部的运算结果大于规定范围的情况下,输出第一信号;波形判别部,其检测上述零相变流器的输出电压波形的拐点并计数,在上述拐点的数量达到规定数的情况下输出第二信号;以及漏电检测部,其在由上述积分值比较部输出上述第一信号且由上述波形判别部输出上述第二信号的情况下,输出表示上述交流电路中产生了漏电的漏电检测信号。An electric leakage detection device based on one embodiment of the present invention includes: a zero-phase current transformer through which an AC circuit passes; an integral calculation unit that integrates the output voltage of the above-mentioned zero-phase current transformer; and compares the integral value. A section that outputs a first signal when the calculation result of the integral operation section is greater than a predetermined range; a waveform discrimination section that detects and counts inflection points of the output voltage waveform of the zero-phase converter, and when the number of inflection points reaches outputting a second signal in the case of a predetermined number; and an electric leakage detection unit that outputs a signal indicating that the AC circuit occurs when the first signal is output from the integral value comparison unit and the second signal is output from the waveform determination unit. Leakage detection signal of leakage.
期望的是,上述波形判别部从上述零相变流器的输出电压为正电压或者负电压时起开始上述拐点的检测。It is desirable that the waveform discrimination unit starts detection of the inflection point when the output voltage of the zero-phase converter is a positive voltage or a negative voltage.
另外,期望的是,上述积分运算部使用积分运算来求出上述零相变流器的输出电压的有效值。Moreover, it is desirable that the said integral calculation part obtains the effective value of the output voltage of the said zero-phase current transformer using integral calculation.
另外,上述积分运算部也可以使用积分运算来求出上述零相变流器的输出电压的平均值。In addition, the said integral calculation part may calculate|require the average value of the output voltage of the said zero-phase current transformer using integral calculation.
上述波形判别部也可以具备:脉冲产生部,其基于上述零相变流器的输出电压波形来产生脉冲;以及脉冲计数部,其对由上述脉冲产生部产生的脉冲的数量进行计数,在上述脉冲的数量达到规定数的情况下输出上述第二信号。The waveform discrimination unit may include: a pulse generation unit that generates pulses based on the output voltage waveform of the zero-phase converter; and a pulse counting unit that counts the number of pulses generated by the pulse generation unit. When the number of pulses reaches a predetermined number, the above-mentioned second signal is output.
期望的是,上述脉冲产生部在上述零相变流器的输出电压大于规定范围的情况下,产生上述脉冲。It is preferable that the said pulse generation part generate|occur|produces the said pulse when the output voltage of the said zero-phase converter exceeds a predetermined range.
另外,上述脉冲产生部也可以在上述零相变流器的输出电压大于规定范围的状态持续规定时间以上的情况下,产生上述脉冲。Moreover, the said pulse generation part may generate|occur|produce the said pulse, when the state in which the output voltage of the said zero-phase converter exceeds a predetermined range continues for predetermined time or more.
另外,期望的是,上述脉冲产生部在开始产生上述脉冲之后上述零相变流器的输出电压变得小于规定电压的情况下,停止上述脉冲的产生。Moreover, it is preferable that the said pulse generation part stops generation|occurrence|production of the said pulse, when the output voltage of the said zero-phase converter becomes lower than predetermined voltage after starting to generate|occur|produce the said pulse.
另外,上述脉冲产生部也可以构成为在从开始产生上述脉冲起经过了规定时间的情况下,停止上述脉冲的产生。In addition, the pulse generation unit may be configured to stop generation of the pulse when a predetermined time has elapsed since generation of the pulse was started.
另外,上述脉冲产生部也可以构成为从产生第一脉冲起经过规定时间之前停止第二脉冲的产生。In addition, the pulse generation unit may be configured to stop generation of the second pulse before a predetermined time elapses from generation of the first pulse.
期望的是,上述脉冲计数部对由上述脉冲产生部产生的脉冲的上升沿的数量进行计数,在该数量达到规定数的情况下输出上述第二信号。Preferably, the pulse counting unit counts the number of rising edges of the pulses generated by the pulse generating unit, and outputs the second signal when the number reaches a predetermined number.
上述脉冲计数部也可以构成为在由上述脉冲产生部产生的脉冲的脉宽为规定宽度以上的情况下进行计数,在其数量达到规定数的情况下输出上述第二信号。The pulse counting unit may be configured to count when the pulse width of the pulse generated by the pulse generating unit is equal to or greater than a predetermined width, and to output the second signal when the number of pulses reaches a predetermined number.
另外,上述脉冲计数部也可以构成为对由上述脉冲产生部产生的脉冲的下降沿的数量进行计数,在该数量达到规定数的情况下输出上述第二信号。In addition, the pulse counting unit may be configured to count the number of falling edges of the pulses generated by the pulse generating unit, and output the second signal when the number reaches a predetermined number.
另外,上述脉冲计数部也可以从对由上述脉冲产生部产生的第一脉冲进行计数起经过规定时间之前停止第二脉冲的计数。In addition, the pulse counting unit may stop counting the second pulse before a predetermined time elapses from counting the first pulse generated by the pulse generating unit.
上述波形判别部也可以具备计数值变更部,该计数值变更部在基于由上述脉冲产生部产生的脉冲的脉冲输出宽度为规定宽度以上的情况下,对由上述脉冲计数部计数得到的计数值进行变更。The waveform discrimination unit may include a count value change unit for counting the count value counted by the pulse count unit when the pulse output width based on the pulse generated by the pulse generation unit is equal to or greater than a predetermined width. Make changes.
期望的是,上述脉冲输出宽度是从由上述脉冲产生部产生的脉冲的输出开始时间点到输出结束时间点的时宽。Desirably, the above pulse output width is a time width from an output start time point to an output end time point of the pulse generated by the pulse generation unit.
上述脉冲输出宽度也可以是从由上述脉冲产生部产生的第一脉冲的输出开始时间点到与上述第一脉冲连续的第二脉冲的输出开始时间点的时宽。The pulse output width may be a duration from the output start time of the first pulse generated by the pulse generator to the output start time of the second pulse following the first pulse.
另外,上述脉冲输出宽度也可以是从由上述脉冲产生部产生的第一脉冲的输出结束时间点到与上述第一脉冲连续的第二脉冲的输出结束时间点的时宽。In addition, the pulse output width may be a duration from the output end time of the first pulse generated by the pulse generating unit to the output end time of the second pulse following the first pulse.
另外,上述脉冲输出宽度也可以是从由上述脉冲产生部产生的第一脉冲的输出开始时间点到第二脉冲的输出结束时间点的时宽。In addition, the pulse output width may be a time width from the output start time of the first pulse generated by the pulse generating unit to the end time of the second pulse output.
另外,漏电检测装置也可以还具备脉冲产生条件变更部,该脉冲产生条件变更部基于由上述脉冲计数部计数得到的计数值,来变更上述脉冲产生部的脉冲的产生条件。In addition, the leakage detection device may further include a pulse generation condition changing unit for changing the pulse generation condition of the pulse generation unit based on the count value counted by the pulse count unit.
期望的是,上述脉冲产生条件变更部对电压阈值和脉宽阈值中的至少一方进行变更,其中,该电压阈值是在判定上述脉冲产生部是否产生脉冲时使用的,该脉宽阈值是在判定是否对脉冲进行计数时使用的。Preferably, the pulse generating condition changing unit changes at least one of a voltage threshold used for determining whether the pulse generating unit generates a pulse, and a pulse width threshold used for determining whether the pulse generating unit generates a pulse. Whether to use when counting pulses.
另外,上述脉冲产生部也可以产生正侧脉冲和负侧脉冲,该正侧脉冲是基于上述零相变流器的正侧的输出电压的脉冲,该负侧脉冲是基于上述零相变流器的负侧的输出电压的脉冲,上述脉冲计数部对上述正侧脉冲和上述负侧脉冲进行计数,在上述正侧脉冲的数量和上述负侧脉冲的数量中的至少一方为规定数以上的情况下,输出上述第二信号。In addition, the above-mentioned pulse generator may also generate a positive-side pulse and a negative-side pulse, the positive-side pulse is a pulse based on the positive-side output voltage of the above-mentioned zero-phase converter, and the negative-side pulse is based on the output voltage of the above-mentioned zero-phase converter. pulses of the output voltage on the negative side, the pulse counting unit counts the positive side pulses and the negative side pulses, and when at least one of the number of the positive side pulses and the number of the negative side pulses is a predetermined number or more Next, the above-mentioned second signal is output.
另外,漏电检测装置也可以还具备信号输入部,该信号输入部输入用于使上述积分值比较部输出上述第一信号或者使波形判别部输出上述第二信号的信号输出指示信号。In addition, the leakage detection device may further include a signal input unit for inputting a signal output instruction signal for causing the integral value comparison unit to output the first signal or the waveform discrimination unit to output the second signal.
期望的是,上述信号输入部从外部电阻输入上述信号输出指示信号。Preferably, the signal input unit inputs the signal output instruction signal from an external resistor.
另外,漏电检测装置也可以还具备:积分部,其对上述零相变流器的输出电压进行积分;以及运算结果输出部,其进行与上述积分部的运算结果相应的输出,其中,上述运算结果输出部与上述漏电检测部也可以由一个模块构成。In addition, the leakage detection device may further include: an integrating unit that integrates the output voltage of the above-mentioned zero-phase current transformer; The result output unit and the electric leakage detection unit may be constituted by one module.
期望的是,上述漏电检测部将上述积分部用作上述积分运算部。It is desirable that the leakage detection unit uses the integration unit as the integration calculation unit.
另外,上述积分部也可以构成为,与上述积分运算部相比,对更长期间内的上述零相变流器的输出电压进行平均来计算平均值,对该平均值进行积分。In addition, the integration unit may be configured to average the output voltages of the zero-phase current transformers over a longer period than the integration calculation unit to calculate an average value, and to integrate the average value.
期望的是,上述运算结果输出部在上述积分部的运算结果大于比如下电压阈值的范围窄的规定范围的情况下输出警告信号,其中,该电压阈值是在判定是否通过上述积分值比较部输出上述第一信号时使用的。Preferably, the calculation result output unit outputs a warning signal when the calculation result of the integration unit is larger than a predetermined range narrower than a range of a lower voltage threshold that is determined by the integration value comparison unit when it is determined whether to output the warning signal. above the first signal is used.
另外,上述运算结果输出部也可以构成为根据上述积分部的运算结果,对输出上述警告信号时的输出方式进行变更。In addition, the calculation result output unit may be configured to change an output method when outputting the warning signal based on the calculation result of the integration unit.
漏电检测装置也可以还具备运算结果存储部,该运算结果存储部存储规定时间量的上述积分部的运算结果的信息。The leakage detection device may further include a calculation result storage unit that stores information on the calculation result of the integrating unit for a predetermined period of time.
另外,期望的是,漏电检测装置还具备外部端子部,该外部端子部用于输出上述运算结果存储部所存储的运算结果的信息。In addition, it is desirable that the leakage detection device further includes an external terminal unit for outputting information on the calculation result stored in the calculation result storage unit.
另外,也可以还具备信息输出部,该信息输出部将上述运算结果存储部所存储的运算结果的信息输出到存储介质。In addition, an information output unit that outputs information on the calculation result stored in the calculation result storage unit to a storage medium may be further provided.
另外,也可以还具备信息发送部,该信息发送部将上述运算结果存储部所存储的运算结果的信息发送到外部服务器。In addition, it may further include an information transmission unit that transmits the information of the calculation result stored in the calculation result storage unit to an external server.
本发明的其它实施方式的漏电检测装置具备:零相变流器,交流电路贯通该零相变流器;第一积分运算部,其对上述零相变流器的输出电压进行积分;漏电检测部,其基于上述第一积分运算部的运算结果,输出表示上述交流电路中产生了漏电的漏电检测信号;第二积分运算部,其对上述零相变流器的输出电压进行积分;以及运算结果输出部,其进行与上述第二积分运算部的运算结果相应的输出,其中,上述运算结果输出部和上述漏电检测部由一个模块构成。The leakage detection device according to other embodiments of the present invention includes: a zero-phase current transformer through which an AC circuit passes; a first integral calculation unit that integrates the output voltage of the above-mentioned zero-phase current transformer; A unit that outputs a leakage detection signal indicating that leakage has occurred in the AC circuit based on the calculation result of the first integral calculation unit; a second integral calculation unit that integrates the output voltage of the zero-phase current transformer; and calculation The result output unit performs an output corresponding to the calculation result of the second integral calculation unit, wherein the calculation result output unit and the leakage detection unit are constituted by one module.
期望的是,上述漏电检测部将上述第二积分运算部用作上述第一积分运算部。Preferably, the electric leakage detection unit uses the second integral calculation unit as the first integral calculation unit.
另外,上述第二积分运算部也可以构成为,与上述第一积分运算部相比,对更长期间内的上述零相变流器的输出电压进行平均来计算平均值,对该平均值进行积分。In addition, the second integral calculation unit may be configured to average the output voltages of the zero-phase current transformers over a longer period than the first integral calculation unit to calculate an average value, and to calculate the average value. integral.
期望的是,具备积分值比较部,该积分值比较部在上述第一积分运算部的运算结果大于规定范围的情况下,输出第一信号,上述运算结果输出部在上述第二积分运算部的运算结果大于比如下电压阈值的范围窄的规定范围的情况下输出警告信号,其中,该电压阈值是在判定是否通过上述积分值比较部输出上述第一信号时使用的。It is desirable to include an integral value comparison unit that outputs a first signal when the calculation result of the first integral calculation unit exceeds a predetermined range, and the calculation result output unit is connected to the second integral calculation unit. A warning signal is output when the calculation result is larger than a predetermined range narrower than a range of a lower voltage threshold used for determining whether to output the first signal by the integral value comparison unit.
另外,上述运算结果输出部也可以构成为根据上述第二积分运算部的运算结果,对输出上述警告信号时的输出方式进行变更。In addition, the calculation result output unit may be configured to change an output method when outputting the warning signal based on the calculation result of the second integral calculation unit.
漏电检测装置也可以还具备运算结果存储部,该运算结果存储部存储规定时间量的上述第二积分运算部的运算结果的信息。The leakage detection device may further include a calculation result storage unit that stores information on the calculation result of the second integral calculation unit for a predetermined period of time.
另外,期望的是,漏电检测装置还具备外部端子部,该外部端子部用于输出上述运算结果存储部所存储的运算结果的信息。In addition, it is desirable that the leakage detection device further includes an external terminal unit for outputting information on the calculation result stored in the calculation result storage unit.
另外,也可以还具备信息输出部,该信息输出部将上述运算结果存储部所存储的运算结果的信息输出到存储介质。In addition, an information output unit that outputs information on the calculation result stored in the calculation result storage unit to a storage medium may be further provided.
另外,也可以构成为还具备信息发送部,该信息发送部将上述运算结果存储部所存储的运算结果的信息发送到外部服务器。In addition, it may be configured to further include an information transmission unit that transmits the information of the calculation result stored in the calculation result storage unit to an external server.
另外,也可以还具备:积分值比较部,其在上述第一积分运算部的运算结果大于规定范围的情况下,输出第一信号;以及波形判别部,其检测上述零相变流器的输出电压波形的拐点并计数,在上述拐点的数量达到规定数的情况下输出第二信号,其中,上述漏电检测部在由上述积分值比较部输出上述第一信号且由上述波形判别部输出上述第二信号的情况下,输出上述漏电检测信号。In addition, an integral value comparison unit that outputs a first signal when the calculation result of the first integral calculation unit exceeds a predetermined range; and a waveform discrimination unit that detects the output of the zero-phase current transformer The inflection points of the voltage waveform are counted, and the second signal is output when the number of the inflection points reaches a predetermined number. In the case of two signals, the above-mentioned electric leakage detection signal is output.
期望的是,上述波形判别部从上述零相变流器的输出电压为正电压或者负电压时起开始上述拐点的检测。It is desirable that the waveform discrimination unit starts detection of the inflection point when the output voltage of the zero-phase converter is a positive voltage or a negative voltage.
另外,期望的是,上述第一积分运算部使用积分运算来求出上述零相变流器的输出电压的有效值。Moreover, it is desirable that the said 1st integral calculation part obtains the effective value of the output voltage of the said zero-phase current transformer using integral calculation.
另外,上述第一积分运算部也可以使用积分运算来求出上述零相变流器的输出电压的平均值。In addition, the said 1st integral calculation part may calculate|require the average value of the output voltage of the said zero-phase current transformer using integral calculation.
上述波形判别部也可以具备:脉冲产生部,其基于上述零相变流器的输出电压波形来产生脉冲;以及脉冲计数部,其对由上述脉冲产生部产生的脉冲的数量进行计数,在上述脉冲的数量达到规定数的情况下输出上述第二信号。The waveform discrimination unit may include: a pulse generation unit that generates pulses based on the output voltage waveform of the zero-phase converter; and a pulse counting unit that counts the number of pulses generated by the pulse generation unit. When the number of pulses reaches a predetermined number, the above-mentioned second signal is output.
期望的是,上述脉冲产生部在上述零相变流器的输出电压大于规定范围的情况下,产生上述脉冲。It is preferable that the said pulse generation part generate|occur|produces the said pulse when the output voltage of the said zero-phase converter exceeds a predetermined range.
另外,上述脉冲产生部也可以在上述零相变流器的输出电压大于规定范围的状态持续规定时间以上的情况下,产生上述脉冲。Moreover, the said pulse generation part may generate|occur|produce the said pulse, when the state in which the output voltage of the said zero-phase converter exceeds a predetermined range continues for predetermined time or more.
另外,期望的是,上述脉冲产生部在开始产生上述脉冲之后上述零相变流器的输出电压变得小于规定电压的情况下,停止上述脉冲的产生。Moreover, it is preferable that the said pulse generation part stops generation|occurrence|production of the said pulse, when the output voltage of the said zero-phase converter becomes lower than predetermined voltage after starting to generate|occur|produce the said pulse.
另外,上述脉冲产生部也可以构成为在从开始产生上述脉冲起经过了规定时间的情况下,停止上述脉冲的产生。In addition, the pulse generation unit may be configured to stop generation of the pulse when a predetermined time has elapsed since generation of the pulse was started.
另外,上述脉冲产生部也可以构成为从产生第一脉冲起经过规定时间之前停止第二脉冲的产生。In addition, the pulse generation unit may be configured to stop generation of the second pulse before a predetermined time elapses from generation of the first pulse.
期望的是,上述脉冲计数部对由上述脉冲产生部产生的脉冲的上升沿的数量进行计数,在该数量达到规定数的情况下输出上述第二信号。Preferably, the pulse counting unit counts the number of rising edges of the pulses generated by the pulse generating unit, and outputs the second signal when the number reaches a predetermined number.
上述脉冲计数部也可以构成为在由上述脉冲产生部产生的脉冲的脉宽为规定宽度以上的情况下进行计数,在其数量达到规定数的情况下输出上述第二信号。The pulse counting unit may be configured to count when the pulse width of the pulse generated by the pulse generating unit is equal to or greater than a predetermined width, and to output the second signal when the number of pulses reaches a predetermined number.
另外,上述脉冲计数部也可以构成为对由上述脉冲产生部产生的脉冲的下降沿的数量进行计数,在该数量达到规定数的情况下输出上述第二信号。In addition, the pulse counting unit may be configured to count the number of falling edges of the pulses generated by the pulse generating unit, and output the second signal when the number reaches a predetermined number.
另外,上述脉冲计数部也可以从对由上述脉冲产生部产生的第一脉冲进行计数起经过规定时间之前停止第二脉冲的计数。In addition, the pulse counting unit may stop counting the second pulse before a predetermined time elapses from counting the first pulse generated by the pulse generating unit.
上述波形判别部也可以具备计数值变更部,该计数值变更部在基于由上述脉冲产生部产生的脉冲的脉冲输出宽度为规定宽度以上的情况下,对由上述脉冲计数部计数得到的计数值进行变更。The waveform discrimination unit may include a count value change unit for counting the count value counted by the pulse count unit when the pulse output width based on the pulse generated by the pulse generation unit is equal to or greater than a predetermined width. Make changes.
期望的是,上述脉冲输出宽度是从由上述脉冲产生部产生的脉冲的输出开始时间点到输出结束时间点的时宽。Desirably, the above pulse output width is a time width from an output start time point to an output end time point of the pulse generated by the pulse generation unit.
上述脉冲输出宽度也可以是从由上述脉冲产生部产生的第一脉冲的输出开始时间点到与上述第一脉冲连续的第二脉冲的输出开始时间点的时宽。The pulse output width may be a duration from the output start time of the first pulse generated by the pulse generator to the output start time of the second pulse following the first pulse.
另外,上述脉冲输出宽度也可以是从由上述脉冲产生部产生的第一脉冲的输出结束时间点到与上述第一脉冲连续的第二脉冲的输出结束时间点的时宽。In addition, the pulse output width may be a duration from the output end time of the first pulse generated by the pulse generating unit to the output end time of the second pulse following the first pulse.
另外,上述脉冲输出宽度也可以是从由上述脉冲产生部产生的第一脉冲的输出开始时间点到第二脉冲的输出结束时间点的时宽。In addition, the pulse output width may be a time width from the output start time of the first pulse generated by the pulse generating unit to the end time of the second pulse output.
另外,漏电检测装置也可以还具备脉冲产生条件变更部,该脉冲产生条件变更部基于由上述脉冲计数部计数得到的计数值,来变更上述脉冲产生部的脉冲的产生条件。In addition, the leakage detection device may further include a pulse generation condition changing unit for changing the pulse generation condition of the pulse generation unit based on the count value counted by the pulse count unit.
期望的是,上述脉冲产生条件变更部对电压阈值和脉宽阈值中的至少一方进行变更,其中,该电压阈值是在判定上述脉冲产生部是否产生脉冲时使用的,该脉宽阈值是在判定是否对脉冲进行计数时使用的。Preferably, the pulse generating condition changing unit changes at least one of a voltage threshold used for determining whether the pulse generating unit generates a pulse, and a pulse width threshold used for determining whether the pulse generating unit generates a pulse. Whether to use when counting pulses.
另外,上述脉冲产生部也可以产生正侧脉冲和负侧脉冲,该正侧脉冲是基于上述零相变流器的正侧的输出电压的脉冲,该负侧脉冲是基于上述零相变流器的负侧的输出电压的脉冲,上述脉冲计数部对上述正侧脉冲和上述负侧脉冲进行计数,在上述正侧脉冲的数量和上述负侧脉冲的数量中的至少一方为规定数以上的情况下,输出上述第二信号。In addition, the above-mentioned pulse generator may also generate a positive-side pulse and a negative-side pulse, the positive-side pulse is a pulse based on the positive-side output voltage of the above-mentioned zero-phase converter, and the negative-side pulse is based on the output voltage of the above-mentioned zero-phase converter. pulses of the output voltage on the negative side, the pulse counting unit counts the positive side pulses and the negative side pulses, and when at least one of the number of the positive side pulses and the number of the negative side pulses is a predetermined number or more Next, the above-mentioned second signal is output.
另外,漏电检测装置也可以还具备信号输入部,该信号输入部输入用于使上述积分值比较部输出上述第一信号或者使波形判别部输出上述第二信号的信号输出指示信号。In addition, the leakage detection device may further include a signal input unit for inputting a signal output instruction signal for causing the integral value comparison unit to output the first signal or the waveform discrimination unit to output the second signal.
期望的是,上述信号输入部从外部电阻输入上述信号输出指示信号。Preferably, the signal input unit inputs the signal output instruction signal from an external resistor.
发明的效果The effect of the invention
根据本发明,能够尽快识别出普通漏电和雷涌。According to the present invention, ordinary electric leakage and lightning surge can be identified as quickly as possible.
附图说明Description of drawings
通过以下的附图和优选实施例的说明来明确本发明的目的和特征。The purpose and features of the present invention will be clarified by the following drawings and description of preferred embodiments.
图1是表示本发明的第一实施方式中的漏电检测装置的结构例的电路框图。FIG. 1 is a circuit block diagram showing a configuration example of an electric leakage detection device in the first embodiment of the present invention.
图2是表示本发明的第一实施方式中的波形判别部的详细结构例的电路框图。2 is a circuit block diagram showing a detailed configuration example of a waveform discrimination unit in the first embodiment of the present invention.
图3是用于说明本发明的第一实施方式中的漏电检测装置的第1动作例的时间图。Fig. 3 is a timing chart for explaining a first example of operation of the leakage detection device in the first embodiment of the present invention.
图4是用于说明本发明的第一实施方式中的漏电检测装置的第2动作例的时间图。FIG. 4 is a timing chart for illustrating a second operation example of the leakage detection device in the first embodiment of the present invention.
图5是用于说明本发明的第一实施方式中的漏电检测装置的第3动作例的时间图。FIG. 5 is a time chart illustrating a third operation example of the leakage detection device in the first embodiment of the present invention.
图6是用于说明本发明的第一实施方式中的漏电检测装置的第4动作例的时间图。6 is a time chart for explaining a fourth operation example of the leakage detection device in the first embodiment of the present invention.
图7是用于说明本发明的第一实施方式中的漏电检测装置的第5动作例的时间图。7 is a time chart for explaining a fifth operation example of the leakage detection device in the first embodiment of the present invention.
图8是表示本发明的第二实施方式中的波形判别部的详细结构例的电路框图。8 is a circuit block diagram showing a detailed configuration example of a waveform discrimination unit in a second embodiment of the present invention.
图9是用于说明本发明的第二实施方式中的漏电检测装置的动作例的时间图。FIG. 9 is a time chart illustrating an example of operation of the leakage detection device in the second embodiment of the present invention.
图10是表示本发明的第三实施方式中的波形判别部的详细结构例的电路框图。10 is a circuit block diagram showing a detailed configuration example of a waveform discrimination unit in a third embodiment of the present invention.
图11是用于说明本发明的第三实施方式中的漏电检测装置的动作例的时间图。FIG. 11 is a timing chart for explaining an example of operation of the leakage detection device in the third embodiment of the present invention.
图12是表示本发明的第四实施方式中的波形判别部的详细结构例的电路框图。12 is a circuit block diagram showing a detailed configuration example of a waveform discrimination unit in a fourth embodiment of the present invention.
图13是用于说明本发明的第四实施方式中的漏电检测装置的动作例的时间图。FIG. 13 is a timing chart for explaining an example of operation of the leakage detection device in the fourth embodiment of the present invention.
图14是表示本发明的第五实施方式中的漏电检测装置的结构例的电路框图。14 is a circuit block diagram showing a configuration example of an electric leakage detection device in a fifth embodiment of the present invention.
图15是表示本发明的第六实施方式中的漏电检测装置的第1结构例的框图。15 is a block diagram showing a first configuration example of an electric leakage detection device in a sixth embodiment of the present invention.
图16是表示本发明的第六实施方式中的漏电检测装置的第2结构例的框图。FIG. 16 is a block diagram showing a second configuration example of the leakage detection device in the sixth embodiment of the present invention.
图17是表示本发明的第六实施方式中的漏电检测装置的第3结构例的框图。Fig. 17 is a block diagram showing a third configuration example of the leakage detection device in the sixth embodiment of the present invention.
图18是表示本发明的第六实施方式中的漏电检测装置的第4结构例的框图。FIG. 18 is a block diagram showing a fourth configuration example of the leakage detection device in the sixth embodiment of the present invention.
图19是表示本发明的第六实施方式中的漏电检测装置的第5结构例的框图。FIG. 19 is a block diagram showing a fifth configuration example of the leakage detection device in the sixth embodiment of the present invention.
图20是表示本发明的第六实施方式中的漏电检测装置的第6结构例的框图。20 is a block diagram showing a sixth configuration example of an electric leakage detection device in a sixth embodiment of the present invention.
具体实施方式Detailed ways
下面,参照构成本说明书的一部分的附图来更详细地说明本发明的实施方式。在所有附图中对同一或类似的部分附加同一参照标记并省略说明。Embodiments of the present invention will be described in more detail below with reference to the accompanying drawings constituting a part of this specification. In all the drawings, the same or similar parts are attached with the same reference numerals and descriptions thereof are omitted.
(第一实施方式)(first embodiment)
图1是表示本发明的第一实施方式中的漏电检测装置的结构例的框图。图1所示的漏电检测装置100构成为具有零相变流器10、积分运算部20、积分值比较部30、波形判别部40、漏电检测部50。FIG. 1 is a block diagram showing a configuration example of an electric leakage detection device in the first embodiment of the present invention.
零相变流器10由环状的铁芯(芯)和卷绕在该芯上的环面状的线圈构成,其中,该铁芯由软磁性材料等磁性体形成,构成流经三相的通电电流的交流电路的多个一次导体贯通该铁芯。在交流电路的沿往路方向流动的电流与沿归路方向流动的电流之间产生了差异的情况下,零相变流器10中产生基于该差异的漏电电流。而且,在线圈的两端产生与漏电电流对应的感应电压。零相变流器10将该感应电压作为零相变流器10的输出电压、即ZCT输出电压输出到积分运算部20和波形判别部40。另外,虽未进行图示,但是为了从零相变流器10得到电压输出,与零相变流器10并联地插入有电阻元件。The zero-
积分运算部20由积分电路等构成,对ZCT输出电压进行累计,将累计所得的电压(累计电压)作为输出电压输出到积分值比较部30。The
另外,积分运算部20也可以使用积分运算来求出ZCT输出电压的有效值。例如,对ZCT输出电压的平方值进行一个周期量的积分并除以一个周期的时间,求出其值的平方根。在这种情况下,能够更高精度地检测漏电电流,从而提高对失真波的漏电检测性能。另外,积分运算部20也可以使用积分运算来求出ZCT输出电压的平均值。例如,对ZCT输出电压的绝对值进行一个周期量的积分并除以一个周期的时间,来计算绝对值平均。该绝对值平均的值在积分值比较部30中用于进行比较。在这种情况下,与求出有效值的情况相比能够降低运算量,从而能够以低成本构成漏电检测装置100。In addition, the
积分值比较部30由比较电路等构成,在积分运算部20的运算结果即积分值的绝对值为作为规定值的积分值判定阈值th1以上的情况下,向漏电检测部50输出电压H(参照图3)。在此,积分值判定阈值th1为正数。另一方面,在累计值的绝对值小于积分值判定阈值th1的情况下,向漏电检测部50输出电压L。积分值比较部30的输出电压为电压H的情况相当于积分值比较部30输出规定信号(第一信号)的情况。此外,电压H比电压L高。The
波形判别部40检测ZCT输出电压的电压波形的拐点并计数,在该拐点的数量达到规定数的情况下,向漏电检测部50输出电压H。另一方面,在拐点的数量未达到规定数的情况下,向漏电检测部50输出电压L。波形判别部40的输出电压为电压H的情况相当于波形判别部40输出规定信号(第二信号)的情况。此处规定数例如为“2”、“3”等。此外,波形判别部40的详细结构在后面叙述。The
另外,波形判别部40既可以从ZCT输出电压为正电压时起开始上述的拐点的检测,也可以从ZCT输出电压为负电压时起开始上述的拐点的检测。由此,能够高速地进行拐点的检测,在普通漏电的情况下能够更高速地切断交流电路。In addition, the
漏电检测部50由“与(AND)”电路等构成,在积分值比较部30的输出电压为电压H且波形判别部40的输出电压为电压H的情况下,输出电压H。漏电检测部50的输出电压为电压H的情况相当于输出表示交流电路中产生了漏电的漏电检测信号的情况。此外,漏电检测信号作为用于断开交流电路的电路触点的(用于切断交流电路的)切断信号被送出到断开上述电路触点的跳闸线圈(未图示)。其结果,交流电路的电路触点被断开。
接着,说明波形判别部40的详细结构。图2是表示波形判别部40的详细结构例的框图。图2所示的波形判别部40构成为具有脉冲产生部41、脉冲计数部42。Next, a detailed configuration of the
脉冲产生部41由脉冲产生电路等构成,基于ZCT输出电压来产生脉冲。在图3的例子中,规定电压值(电压H)的短时间的电压作为脉冲被输出。The
脉冲计数部42由脉冲计数器等构成,对由脉冲产生部41产生的脉冲的数量进行计数,在脉冲的数量达到规定数的情况下,将输出电压设为电压H,输出上述的第二信号。另一方面,在脉冲的数量未达到规定数的情况下,将输出电压设为电压L,不输出上述的第二信号。The
接着,说明本实施方式的漏电检测装置100的动作。图3是用于说明本实施方式的漏电检测装置100的第1动作例的时间图。Next, the operation of the
在图3的例子中,假设脉冲产生部41在ZCT输出电压的绝对值为漏电电流检测阈值th2以上的情况下产生宽度窄的脉冲。在此,漏电电流检测阈值th2为正数。这种脉冲产生部41的脉冲产生动作相当于检测输出电压波形的拐点。由此,不会由于雷涌而进行误动作,能够在期望的漏电电流值的情况下进行动作,更高速地检测出漏电。另一方面,在ZCT输出电压的绝对值小于漏电电流检测阈值th2的情况下,不产生脉冲。另外,在此,在脉冲上升时由脉冲计数部42进行计数。In the example of FIG. 3 , it is assumed that the
图3的“漏电电流”表示各情况(普通漏电、雷涌)下的零相变流器10中产生的漏电电流。如图3所示,在普通漏电的情况下产生周期性的漏电电流,在雷涌的情况下产生电流值比较大且暂时性的漏电电流。"Leakage current" in FIG. 3 represents the leakage current generated in the zero-
图3的“ZCT输出”表示与各情况下的漏电电流对应的零相变流器10的输出电压(ZCT输出电压)。"ZCT output" in FIG. 3 shows the output voltage (ZCT output voltage) of the zero-
图3的“脉冲产生部输出”表示各情况下的脉冲产生部41的输出电压。在图3的例子中,在同一期间的普通漏电的情况下产生3波脉冲,而在雷涌的情况下产生2波脉冲,在普通漏电时产生更多的脉冲。"Pulse generator output" in FIG. 3 shows the output voltage of the
图3的“计数器”表示各情况下的脉冲计数部42所保持的计数值。"Counter" in FIG. 3 represents the count value held by the
图3的“计数器输出”表示各情况下的脉冲计数部42的输出电压。在图3的例子中,当产生第3波的脉冲时,脉冲计数部42的输出电压变为电压H。"Counter output" in FIG. 3 shows the output voltage of the
图3的“积分运算输出”表示各情况下的积分运算部20的输出电压。"Integral calculation output" in FIG. 3 shows the output voltage of the
图3的“积分值比较输出”表示各情况下的积分值比较部30的输出电压。"Integral value comparison output" in FIG. 3 shows the output voltage of the integral
图3的“漏电检测信号输出”表示各情况下的漏电检测部50的输出电压。"Leakage detection signal output" in FIG. 3 shows the output voltage of the
根据这种第1动作例,能够尽快识别出普通漏电和雷涌。According to such a 1st operation example, it becomes possible to recognize a normal earth leakage and a lightning surge as quickly as possible.
图4是用于说明本实施方式的漏电检测装置100的第2动作例的时间图。FIG. 4 is a time chart illustrating a second operation example of the
在图4的例子中,假设脉冲产生部41在ZCT输出电压的绝对值为漏电电流检测阈值th2以上的状态持续了规定时间以上的情况下产生宽度窄的脉冲。另一方面,在ZCT输出电压的绝对值小于漏电电流检测阈值th2的情况下,或者在ZCT输出电压的绝对值为漏电电流检测阈值th2以上的状态没有持续规定时间以上的情况下,不产生脉冲。In the example of FIG. 4 , it is assumed that the
如图4所示,考虑ZCT输出电压的电压值的同时还考虑规定时间的持续,因此,与图3相比,“脉冲产生部输出”在延迟规定时间后的定时被输出。在本实施方式中,脉冲计数部42在脉冲的上升沿对脉冲进行计数。与此相应地,“计数器”、“计数器输出”、“漏电检测信号输出”的定时也延迟。由此,不会由于雷涌而进行误动作,能够在期望的漏电电流值的情况下进行动作,更高速地检测出漏电。并且,抵抗噪声的能力也强,鲁棒性提高。As shown in FIG. 4 , considering the voltage value of the ZCT output voltage and also the continuation of a predetermined time, the “pulse generator output” is output at a timing delayed by a predetermined time compared to FIG. 3 . In the present embodiment, the
此外,在图4中,省略了“积分运算输出”、“积分值比较输出”、“漏电检测信号输出”的图示。In addition, in FIG. 4, illustration of "integral calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted.
图5是用于说明漏电检测装置100的第3动作例的时间图。FIG. 5 is a time chart illustrating a third operation example of the
在图5的例子中,假设脉冲产生部41在开始产生脉冲后ZCT输出电压的绝对值变得小于脉冲停止判定阈值th3时停止脉冲的产生。另一方面,在ZCT输出电压的绝对值为脉冲停止判定阈值th3以上的情况下,继续产生脉冲。在此,th2>th3>0。In the example of FIG. 5 , it is assumed that the
因而,如图5的“脉冲产生部输出”所示,从ZCT输出电压的绝对值变为漏电电流检测阈值th2以上起到该绝对值变得小于脉冲停止判定阈值th3为止,产生一个脉冲。另外,在此,在脉冲下降时由脉冲计数部42进行计数。因而,与在脉冲上升时进行计数的情况相比,“计数器”、“计数器输出”、“漏电检测信号输出”的定时延迟。Therefore, as shown in "Pulse Generator Output" in FIG. 5 , one pulse is generated from when the absolute value of the ZCT output voltage becomes greater than or equal to the leakage current detection threshold th2 until the absolute value becomes smaller than the pulse stop determination threshold th3 . In addition, here, the count is performed by the
此外,在图5中,省略了“积分运算输出”、“积分值比较输出”、“漏电检测信号输出”的图示。In addition, in FIG. 5, illustration of "integral calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted.
另外,在此,示出了为了决定脉冲停止时间点而考虑电压的情况,但是也可以考虑时间来代替电压。例如,脉冲产生部41也可以如后述的图6所示那样,在从开始产生脉冲起经过了规定时间(规定宽度)t2时停止脉冲。若是这种方式,则在开始产生脉冲后的规定时间的期间内,噪声不会影响漏电检测。In addition, here, a case where voltage is considered in order to determine the pulse stop timing point is shown, but time may be considered instead of voltage. For example, the
图6是用于说明本实施方式的漏电检测装置100的第4动作例的时间图。FIG. 6 is a time chart illustrating a fourth operation example of the
在图6的例子中,假设脉冲产生部41在产生具有规定宽度t2的脉冲之后在规定时间内不产生下一个脉冲。即,假设脉冲产生部41从产生第一脉冲起经过规定时间之前停止第二脉冲的产生。在图6的例子中,该脉冲输出屏蔽期间仅应用于普通漏电的情况。In the example of FIG. 6 , it is assumed that the
在图6的例子中,在普通漏电中,在作为规定时间的脉冲输出屏蔽期间内包含一个脉冲的产生定时。在这种情况下,应该由脉冲产生部41产生的第二脉冲与输出屏蔽期间重叠,因此该第二脉冲在该输出屏蔽期间结束后产生。因而,脉冲计数的计数值会延迟一个脉冲而被计数。In the example of FIG. 6 , in the normal leakage, one pulse generation timing is included in the pulse output masking period which is a predetermined time. In this case, since the second pulse to be generated by the
另外,在图6的雷涌所示的例子中,假设由脉冲产生部41无输出屏蔽期间地产生第一脉冲和第二脉冲,脉冲计数部42在脉冲下降沿对脉冲进行计数,从对第一脉冲进行计数起经过规定时间之前,停止第二脉冲的计数。在图6的例子中,该计数屏蔽期间仅应用于雷涌的情况。In addition, in the example shown by the lightning surge in FIG. 6 , assuming that the first pulse and the second pulse are generated by the
在雷涌所示的例子中,在作为规定时间的计数屏蔽期间内包含一个脉冲的计数定时。在这种情况下,应该由脉冲计数部42进行计数的第二脉冲与计数屏蔽期间重叠,因此该第二脉冲在该计数屏蔽期间结束后被计数。因而,脉冲计数的计数值会延迟一个脉冲而被计数。因而,“计数器”的定时延迟,因此与其相应地,“计数器输出”、“漏电检测信号输出”的定时也延迟。In the example shown by Thunderstorm, the count timing of one pulse is included in the count mask period which is a predetermined time. In this case, since the second pulse to be counted by the
此外,在图6中,省略了“积分运算输出”、“积分值比较输出”、“漏电检测信号输出”的图示。In addition, in FIG. 6, illustration of "integral calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted.
这样,通过设置规定时间的脉冲屏蔽期间或者计数屏蔽期间,能够正确地进行脉冲产生或者进行脉冲计数。特别是能够防止雷涌的误检测,能够防止漏电检测装置100的误动作。另外,在本实施方式中,在脉冲输出屏蔽期间内包含一个脉冲的产生定时,在计数屏蔽期间内包含一个脉冲的计数定时,因此,当第二个脉冲被计数时,脉冲计数部42的输出电压变为电压H。Thus, by providing a pulse mask period or a count mask period of a predetermined time, pulse generation or pulse counting can be accurately performed. In particular, erroneous detection of lightning surge can be prevented, and erroneous operation of
图7是用于说明本实施方式的漏电检测装置100的第5动作例的时间图。FIG. 7 is a time chart illustrating a fifth operation example of the
在图7的例子中,脉冲产生部41从ZCT输出电压的绝对值变为漏电电流检测阈值th2以上起到该绝对值变得小于漏电电流检测阈值th2为止,产生一个脉冲。另外,假设脉冲计数部42在由脉冲产生部41产生的脉冲的脉宽(时宽)为规定宽度A以上的情况下进行计数。另一方面,在脉冲的脉宽小于规定宽度A的情况下,不作为脉冲进行计数。In the example of FIG. 7 , the
另外,在此,在脉冲下降时由脉冲计数部42进行计数。因而,与在脉冲上升时进行计数的情况相比,“计数器”、“计数器输出”、“漏电检测信号输出”的定时延迟。In addition, here, the count is performed by the
此外,在图7中,省略了“积分运算输出”、“积分值比较输出”、“漏电检测信号输出”的图示。根据这种动作例,能够容易地将雷涌与普通漏电加以区分来进行检测。In addition, in FIG. 7, illustration of "integral calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted. According to such an operation example, it is possible to easily distinguish and detect a lightning surge from a normal leakage.
(第二实施方式)(second embodiment)
如图8所示,第二实施方式的漏电检测装置100具备波形判别部40B来代替第一实施方式所示的波形判别部40。此外,对本实施方式的漏电检测装置100的与第一实施方式所示的漏电检测装置100相同的结构赋予相同标记,省略说明。As shown in FIG. 8 , the
图8是表示本发明的第二实施方式中的波形判别部40B的结构例的框图。图8所示的波形判别部40B除了具备脉冲产生部41和脉冲计数部42以外,还具备计数值变更部43。FIG. 8 is a block diagram showing a configuration example of a
计数值变更部43由控制电路等构成,检测基于由脉冲产生部41产生的脉冲的脉冲输出宽度,在该脉冲输出宽度为规定宽度以上或者小于规定宽度的情况下,对脉冲计数部42的计数值进行变更。例如,能够在脉冲输出宽度为规定宽度以上的情况下使计数值增大1,在脉冲输出宽度为规定宽度以下的情况下使计数值减小1。The count
在本实施方式中,脉冲产生部41在ZCT输出电压的绝对值为漏电电流检测阈值th2以上的区间内产生脉冲。另外,在各脉冲的下降沿对脉冲进行计数。在此,“脉冲输出宽度”如下(参照后述的图9)。In the present embodiment, the
(A)从作为第一脉冲的脉冲P1的输出开始时间点(上升时间点)到输出结束时间点(下降时间点)的时宽A1(在这种情况下使用阈值T1)(A) Duration A1 from the output start time point (rising time point) of the pulse P1 as the first pulse to the output end time point (falling time point) (threshold value T1 is used in this case)
(B)从作为第一脉冲的脉冲P1的输出开始时间点到作为与第一脉冲连续的第二脉冲的脉冲P2的输出开始时间点的时宽A2(在这种情况下使用阈值T2)(B) Duration A2 from the output start time point of the pulse P1 which is the first pulse to the output start time point of the pulse P2 which is the second pulse consecutive to the first pulse (threshold T2 is used in this case)
(C)从脉冲P1的输出结束时间点到脉冲P2的输出结束时间点的时宽A3(在这种情况下使用阈值T3)(C) Time width A3 from the output end time point of the pulse P1 to the output end time point of the pulse P2 (threshold value T3 is used in this case)
(D)从脉冲P1的输出开始时间点到脉冲P2的输出结束时间点的时宽A4(在这种情况下使用阈值T4)(D) Time width A4 from the output start time point of the pulse P1 to the output end time point of the pulse P2 (threshold value T4 is used in this case)
图9是用于说明本实施方式的漏电检测装置100的动作例的时间图。FIG. 9 is a timing chart illustrating an example of the operation of the
在图9的例子中,在脉冲输出宽度A3为阈值T3以上时使计数器值增大1。由此,能够灵活地设定使计数值变更的定时。因而,通过将各个时宽A1~A4中的某一个设定为脉冲输出宽度,漏电检测装置100的动作时间不会延迟,能够防止误动作。In the example of FIG. 9 , the counter value is incremented by 1 when the pulse output width A3 is equal to or greater than the threshold value T3 . Thereby, the timing of changing the count value can be flexibly set. Therefore, by setting any one of the time widths A1 to A4 as the pulse output width, the operation time of the
在图9所示的例子中,在普通漏电的情况下脉冲P1与P2之间的脉宽A3大于阈值T3,因此在脉冲P2的下降沿时间点,计数值从1增加到3,在该时间点从脉冲计数部42产生电压H。In the example shown in FIG. 9, the pulse width A3 between pulses P1 and P2 is greater than the threshold T3 in the case of normal leakage, so at the time point of the falling edge of pulse P2, the count value increases from 1 to 3, at which time A voltage H is generated from the
此外,在图9中,省略了“积分运算输出”、“积分值比较输出”、“漏电检测信号输出”的图示。In addition, in FIG. 9, illustration of "integral calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted.
(第三实施方式)(third embodiment)
第三实施方式的漏电检测装置100具备波形判别部40C来代替第一实施方式所示的波形判别部40。此外,对本实施方式的漏电检测装置100的与第一实施方式所示的漏电检测装置100相同的结构赋予相同标记,省略说明。The
图10是表示本发明的第三实施方式中的波形判别部40C的结构例的框图。图10所示的波形判别部40C除了具备脉冲产生部41和脉冲计数部42以外,还具备脉冲产生条件变更部44。FIG. 10 is a block diagram showing a configuration example of a
脉冲产生条件变更部44由控制电路等构成,基于由脉冲计数部42计数得到的计数值,对脉冲产生部41的脉冲的产生条件以及/或者脉冲计数部42的脉冲计数条件进行变更。作为脉冲的产生条件,有电压阈值,该电压阈值是在判定脉冲产生部41是否产生脉冲时使用的,作为脉冲计数条件,有脉宽(时宽)阈值等。脉冲产生条件变更部44例如对该电压阈值(例如第一实施方式中说明的“漏电电流检测阈值th2”)和脉宽阈值(例如第一实施方式中说明的“规定宽度A”)中的至少一方进行变更。The pulse generating
图11是用于说明本实施方式的漏电检测装置100的动作例的时间图。FIG. 11 is a time chart illustrating an example of the operation of the
在图11的例子中,在第一脉冲和第二脉冲的脉宽比A长的情况下在脉冲的下降沿进行计数,脉冲产生条件变更部44在计数器的输出为“2”的时间点对脉冲计数部42的脉冲产生判定时的时间阈值进行变更。也就是说,在计数到2的时间点,针对脉冲产生部41的时间阈值,变更为瞬时检测。也就是说,在脉冲的上升沿进行计数。由此,能够防止雷涌等所导致的漏电检测装置100的误动作,且在普通漏电的情况下能够更高速地切断交流电路。In the example of FIG. 11 , when the pulse widths of the first pulse and the second pulse are longer than A, counting is performed on the falling edge of the pulse, and the pulse generation
此外,在图11中,省略了“积分运算输出”、“积分值比较输出”、“漏电检测信号输出”的图示。In addition, in FIG. 11, illustration of "integral calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted.
(第四实施方式)(fourth embodiment)
第四实施方式的漏电检测装置100具备波形判别部40D来代替第一实施方式所示的波形判别部40。此外,对本实施方式的漏电检测装置100的与第一实施方式所示的漏电检测装置100相同的结构赋予相同标记,省略说明。The
图12是表示本发明的第四实施方式中的波形判别部40D的结构例的框图。图12所示的波形判别部40D具备正侧脉冲产生部41A、负侧脉冲产生部41B、正侧脉冲计数部42A以及负侧脉冲计数部42B。FIG. 12 is a block diagram showing a configuration example of a
正侧脉冲产生部41A产生正侧脉冲,该正侧脉冲是基于正侧的ZCT输出电压的脉冲。负侧脉冲产生部41B产生负侧脉冲,该负侧脉冲是基于负侧的ZCT输出电压的脉冲。此外,基于ZCT输出电压产生正侧脉冲或者负侧脉冲的条件与之前说明的相同。The positive-side pulse generator 41A generates a positive-side pulse based on the positive-side ZCT output voltage. Negative
正侧脉冲计数部42A对正侧脉冲进行计数,在该计数数为规定数以上的情况下,将输出电压设为电压H,输出第二信号。负侧脉冲计数部42B对负侧脉冲进行计数,在该计数数为规定数以上的情况下,将输出电压设为电压H,输出第二信号。因而,在正侧脉冲的数量和负侧脉冲的数量中的至少一方为规定数以上的情况下输出第二信号。此外,对正侧脉冲或者负侧脉冲进行计数的条件与之前说明的相同。The positive-side
图13是用于说明本实施方式的漏电检测装置100的动作例的时间图。FIG. 13 is a time chart illustrating an example of the operation of the
图13的“正侧脉冲产生部输出”表示各情况下的正侧脉冲产生部41A的输出电压。在图13的例子中,在同一期间的普通漏电的情况下产生2波正侧脉冲,而在雷涌的情况下产生1波正侧脉冲,在普通漏电时产生更多的脉冲。"Positive-side pulse generator output" in FIG. 13 shows the output voltage of the positive-side pulse generator 41A in each case. In the example of FIG. 13 , two waves of positive side pulses are generated in the case of normal leakage in the same period, and one wave of positive side pulses is generated in the case of lightning surge, and more pulses are generated in the case of normal leakage.
图13的“正侧计数器”表示各情况下的正侧脉冲计数部42A所保持的计数值。The "positive side counter" in FIG. 13 shows the count value held by the positive side
图13的“负侧脉冲产生部输出”表示各情况下的负侧脉冲产生部41B的输出电压。在图13的例子中,在同一期间的普通漏电的情况下产生1波负侧脉冲,而在雷涌的情况下也产生1波负侧脉冲。"Negative side pulse generator output" in FIG. 13 shows the output voltage of the negative
图13的“负侧计数器”表示各情况下的负侧脉冲计数部42B所保持的计数值。"Negative side counter" in FIG. 13 shows the count value held by the negative side
图13的“计数器输出”表示考虑了正侧计数器和负侧计数器的输出。在图13的例子中,在正侧脉冲计数部42A和负侧脉冲计数部42B中的至少一方将正侧脉冲和负侧脉冲中的至少一方计数到2波以上的情况下,计数器输出的输出电压变为电压H。因而,在图13的例子中,仅在普通漏电的情况下,计数器输出变为电压H。另外,虽未进行图示,正侧脉冲计数部42A、负侧脉冲计数部42B的输出通过“或”门(OR gate)输出到漏电输出部50。"Counter output" in FIG. 13 represents the output considering the positive side counter and the negative side counter. In the example of FIG. 13 , when at least one of the positive-side
此外,在图13中,省略了“积分运算输出”、“积分值比较输出”、“漏电检测信号输出”的图示。In addition, in FIG. 13, illustration of "integral calculation output", "integral value comparison output", and "leakage detection signal output" is abbreviate|omitted.
这样,能够将ZCT输出电压的正侧和负侧加以区分来进行脉冲产生和脉冲计数,由此能够容易地检测半波漏电。In this manner, pulse generation and pulse counting can be performed by distinguishing the positive side and the negative side of the ZCT output voltage, thereby enabling easy detection of half-wave leakage.
(第五实施方式)(fifth embodiment)
图14是表示本发明的第五实施方式中的漏电检测装置E的结构例的框图。漏电检测装置100E具备零相变流器10、积分运算部20、积分值比较部30、波形判别部40、漏电检测部50E以及作为集成电路的多个逻辑运算部。在此,例示了具备第一逻辑运算部60和第二逻辑运算部70作为多个逻辑电路部的情况,但是并不限于此。此外,也可以使用之前说明的波形判别部40B~40D来代替波形判别部40。对本实施方式的漏电检测装置100E的与第一~第四实施方式所示的漏电检测装置100相同的结构赋予相同标记,省略说明。FIG. 14 is a block diagram showing a configuration example of an electric leakage detection device E in a fifth embodiment of the present invention.
第一逻辑运算部60和第二逻辑运算部70具有作为信号输入部的功能,该信号输入部输入用于使积分值比较部30的输出电压为电压H(也就是说使其输出第一信号)以及用于使波形判别部40的输出电压为电压H(也就是说使其输出第二信号)的信号输出指示信号。因而,通过这些电路部,能够对第一实施方式~第四实施方式中说明的多个算法进行变更。也就是说,第一逻辑运算部60和第二逻辑运算部70分别根据来自外部的信号,与积分值比较部30和波形判别部40的输出无关地向漏电检测部50E输出第一信号和第二信号。The first
第一逻辑运算部60由“或(OR)”电路等构成,在积分值比较部30的输出电压和外置电路部的输出电压中的至少一方为电压H的情况下,输出电压H。The first
第二逻辑运算部70由“或(OR)”电路等构成,在波形判别部40的输出电压和外置电路部的输出电压中的至少一方为电压H的情况下,输出电压H。The second
此外,作为第一逻辑运算部60和第二逻辑运算部70的外置电路部,考虑低容量的贴片电阻。该贴片电阻与第一逻辑运算部60、第二逻辑运算部70的输入引脚(pin)连接。由此,能够廉价地构成将外置电路部包括在内的电路。也可以这样从外部电阻输入信号输出指示信号。In addition, low-capacity chip resistors are considered as the external circuit units of the first
漏电检测部50E由“与(AND)”电路等构成,在第一逻辑运算部60的输出电压为电压H且第二逻辑运算部70的输出电压为电压H的情况下,输出电压H。漏电检测部50E的输出电压为电压H的情况相当于输出表示交流电路中产生了漏电的漏电检测信号的情况。此外,漏电检测信号作为用于断开交流电路的电路触点的(用于切断交流电路的)切断信号被送出到断开上述电路触点的跳闸线圈(未图示)。其结果,交流电路的电路触点被断开。
根据这种本实施方式的漏电检测装置100E,如果使与第一逻辑运算部60连接的外置电路部的输出电压为电压H,则与第一实施方式~第四实施方式的积分值比较部30的输出电压始终为电压H的情况等效,因此能够使积分值比较部30的功能无效。同样地,如果使与第二逻辑运算部70连接的外置电路部的输出电压为电压H,则与第一实施方式~第四实施方式的波形判别部40等(40、40B~40D中的某一个)的输出电压始终为电压H的情况等效,因此能够使波形判别部40等的功能无效。也就是说,能够使用外置电路部来使单方的功能无效。According to the electric
另外,在此,说明了使用第一逻辑运算部60和第二逻辑运算部70来使漏电检测装置100E的一部分功能无效的情况,但是也可以不使用这些电路部。例如,也可以构成为从未图示的外部装置输入用于变更积分运算部20、积分值比较部30以及波形判别部40中的至少一个的电压阈值、时间阈值等各阈值、或者用于变更计数值的变更信号。例如,在变更各阈值的情况下,也可以变更为测量电压、测量时间始终超过该阈值的值。另外,例如,也可以将计数值变更为始终超过计数阈值的值。根据这种结构,也同样能够使漏电检测装置100E的一部分功能无效。In addition, although the case where some functions of the
(第六实施方式)(sixth embodiment)
图15是表示本发明的第六实施方式中的漏电检测装置100F的结构例的框图。本实施方式的漏电检测装置100F具有零相变流器10、第一系统(漏电水平检测部80)以及第二系统,该第一系统具有作为第一~第五实施方式中说明的除零相变流器10以外的漏电检测装置100、100E的功能,该第二系统对零相变流器10的输出电压(ZCT输出电压)进行积分,进行与积分结果相应的输出。也就是说,第一系统实现与漏电切断有关的功能,第二系统实现用于向用户通知漏电量(漏电电流值)的功能。FIG. 15 is a block diagram showing a configuration example of an electric
作为第一系统的漏电水平检测部80具有如前所述的积分运算部20、积分值比较部30、波形判别部40、漏电检测部50等。其中,漏电水平检测部80至少具备积分运算部20和漏电检测部50。在漏电水平检测部80仅具备积分运算部20和漏电检测部50的情况下,漏电检测部50基于积分运算部20的运算结果来输出漏电检测信号。The electric leakage
第二系统具备积分部91和运算结果输出部92。积分部91对ZCT输出电压进行积分,具有与之前说明的积分运算部20相同的结构。运算结果输出部92进行与积分部91的运算结果(积分值)相应的输出。运算结果输出部92例如通过未图示的显示器、扬声器等输出各种信息。在此,作为运算结果,例如输出如之前说明那样的使用积分运算得到的ZCT输出电压的有效值(有效值运算结果)、使用积分运算得到的ZCT输出电压的平均值(平均值运算结果)。The second system includes an integrating
在此,第一系统和第二系统的各结构部在一个集成电路(一个模块)内构成。因而,通过像这样在同一封装体中构成漏电检测装置100F,能够实现成本降低。也就是说,能够以简单且廉价的结构来同时实施漏电切断和漏电显示。Here, the components of the first system and the second system are configured in one integrated circuit (one module). Therefore, by configuring the
另外,如图16所示,也可以将积分部91用作第一实施方式中说明的积分运算部20。也就是说,也可以使漏电水平检测部80不具备积分运算部20,而将积分部91的输出由积分值比较部30输入。这样,通过共用用于进行积分的结构,能够实现成本降低。另外,由于共用积分电路等硬件,由此不会受硬件的差异、用于积分运算的运算方式的影响,因此用于漏电检测的水平检测值与用于显示漏电程度的显示值之间不会产生误差,因此能够以两者之间不产生矛盾的方式进行调整。In addition, as shown in FIG. 16 , the
另外,运算结果输出部92也可以输出对由积分部91运算出的积分值进行平均化所得的值(平均值)。另外,积分值比较部30也可以将对由积分运算部20运算出的积分值进行平均化所得的值(平均值)与规定值(积分值判定阈值th1)进行比较。平均值例如是指时间平均。此时,优选的是,使运算结果输出部92进行平均化时的期间比积分值比较部30进行平均化时的期间长。另外,也可以与积分运算部20相比,积分部91对更长期间内的ZCT输出电压进行平均来计算ZCT输出电压的平均值,对该平均值进行积分来得到积分值。由此,能够不受浪涌电压等噪声所导致的ZCT输出电压的变动的影响而正确地输出积分值(与漏电电流值相当)等。In addition, the calculation
此外,在此,作为平均值进行了说明,但是也可以使用有效值来代替平均值。In addition, although the average value has been described here, an effective value may be used instead of the average value.
另外,运算结果输出部92也可以在积分部91的运算结果(积分值)的绝对值大于阈值th4的情况下,输出警告信号(警报),其中,该阈值th4比漏电水平检测部80中的用于漏电检测的漏电电流检测阈值th2小(th2>th4>0)。关于此处的警告信号,可以考虑利用声音信息的警告、利用显示信息的警告等。也就是说,也可以在积分部91的运算结果大于在判定是否通过积分值比较部30输出第一信号时使用的阈值th2的情况下,输出警告信号。由此,在检测到要切断交流电路的程度的漏电之前,用户能够事先识别出漏电的状态。In addition, the calculation
另外,运算结果输出部92也可以根据积分部91的运算结果来对输出警告信号时的输出方式进行变更。在这种情况下,例如可以考虑在积分部91的运算结果的绝对值超过漏电电流检测阈值th2的绝对值的50%的情况下点亮LED,在超过漏电电流检测阈值th2的绝对值的80%的情况下输出警报音。由此,能够正确地通知距漏电切断的紧急度(水平),从而能够避免突然导致漏电切断的事态。In addition, the calculation
另外,如图17所示,漏电检测装置100F也可以具备运算结果存储部93,该运算结果存储部93存储积分部91的运算结果。运算结果存储部93例如存储规定时间量(一周的量等)的运算结果的信息。此时,也可以在经过规定时间之后覆盖信息来进行重写。此外,运算结果的信息是指ZCT输出电压的积分值(有效值、平均值)等。由此,通过存储直到漏电切断为止的固定时间的运算结果,变得易于确定切断原因。In addition, as shown in FIG. 17 , the
另外,如图18所示,漏电检测装置100F也可以具备外部端子部94,该外部端子部94用于通过外部端子输出积分部91的运算结果的信息、运算结果存储部93的运算结果的信息。外部端子部94例如是USB(Universal Serial Bus:通用串行总线)端子等。通过具备外部端子部94,能够容易地输出运算结果的信息,变得易于确定切断原因。In addition, as shown in FIG. 18 , the
另外,如图19所示,漏电检测装置100F也可以具备信息输出部95,该信息输出部95将积分部91的运算结果的信息、运算结果存储部93的运算结果的信息输出到存储介质。存储介质例如是USB存储器、SD卡等。由此,通过例如将直到漏电切断为止的固定时间的运算结果输出到存储介质,数据的移动变得容易,变得易于确定切断原因。In addition, as shown in FIG. 19 , the
另外,如图20所示,漏电检测装置100F也可以具备信息发送部96,该信息发送部96将积分部91的运算结果的信息、运算结果存储部93的运算结果的信息发送到外部服务器。由此,通过例如将直到漏电切断为止的固定时间的运算结果输出到外部服务器,利用远程的传感器等也能够容易地掌握漏电状况,变得易于确定切断原因。In addition, as shown in FIG. 20 , the
上述的所有实施方式、实施方式中的说明例和变形例够能够相互组合来使用。以上,说明了本发明的优选实施方式,但本发明并不限定于这些特定实施方式,能够不脱离权利要求书的范畴地进行多种变更和变形,这些变更和变形也属于本发明的范畴。All the above-mentioned embodiments, the illustrative examples in the embodiments, and the modified examples can be used in combination with each other. Preferred embodiments of the present invention have been described above, but the present invention is not limited to these specific embodiments, and various changes and modifications can be made without departing from the scope of the claims, and these changes and modifications also belong to the scope of the present invention.
Claims (66)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510184300.4A CN104764975B (en) | 2011-03-23 | 2012-03-22 | Earth detector |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-064687 | 2011-03-23 | ||
JP2011064687A JP6065253B2 (en) | 2011-03-23 | 2011-03-23 | Earth leakage detector |
JP2011-064686 | 2011-03-23 | ||
JP2011064686A JP6065252B2 (en) | 2011-03-23 | 2011-03-23 | Earth leakage detector |
PCT/IB2012/000560 WO2012127307A1 (en) | 2011-03-23 | 2012-03-22 | Earth leakage detection device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510184300.4A Division CN104764975B (en) | 2011-03-23 | 2012-03-22 | Earth detector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103430036A true CN103430036A (en) | 2013-12-04 |
CN103430036B CN103430036B (en) | 2016-03-30 |
Family
ID=46878683
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280014407.9A Active CN103430036B (en) | 2011-03-23 | 2012-03-22 | Earth detector |
CN201510184300.4A Active CN104764975B (en) | 2011-03-23 | 2012-03-22 | Earth detector |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510184300.4A Active CN104764975B (en) | 2011-03-23 | 2012-03-22 | Earth detector |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN103430036B (en) |
TW (1) | TWI502208B (en) |
WO (1) | WO2012127307A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103684409A (en) * | 2013-12-25 | 2014-03-26 | 上海艾为电子技术有限公司 | Signal transmission method |
CN107276025A (en) * | 2016-04-04 | 2017-10-20 | 新日本无线株式会社 | Earth detector |
CN107271827A (en) * | 2016-04-01 | 2017-10-20 | 罗姆股份有限公司 | Electric-leakage detection circuit and RCCB |
CN110850194A (en) * | 2019-10-15 | 2020-02-28 | 上海交通大学 | Working condition simulation test circuit and method for cascaded converter submodule |
CN110998347A (en) * | 2017-07-19 | 2020-04-10 | 李铉昌 | Apparatus and method for improving leakage probing accuracy |
CN111416324A (en) * | 2019-01-07 | 2020-07-14 | Ls产电株式会社 | Residual current circuit breaker of type capable of outputting leakage current and control method thereof |
CN111819652A (en) * | 2018-03-28 | 2020-10-23 | Ls电气株式会社 | Earth leakage circuit breaker |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3000315B1 (en) | 2012-12-20 | 2015-01-16 | Renault Sa | METHOD FOR CONTROLLING A MOTOR VEHICLE BATTERY CHARGER AND ASSOCIATED CHARGER. |
JP6697746B2 (en) | 2016-11-29 | 2020-05-27 | パナソニックIpマネジメント株式会社 | Leakage detector |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07296708A (en) * | 1994-04-28 | 1995-11-10 | Matsushita Electric Works Ltd | Wiring breaker |
CN1173035A (en) * | 1996-07-09 | 1998-02-11 | 富士电机株式会社 | Earth leakage breaker |
JP2003219552A (en) * | 2002-01-24 | 2003-07-31 | Mitsubishi Electric Corp | Ground detector for ground leakage breaker and phase control device |
CN101199034A (en) * | 2005-06-02 | 2008-06-11 | 甲进株式会社 | Earth leakage circuit breaker |
CN101276713A (en) * | 2007-03-27 | 2008-10-01 | 富士电机机器制御株式会社 | Leakage detection device |
CN101404405A (en) * | 2007-10-03 | 2009-04-08 | 三菱电机株式会社 | Creepage breaker |
JP2009081928A (en) * | 2007-09-26 | 2009-04-16 | Tempearl Ind Co Ltd | Apparatus for detecting leakage current |
WO2010001950A1 (en) * | 2008-07-02 | 2010-01-07 | パナソニック電工株式会社 | Wiring device with leakage detection function |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4422034A (en) * | 1980-01-22 | 1983-12-20 | Toyo Sushinki Kabushiki Kaisha | Method for measuring insulation resistance and device therefor |
JPH0670662B2 (en) * | 1989-01-31 | 1994-09-07 | 中部電力株式会社 | Power cable ground fault prediction method |
JP3267900B2 (en) * | 1996-07-09 | 2002-03-25 | 富士電機株式会社 | Earth leakage breaker |
JP2000102158A (en) * | 1998-07-24 | 2000-04-07 | Fuji Electric Co Ltd | Earth leakage breaker |
CN201408978Y (en) * | 2009-04-24 | 2010-02-17 | 北京Abb低压电器有限公司 | Electric leakage protector |
-
2012
- 2012-03-22 WO PCT/IB2012/000560 patent/WO2012127307A1/en active Application Filing
- 2012-03-22 TW TW101109870A patent/TWI502208B/en active
- 2012-03-22 CN CN201280014407.9A patent/CN103430036B/en active Active
- 2012-03-22 CN CN201510184300.4A patent/CN104764975B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07296708A (en) * | 1994-04-28 | 1995-11-10 | Matsushita Electric Works Ltd | Wiring breaker |
CN1173035A (en) * | 1996-07-09 | 1998-02-11 | 富士电机株式会社 | Earth leakage breaker |
JP2003219552A (en) * | 2002-01-24 | 2003-07-31 | Mitsubishi Electric Corp | Ground detector for ground leakage breaker and phase control device |
CN101199034A (en) * | 2005-06-02 | 2008-06-11 | 甲进株式会社 | Earth leakage circuit breaker |
CN101276713A (en) * | 2007-03-27 | 2008-10-01 | 富士电机机器制御株式会社 | Leakage detection device |
JP2009081928A (en) * | 2007-09-26 | 2009-04-16 | Tempearl Ind Co Ltd | Apparatus for detecting leakage current |
CN101404405A (en) * | 2007-10-03 | 2009-04-08 | 三菱电机株式会社 | Creepage breaker |
WO2010001950A1 (en) * | 2008-07-02 | 2010-01-07 | パナソニック電工株式会社 | Wiring device with leakage detection function |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103684409A (en) * | 2013-12-25 | 2014-03-26 | 上海艾为电子技术有限公司 | Signal transmission method |
CN103684409B (en) * | 2013-12-25 | 2016-06-22 | 上海艾为电子技术股份有限公司 | Method for transmitting signals |
CN107271827A (en) * | 2016-04-01 | 2017-10-20 | 罗姆股份有限公司 | Electric-leakage detection circuit and RCCB |
US10658832B2 (en) | 2016-04-01 | 2020-05-19 | Rohm Co., Ltd. | Electrical leakage detection circuit and electrical leakage breaker |
CN107276025A (en) * | 2016-04-04 | 2017-10-20 | 新日本无线株式会社 | Earth detector |
CN107276025B (en) * | 2016-04-04 | 2020-07-07 | 新日本无线株式会社 | Electric leakage detection device |
CN110998347A (en) * | 2017-07-19 | 2020-04-10 | 李铉昌 | Apparatus and method for improving leakage probing accuracy |
CN111819652A (en) * | 2018-03-28 | 2020-10-23 | Ls电气株式会社 | Earth leakage circuit breaker |
CN111819652B (en) * | 2018-03-28 | 2023-03-14 | Ls电气株式会社 | Earth leakage circuit breaker |
CN111416324A (en) * | 2019-01-07 | 2020-07-14 | Ls产电株式会社 | Residual current circuit breaker of type capable of outputting leakage current and control method thereof |
CN110850194A (en) * | 2019-10-15 | 2020-02-28 | 上海交通大学 | Working condition simulation test circuit and method for cascaded converter submodule |
Also Published As
Publication number | Publication date |
---|---|
WO2012127307A1 (en) | 2012-09-27 |
CN103430036B (en) | 2016-03-30 |
TW201245728A (en) | 2012-11-16 |
TWI502208B (en) | 2015-10-01 |
CN104764975A (en) | 2015-07-08 |
CN104764975B (en) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103430036A (en) | Earth leakage detection device | |
EP2541715B1 (en) | Dc power supply insulation fault detection circuit | |
CN102089667B (en) | Method and device for supervising secondary circuit of instrument transformer in power system | |
CN103004049B (en) | The circuit breaker failure protection of HVDC circuit-breakers | |
JP6126930B2 (en) | Insulation state detector | |
JP6348556B2 (en) | Circuit configuration for protection against PoDL wire failure | |
CN110297159B (en) | Method and apparatus for determining a faulty line in a power system compensation network | |
EP2752674A1 (en) | A detection method of a ground fault in an electric power distribution network | |
JP5821014B2 (en) | Leakage determination device | |
US20160025794A1 (en) | Apparatus and method for detecting leakage current | |
CN103795022A (en) | Fault current detecting circuit | |
TW201303318A (en) | Pulsed missing ground detector circuit | |
CN101673937B (en) | Surge interference identification method during differential protection and differential protection method | |
JP2014196920A (en) | Leak detection device | |
EP3495829B1 (en) | Voltage suppressor test circuit and method of testing a voltage suppressor | |
JP6065252B2 (en) | Earth leakage detector | |
JP6065253B2 (en) | Earth leakage detector | |
JP7072982B2 (en) | Discharge accident detection structure | |
CN109698997B (en) | System and method for accessory and impedance detection | |
CN110676804B (en) | Detection circuit and switch module using same | |
JP6283919B2 (en) | Earth leakage detector | |
JP2016122007A (en) | Leak detection device | |
JP4196026B2 (en) | Lightning strike detection circuit | |
JP6369775B2 (en) | Earth leakage detector | |
CN111344924B (en) | Ground fault current interrupter circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160107 Address after: Osaka Japan Applicant after: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT Co.,Ltd. Address before: Osaka Japan Applicant before: Matsushita Electric Industrial Co.,Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |