CN103420769B - Dehydrogenation of light alkanes to light olefins way - Google Patents

Dehydrogenation of light alkanes to light olefins way Download PDF

Info

Publication number
CN103420769B
CN103420769B CN 201210150493 CN201210150493A CN103420769B CN 103420769 B CN103420769 B CN 103420769B CN 201210150493 CN201210150493 CN 201210150493 CN 201210150493 A CN201210150493 A CN 201210150493A CN 103420769 B CN103420769 B CN 103420769B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
catalyst
dehydrogenation
selected
reaction
Prior art date
Application number
CN 201210150493
Other languages
Chinese (zh)
Other versions
CN103420769A (en )
Inventor
吴文海
吴省
樊志贵
马春景
张磊
缪长喜
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals
    • Y02P20/52Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals using catalysts, e.g. selective catalysts

Abstract

本发明涉及一种用于低碳烷烃脱氢制备低碳烯烃的方法,主要解决现有技术中存在催化剂在高温使用过程中容易积炭失活,稳定性差的问题。 The present invention relates to a process for preparing the dehydrogenation of light alkanes to olefins, the catalyst is easily solved mainly coke formation during use at high temperatures, a problem of poor stability of the prior art. 本发明通过采用以丙烷/异丁烷为原料,在反应温度520~620? The present invention, by using propane / isobutane feedstock at a reaction temperature of 520 to 620? oC,反应压力0~0.4MPa,烷烃质量空速0.1~8.0h-1,H2/CnH2n+2体积比为0.2~1.6条件下,原料与催化剂接触,反应生成丙烯/异丁烯的技术方案,较好地解决了该问题,可用于低碳烷烃脱氢制低碳烯烃催化剂的工业生产。 oC, the reaction pressure of 0 ~ 0.4MPa, WHSV alkane 0.1 ~ 8.0h-1, H2 / CnH2n + 2 volume ratio of 0.2 to 1.6 under conditions feedstock and catalyst, the reaction of propylene / isobutylene technical solution, preferably to solve the problem, it can be used for industrial production of low-carbon alkane dehydrogenation catalyst to light olefins.

Description

低碳烷烃脱氢制低碳烯烃的方法 Dehydrogenation of light alkanes to light olefins way

技术领域 FIELD

[0001] 本发明涉及一种低碳烷烃脱氢制低碳烯烃的方法。 [0001] The present invention relates to the dehydrogenation of light alkanes to lower olefins.

背景技术 Background technique

[0002] 丙烯/异丁烯主要来自蒸汽裂解和炼化厂流化催化裂化过程的联产或副产,可广泛用于合成聚合物、汽油添加剂、橡胶以及各种化工中间体。 [0002] The propylene / isobutylene mainly from steam cracking and fluid catalytic cracking refineries cogeneration or byproduct, can be widely used synthetic polymers, additives, gasoline, rubber, and various chemical intermediates. 随低碳烯烃需求量日益增长, 传统的生产过程很难满足市场需求的迅速增长。 With the growing demand for light olefins, the traditional production process is difficult to meet the rapidly growing market demand. 由炼油厂得到的大量低碳烷烃是液化石油气的主要成分,主要用作民用燃料。 By the refineries to get a lot of light alkanes is the main component of LPG is mainly used as a domestic fuel. 开发由低碳烷烃制取低碳烯烃过程对于充分利用低碳烷烃开辟新的烯烃来源具有重要意义。 Development of light olefins by the process light alkanes made full use of light alkanes to olefins to open up new sources of great significance. 目前,丙烷催化脱氢技术以UOP公司的Oleflex工艺和Lummus公司的Catofin工艺为代表。 Currently, the catalytic dehydrogenation of propane technology to UOP's Oleflex process and Lummus's Catofin process represented. 国内尚没有低碳烷烃脱氢制低碳稀经的生产装置。 There is not yet a low-carbon low-carbon alkane dehydrogenation diluted by the production plant.

[0003] 低碳烷烃脱氢催化反应在高温、低压条件下进行,催化剂积炭失活严重,开发高活性、高选择性和高稳定性的催化剂成为该技术的关键。 [0003] The lower alkane dehydrogenation catalyst at elevated temperature, low pressure conditions, the catalyst serious coke formation, the development of high activity, high selectivity and high catalyst stability become key to this technique. 中国专利(CN200710025372. X) 公开的催化剂,在氧化铝改性的中孔分子筛为载体上浸渍铂锡组分的制备方法,丙烷转化率仅为17%,丙烯选择性93%;中国专利(CN200710023431.X)采用采用水热合成的方法将锡引入ZSM-5分子筛载体,并用浸渍法负载铂组分,该催化剂运行100小时后,丙烷转化率高于30%,丙烯选择性99%,但该专利没有提供烧炭再生过程的稳定性数据。 Chinese patent (. CN200710025372 X) disclosed a catalyst, the alumina-modified mesoporous molecular sieve is impregnated on a carrier prepared tin component is platinum, the conversion rate was 17% propane, 93% propene selectivity; Chinese patent (CN200710023431 .X) method using hydrothermal synthesis tin introduced into ZSM-5 molecular sieve support, a dipping method and the platinum component of the catalyst after 100 hours of operation, higher than 30% conversion of propane, propylene selectivity 99%, but patent does not provide the stability data charcoal regeneration process. 中国专利(CN200710020064.8)及(CN200710133324.2)公开了一种铂锡催化剂用于丙烷脱氢反应, 采用了锡组分与铂组分共浸渍的制备方法,载体为Y型、ZSM-5等含Na分子筛,催化剂连续运行720小时后,丙烷转化率30. 5%,丙烯选择性96. 4%,但两次烧炭再生后活性下降一半。 China Patent (CN200710020064.8) and (CN200710133324.2) discloses a platinum-tin catalyst for the dehydrogenation of propane, prepared using a platinum component and the tin component co-impregnated carrier is Y-type, ZSM-5 Na-containing molecular sieve catalyst after 720 hours of continuous operation, 30.5% propane conversion, propylene selectivity of 96.4%, but after the two charcoal half regenerating activity decreased.

[0004] 上述催化剂均采用了氧化铝来负载催化剂的活性组分锡,在高温使用过程中催化剂容易积炭失活,催化剂的稳定性差。 [0004] The catalysts are used the active ingredient to the tin-alumina supported catalyst, the catalyst easily during use at high temperatures coke formation, poor stability of the catalyst. 采用掺杂元素周期表1I B化合物以及稀土元素的方法得到的Pt系脱氢催化剂并用于低碳烷烃制备低碳烯烃的文献未见报道。 Document-based dehydrogenation catalyst using Pt doped rare earth elements of the Periodic Table 1I B and compounds obtained by the method for the preparation of lower alkanes and lower alkenes been reported.

发明内容 SUMMARY

[0005] 本发明所要解决的技术问题是现有制备技术中存在催化剂在高温使用过程中容易积炭失活,稳定性差的问题,提供一种新的用于低碳烷烃脱氢制低碳烯烃的方法,该方法具有在高温条件下使用时,催化剂积炭失活速率慢,稳定性高的优点。 [0005] The present invention solves the technical problem in the ease of catalyst coke formation during use at high temperatures, a problem of poor stability of the prior art was prepared to provide a new system for the dehydrogenation of light alkanes to olefins the method, which has a use under high temperature conditions, the catalyst coke formation rate is slow, high stability advantages.

[0006] 为了解决上述技术问题,本发明采用的技术方案如下:一种用于低碳烷烃脱氢制备低碳烯烃的方法,以丙烷或/和异丁烷为原料,在反应温度520~650 '反应压力0~ 0. 4MPa,烷烃质量空速0. 1~8. Oh \ H2/CnH2n+2体积比为0. 2~1. 6条件下,原料与催化剂接触,反应生成丙稀/异丁烯;其中所用催化剂以重量百分比计包括以下组分: [0006] To solve the above problems, the present invention employs the following technical solution: A method for producing lower olefins of dehydrogenation of lower alkanes, propane and / or isobutane as raw materials, at a reaction temperature of 520 to 650 'the reaction pressure of 0 ~ 0. 4MPa, alkane WHSV 0. 1 ~ 8. Oh \ H2 / CnH2n + 2 at a volume ratio of 0.2 ~ 1.6 conditions, feed and catalyst, the reaction of propylene / isobutylene ; wherein the catalyst comprises by weight percent the following components:

[0007] a)选自铂系金属中钌、铑、钯、锇、铱或铂中的至少一种,以单质计为催化剂重量的0. 01 ~1. 2% ; [0007] a) a platinum group metal selected from ruthenium, rhodium, palladium, osmium, iridium or platinum, at least one, in terms of elemental 0.01 ~ 12 wt% of the catalyst.;

[0008] b)选自元素周期表1I B化合物中的至少一种,以单质计为催化剂重量的0. 01~ 4. 0% ; [0008] b) a compound selected from Group 1I B is at least one, in terms of elemental weight of the catalyst 0.01 - 4.0%;

[0009] c)选自稀土元素的催化助剂(M),La、Ce、Pr、Nd、Sm、Eu、Gd、Tb或Tm中的至少一种,以单质计为催化剂重量的〇. 01~4. 0% ; [0009] c) a co-catalyst selected from rare earth (M), La, Ce, Pr, Nd, Sm, Eu, Gd, Tb or Tm of at least one, in terms of elemental weight of the catalyst billion. 01 . 0% to 4;

[0010] d)选自元素周期表1 A或II A化合物中的至少一种,以单质计为催化剂重量的0. 01 ~1. 0% ; [0010] d) selected from the groups with 1 A or II A compound of at least one, in terms of elemental weight of the catalyst 0.01 ~ 10%;

[0011] e)90 ~99. 5% 的载体,载体选自α -Α1203、γ -Al2O3、δ -12〇3、Θ -Al2O3或尖晶石的至少一种。 [0011] e) 90 ~ 99. 5% of a carrier which is selected from α -Α1203, γ -Al2O3, δ -12〇3, Θ -Al2O3 or of at least one spinel.

[0012] 上述技术方案中,反应温度优选范围为540~600°C ;反应压力优选范围为0· 05~ 0. 35MPa ;原料烷烃空速优选范围为0. 5~5. 6h SHycnH2^体积比的优选范围为0. 4~ 1. 0 ;反应原料是丙烷、异丁烷或是二者的混合物;铂系金属选自Pt或Pd,优选范围以单质计为催化剂重量的〇. 1~1. 〇%。 [0012] In the above technical solution, the reaction temperature is preferably in the range of 540 ~ 600 ° C; reaction pressure is preferably in the range of 0 · 05 ~ 0. 35MPa; alkane feedstock space velocity is preferably in the range of 0. 5 ~ 5 6h SHycnH2 ^ volume. preferably in the range of 0.4 ~ 1.0; starting material is the reaction of propane, isobutane or a mixture of the two; platinum group metal selected from Pt or Pd, preferably in the range in terms of elemental weight of the catalyst 1 to 1 billion. . 〇%. 元素周期表1 A或II A元素选自Li、Na、K、Ca、Mg或Ba中的至少一种,优选范围以单质计为催化剂重量的0. 05~0. 6%。 With 1 A or II A of the periodic table element selected from Li, Na, K, Ca, Mg or Ba, at least one, preferably in terms of elemental range 0.05 - 0.6% weight of the catalyst. 复合金属助剂包括元素周期表1I B化合物中的至少一种,优选范围以以单质计为催化剂重量的I. 0~2. 0% ;选自稀土元素的催化助剂(1),1^、〇6、? Composite metal of the Periodic Table 1I B aids include at least one compound, preferably in elemental range I. weight of the catalyst in terms of 0 to 20%;.-Catalyst selected from rare earth elements (1), 1 ^ , 〇6 ,? 1'、制、5111311、6(1、1'13或1'1]1中的至少一种,优选范围以单质计为催化剂重量的0. 1~2. 0%。 1 ', system, 5111311,6 in (or 1'1 1,1'13] 1 at least one, preferably in terms of elemental range 0.1 - 2.0% weight of the catalyst.

[0013] 本发明所用催化剂的制备方法包括以下步骤: [0013] The present invention is a method for preparing a catalyst comprising the steps of:

[0014] a)配制混合溶液I,包括所需量的II B化合物211工(1、取、稀土元素助剂1以及1八或II A元素的可溶性盐水溶液,其中稀土元素助剂M选自La、Ce、Pr、Eu或Tm中的至少一种,IA/ II A元素选自Li、Na、K、Ca、Mg或Ba中的至少一种; [0014] a) formulating a mixed solution of I, II B compound comprising a desired amount of work 211 (1, taking, rare earth elements and additives 1 1 VIII and an aqueous solution of a soluble salt of II A elements, wherein M is selected from the rare earth element adjuvant la, Ce, Pr, Eu, or at least one of Tm, IA / II a elements selected from Li, Na, K, at least one of Ca, Mg or Ba,;

[0015] b)采用挤出成型法得到复合氧化铝载体:在载体前体拟薄水铝石捏合过程中,加入溶液I,捏合均匀并挤出成型后,在60~120 &烘干,650~1000 °^焙烧3~12小时,得到复合催化剂载体; [0015] b) using an alumina support to obtain a composite extrusion molding method: the carrier The precursor boehmite kneading process, a solution of I, uniformly kneaded and extruded, dried at 60 ~ 120 & 650 ~ 1000 ° ^ 3 to 12 hours, firing, to obtain a composite catalyst support;

[0016] c)配制所需量的氯铂酸盐水溶液II ; [0016] c) formulating aqueous chloroplatinic acid II desired amount;

[0017] d)用浸渍法将溶液II中所含可溶性盐负载在复合催化剂载体上,浸渍12~48小时后,干燥后得到催化剂前体; [0017] d) dipping method II contained in the solution a soluble salt of the composite supported on the catalyst support, after immersion for 12 to 48 hours, and dried to obtain a catalyst precursor;

[0018] 催化剂前体在450~650°C焙烧0. 5~12小时,并用水蒸汽脱氯0. 5~10小时后用氢气还原得到低碳烷烃脱氢制低碳烯烃催化剂。 After the [0018] catalyst precursor calcined 450 ~ 650 ° C 0.5 to 12 hours, and water vapor dechlorinated 0.5 to 10 hours, reduced with hydrogen to give the dehydrogenation of light alkanes to olefins catalyst.

[0019] 金属助剂的引入对于铂系脱氢催化剂起着关键性的作用,大量的实验后发现,II B 族元素组分和稀土元素组分组成的复合助剂对于催化剂的活性可以起到很好的促进作用, 这有可能是在捏合的过程中可以使金属助剂组分与载体充分接触,并且挤压过程中产生的压力也可以使助剂成分与载体发生相互作用,使得助剂成分在载体上分布更加均匀,因而有利于催化剂的活性和稳定性。 Introduction of [0019] metal promoter plays a key role in platinum-based dehydrogenation catalysts, a large number of experiments found that a II B element compound additive component and the rare earth element constituents of the activity of the catalyst may play a good role in promoting, which may be in the process of kneading the metal can be sufficient contact with the support component aids, and the pressing pressure generated during adjuvants can also interact with the carrier component, such additives more even distribution of the component on the carrier, thus facilitating the activity and stability of the catalyst.

[0020] 低碳烷烃脱氢反应在连续流动石英管反应器微型催化反应装置上进行。 [0020] The lower alkane dehydrogenation reaction is carried out in a continuous flow reactor the catalytic micro quartz tube reactor. 产物分析采用HP-5890气相色谱仪(HP-AL/S毛细管柱,50mX0. 53mmX15ym; FID检测器)在线分析脱氢产物中的烷烃、烯烃含量并计算反应的转化率、选择性以及收率。 Product was analyzed by HP-5890 gas chromatograph (HP-AL / S capillary column, 50mX0 53mmX15ym;. FID detector) line analysis of paraffin conversion, olefin content in the dehydrogenation reaction product and calculate the selectivity and yield. 使用本方法得到的催化剂在温度520~650 °ε,压力0~0· 4MPa,烷烃质量空速0· 1~8. Oh \ H2/CnH2n+2为0. 1~1.6条件下使用,异丁烷转化率高于45%,异丁烯选择性高于88%,100小时反应后, 转化率高于34%,选择性高于90%,经过20次以上的再生后催化剂的性能稳定,转化率高于43%,选择性高于90%,取得了较好的技术效果。 Catalyst obtained in the present process. At a temperature of 520 ~ 650 ° ε, pressure 0 ~ 0 · 4MPa, alkane WHSV 0 · 1 ~ 8 Oh \ H2 / CnH2n + 2 conditions is 0.1 to 1.6, isobutoxy alkoxy conversion is higher than 45%, greater than 88% selectivity to isobutene, after 100 hours the reaction, the conversion is higher than 34%, the selectivity higher than 90%, more than 20 times after regeneration stable catalyst performance, the conversion rate at 43% and the selectivity higher than 90%, better technical effect achieved.

具体实施方式 Detailed ways

[0021] 下面通过实施例对本发明作进一步阐述。 [0021] The following examples further illustrated the invention.

[0022] 【实施例1】 [0022] [Example 1]

[0023] 在300. 2g拟薄水铝石原粉主料中加入9. Og田菁粉混合均匀,然后加入130 ml含催化剂活性组分的混合溶液,其中包括NaNO3, 2. 2g ;La (NO3) 3 · 6H20, 2. 5g ;Zn (NO3) 2 · 6H20, I. 91g,0. 8g 50%硝酸锰水溶液,IOg 4%环糊精水溶液,捏合充分后挤条,室温下放置12小时,再以90°C保持3小时,120°C保持10小时的程序烘干,切粒并于750°C下处理制得含催化助剂的复合载体。 [0023] 300. 2g in quasi boehmite raw powder Ingredients were added 9. Og Sesbania mixed powder, a mixed solution of 130 ml containing catalytically active component was then added, including NaNO3, 2. 2g; La (NO3 ) 3 · 6H20, 2. 5g;. Zn (NO3) 2 · 6H20, I. 91g, 0 8g 50% aqueous solution of manganese nitrate, IOg 4% aqueous cyclodextrin solution, extruding the kneaded sufficiently, left for 12 hours at room temperature, maintained at 90 ° C 3 hours, 120 ° C for 10 hours, drying procedures, and pelletized to produce composite containing the catalytic carrier process aid at 750 ° C.

[0024] 得到的复合氧化铝载体,采用浸渍技术负载上铂组分,即在室温下用所得的氧化铝载体浸渍所需量的氯铂酸(H2PtCl6 6H20,2. 23g)的水溶液24小时(金属铂载量0. 3%), 然后60 Λ烘干,在空气流中530 音烧3小时,接着用水蒸气在530 &下处理4小时,最后通干燥空气530 处理1小时得到催化剂样品,记为Α。 [0024] The obtained composite alumina support by impregnation techniques platinum component supported on, i.e., an aqueous solution of chloroplatinic acid in an amount of alumina support impregnated with the desired room temperature is obtained (H2PtCl6 6H20,2. 23g) for 24 hours ( platinum loading of 0.3%), then 60 Λ drying, 530 tone burning air stream for 3 hours, followed by steam at 530 & 4 hours, and finally 530 through air dried for 1 hour to obtain catalyst sample, denoted is Α. 样品在脱氢反应前用氢气,500 °^还原活化90分钟,用于丙烷/异丁烷脱氢反应。 Samples with hydrogen prior to dehydrogenation reaction, 500 ° ^ reductive activation 90 min of propane / isobutane dehydrogenation. 反应结果见表2。 The reaction results are shown in Table 2.

[0025] 【实施例2】 [0025] [Example 2]

[0026] 按实施例1的方法制备催化剂,所不同的是;H2PtCl6 6H20,5. 3g ;Zn (NO3) 2 • 6Η20,13. 6g ;Ce (NO3) 3 · 6Η20, 7· Og ;Mg (NO3) 2 6Η20,10. 7g。 [0026] A catalyst was prepared by the method of Example 1, except that;. H2PtCl6 6H20,5 3g;. Zn (NO3) 2 • 6Η20,13 6g; Ce (NO3) 3 · 6Η20, 7 · Og; Mg ( NO3) 2 6Η20,10. 7g. 所得催化剂重量组成见表1,记为B,反应结果见表2。 The resulting weight of the catalyst composition shown in Table 1, denoted as B, the reaction results shown in Table 2.

[0027] 【实施例3】 [0027] [Example 3]

[0028] 按实施例1的方法制备催化剂,所不同的是;(NH4)2PdCl 4,3. 4g ;Zn (NO3)2 ·6Η20, 7. 3g ;La (NO3) 3 · 6Η20,14. Og ;ΚΝ03,4. 5g。 [0028] A catalyst was prepared by the method of Example 1, except that;. (NH4) 2PdCl 4,3 4g; Zn (NO3) 2 · 6Η20, 7. 3g;. La (NO3) 3 · 6Η20,14 Og ;. ΚΝ03,4 5g. 所得催化剂重量组成见表1,记为C,反应结果见表2。 The resulting weight of the catalyst composition shown in Table 1, denoted by C, the reaction results shown in Table 2.

[0029] 【实施例4】 [0029] [Example 4]

[0030] 按实施例1的方法制备催化剂,所不同的是;H2PtCl6 6H20,0· 7g ;Cd (NO3) 2 • 4Η20,4· Ig ;Nd(N03)3 · 6Η20,3· Og ;Ca(N03)2 4Η20,0· lg。 [0030] A catalyst was prepared by the method of Example 1, except that; H2PtCl6 6H20,0 · 7g; Cd (NO3) 2 • 4Η20,4 · Ig; Nd (N03) 3 · 6Η20,3 · Og; Ca ( N03) 2 4Η20,0 · lg. 所得催化剂重量组成见表1,记为D,反应结果见表2。 The resulting weight of the catalyst composition shown in Table 1, denoted as D, the reaction results shown in Table 2.

[0031] 【实施例5】 [0031] [Example 5]

[0032] 按实施例1的方法制备催化剂,所不同的是;Rh (NO3) 3 2H20,3. 2g ;Zn (NO3) 2 • 6Η20,5· 2g ;Ce(N03)3 · 6Η20,0· 6g ;NaN03,4. 6g。 [0032] A catalyst was prepared by the method of Example 1, except that;. Rh (NO3) 3 2H20,3 2g; Zn (NO3) 2 • 6Η20,5 · 2g; Ce (N03) 3 · 6Η20,0 · 6g;. NaN03,4 6g. 所得催化剂重量组成见表1,记为E,反应结果见表2。 The resulting weight of the catalyst composition shown in Table 1, referred to as E, the reaction results shown in Table 2.

[0033] 【对比例1】 [0033] [Comparative Example 1]

[0034] 按实施例1的方法制备催化剂,所不同的是用拟薄水铝石原粉321. 4g; SnCl4 ·5Η20,5· 9g;NaN03,2.5g !H2PtCl6 6H20,2. 9g;不加Zn (NO3)2 ·6Η20及La(NO3)3 ·6Η20。 [0034] A catalyst was prepared by the method of Example 1, except that a quasi boehmite raw powder 321. 4g; SnCl4 · 5Η20,5 · 9g; NaN03,2.5g H2PtCl6 6H20,2 9g;!. Without Zn (NO3) 2 · 6Η20 and La (NO3) 3 · 6Η20. 所得催化剂重量组成见表1,记为F,反应结果见表2,反应条件同实施例1。 The resulting weight of the catalyst composition shown in Table 1, referred to is F, the reaction results shown in Table 2, the reaction conditions were the same as in Example 1.

[0035] 【对比例2】 [0035] [Comparative Example 2]

[0036] 按对比例1的方法制备催化剂,所不同的是用拟薄水铝石原粉312. 3g; SnCl4 ·5Η20,4· 5g ;NaN03,2. 8g ;H2PtCl6 6H20,2. 3g ;其中SnCl4 ·5Η20 在制得载体后采用浸渍方式引入催化剂。 [0036] A catalyst was prepared according to the method of Comparative Example 1, except that a quasi boehmite raw powder 312. 3g; SnCl4 · 5Η20,4 · 5g; NaN03,2 8g;.. H2PtCl6 6H20,2 3g; wherein SnCl4 · 5Η20 after dipping a carrier is prepared using the catalyst is introduced. 所得催化剂重量组成见表1,记为G,反应结果见表2,反应条件同实施例1 〇 The resulting weight of the catalyst composition shown in Table 1, referred to as G, the reaction results in Table 2, Example 1 Under conditions of square

[0037] 表1 [0037] TABLE 1

[0038] [0038]

Figure CN103420769BD00061

[0039] 实施例1~5,对比例1~2在常压,温度550 °G;C nH2n+2/H2=5/2 (vol/vol);烧烃空速(WHSV)为4. 6h 1条件下进行活性评价,测试结果列于表2。 [0039] Examples 1 to 5, Comparative Examples 1 to 2 at atmospheric pressure, a temperature of 550 ° G; C nH2n + 2 / H2 = 5/2 (vol / vol); burning hydrocarbon space velocity (WHSV) of 4. 6h activity was evaluated under the conditions of 1, the test results are shown in table 2.

[0040] 表2 * [0040] Table 2 *

[0041] [0041]

Figure CN103420769BD00062

[0042] *括号内的数据为采用相同催化剂,原料改为丙烷的脱氢数据。 [0042] * Data in parentheses is the same catalyst, feed data to the dehydrogenation of propane.

[0043] 【对比例3】 [0043] [Comparative Example 3]

[0044] 将不含复合金属助剂的对比例1所得催化剂F (采用传统Sn助剂)以及对比例2 催化剂G进行稳定性的实验,并与实施例1进行对比,实验结果见表2中的A、F、G。 [0044] The composite metal-free additives Comparative Example 1 The resulting catalyst F (conventional additives Sn) 2 and Comparative Catalyst G experiment stability, and Comparative Example 1, the results in Table 2 the a, F, G. 反应条件同实施例1。 The reaction conditions were the same as in Example 1. 不含金属助剂的催化剂F转化率在100小时后从41. 6%降到21. 8%,下降速度远高于催化剂A (仅从45. 8%下降到34. 6%)。 Free metal promoter catalyst F after 100 hours the conversion from 41.6% down to 21.8%, much higher than the rate of decline of the catalyst A (only 45.8% to 34.6% decrease). 对比例2所得催化剂G,也有类似的结果。 Comparative Example 2 The resulting catalyst G, have similar results.

[0045] 【对比例4】 [0045] [Comparative Example 4]

[0046] 将实施例1所得催化剂进行烧炭再生性能考评,反应条件同实施例1,催化剂6小时后的反应结果见表3,原料为异丁烷。 [0046] Example embodiments will be obtained a catalyst regeneration performance evaluation charcoal, the reaction conditions were the same as in Example 1, the reaction of the catalyst after 6 hours results in Table 3, the raw material is isobutane.

[0047] 表3 [0047] TABLE 3

Figure CN103420769BD00071

[0049] 【实施例6~12】 [0049] [Example 6-12]

[0050] 将实施例2在不同反应工艺条件下进行性能考评,结果见表4。 [0050] Example 2 The performance evaluation under different reaction conditions, the results shown in Table 4.

[0051] 表4 [0052? [0051] Table 4 [0052?

Figure CN103420769BD00072

Claims (2)

  1. 1. 一种用于低碳烷烃脱氢制备低碳烯烃的方法,以丙烷或/和异丁烷为原料,在反应温度540~600°C,反应压力0• 05~0• 35MPa,烷烃质量空速0• 5~5. 6h \ H2/CnH2n+2体积比为0. 2~1. 6条件下,原料与催化剂接触,反应生成丙烯/异丁烯;其中所用催化剂以重量百分比计由以下组分组成: a) 选自铂系金属中钌、铑、钯、锇、铱或铂中的至少一种,以单质计为催化剂重量的0• 01 ~1. 2% ; b) 选自元素周期表1I B化合物中的至少一种,以单质计为催化剂重量的0.01~ 4.0%; c) 选自稀土元素的催化助剂(1),1^、〇6、? 1. A method for producing lower olefins of dehydrogenation of lower alkanes, propane and / or isobutane as raw materials, reaction temperature 540 ~ 600 ° C, a reaction pressure of 0 • 05 ~ 0 • 35MPa, alkane mass airspeed 0 • 5 ~ 5 6h \ H2 / CnH2n + 2 at a volume ratio of 0.2 ~ 16 conditions, feedstock is contacted with the catalyst, the reaction of propylene / isobutylene;. wherein the catalyst in weight percent, comprises the following components of: a) a platinum group metal selected from ruthenium, rhodium, palladium, osmium, iridium or platinum, at least one, in terms of elemental weight of the catalyst 0 • 01 ~ 1 2%; b) is selected from the periodic table. 1I B is at least one compound, elemental from 0.01 to 4.0% by weight of the catalyst; c) a co-catalyst selected from rare earth elements (1), 1 ^, 〇6 ,? 1'、制、5111、£11、6(1、1'13或1'1]1中的一种,以单质计为催化剂重量的〇. 01~4. 0% ; d) 选自元素周期表1I A化合物中的至少一种,以单质计为催化剂重量的0.01~ 1.0% ; 6)9〇~99.5%的载体,载体选自<1412〇3、丫41 2〇3、5-12〇3、0 412〇3或尖晶石的至少一种; 所述催化剂的制备方法包括以下步骤: a) 配制混合溶液I,包括所需量的II B化合物Zn、Cd、Hg、稀土元素助剂M以及II A元素的可溶性盐水溶液,其中稀土元素助剂M选自La、Ce、Pr、Eu或Tm中的一种,II A元素选自Ca、Mg或Ba中的至少一种; b) 采用挤出成型法得到复合氧化铝载体:在载体前体拟薄水铝石捏合过程中,加入溶液I,捏合均匀并挤出成型后,在60~120°C烘干,650~1000°C焙烧3~12小时,得到复合催化剂载体; c) 配制所需量的氯铂酸盐水溶液II ; d) 用浸渍法将溶液II中所含可溶性盐负载在复合催化剂载体上,浸渍12 1 ', Ltd., 5111, £ 11,6 (one kind or in 1,1'13 1'1] 1, in the single square meter weight of the catalyst is 01 ~ 4 0%;.. D) Periodic selected tABLE 1I a compound of at least one, in terms of elemental catalyst of 0.01% to 1.0% by weight; 6) 9〇 to 99.5% of a carrier, the carrier is selected from <1412〇3, 41 Ah 2〇3,5-12〇 3,0 412〇3 or at least one spinel; the catalyst preparation method comprises the following steps: a) formulating a mixed solution of I, II B compound comprising a desired amount of Zn, Cd, Hg, a rare earth element aid M and an aqueous solution of soluble salts of elements II a, wherein M is selected from one rare earth element aid La, Ce, Pr, Eu or Tm of at least one element II a is selected from Ca, Mg and Ba; b) a extrusion molding to obtain a composite alumina carrier: the support precursor intended boehmite kneading process, a solution of I, uniformly kneaded and molded after extrusion, dried at 60 ~ 120 ° C, 650 ~ 1000 ° C calcined for 3 to 12 hours, to obtain a composite catalyst support; c) formulating the desired amount of an aqueous solution of chloroplatinic acid II; D) by dipping in the solution a soluble salt of II is supported on the composite catalyst support impregnated contained 12 ~48小时后, 干燥后得到催化剂前体; 催化剂前体在450~650°C焙烧0. 5~12小时,并用水蒸汽脱氯0. 5~10小时后用氢气还原得到低碳烷烃脱氢制低碳烯烃催化剂。 After ~ 48 hours, and dried to obtain a catalyst precursor; catalyst precursor at 450 ~ 650 ° C calcined 0.5 to 12 hours, washed with water and steam after dechlorination 0.5 to 10 hours to give reduced with hydrogen lower alkane dehydrogenation to olefins catalyst.
  2. 2. 根据权利要求1所述用于低碳烷烃脱氢制备低碳烯烃的方法,其特征在于反应原料是丙烷或异丁烷中的至少一种。 2. The method for producing lower olefins of the dehydrogenation of alkanes to claim 1, characterized in that at least one starting material is the reaction of propane or isobutane.
CN 201210150493 2012-05-16 2012-05-16 Dehydrogenation of light alkanes to light olefins way CN103420769B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210150493 CN103420769B (en) 2012-05-16 2012-05-16 Dehydrogenation of light alkanes to light olefins way

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210150493 CN103420769B (en) 2012-05-16 2012-05-16 Dehydrogenation of light alkanes to light olefins way

Publications (2)

Publication Number Publication Date
CN103420769A true CN103420769A (en) 2013-12-04
CN103420769B true CN103420769B (en) 2015-11-18

Family

ID=49646204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210150493 CN103420769B (en) 2012-05-16 2012-05-16 Dehydrogenation of light alkanes to light olefins way

Country Status (1)

Country Link
CN (1) CN103420769B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106311311A (en) * 2015-06-19 2017-01-11 中国石油化工股份有限公司 Catalyst for preparing propylene through propane dehydrogenation, preparation method of catalyst, and method for propylene through propane dehydrogenation
CN106607025A (en) * 2015-10-22 2017-05-03 中国石油化工股份有限公司 Isobutane dehydrogenation catalyst and preparation method thereof
CN105688891B (en) * 2016-03-02 2018-09-28 天津科技大学 Highly active catalyst species at the beginning and a method for preparation of propane dehydrogenation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530171A (en) * 1993-08-27 1996-06-25 Mobil Oil Corporation Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen

Also Published As

Publication number Publication date Type
CN103420769A (en) 2013-12-04 application

Similar Documents

Publication Publication Date Title
Sun et al. Direct conversion of bio-ethanol to isobutene on nanosized Zn x Zr y O z mixed oxides with balanced acid–base sites
US20040030214A1 (en) Method for the dehydrogenation of hydrocarbons
CN101607858A (en) Method for preparing aromatic hydrocarbons and propylene simultaneously employing methanol/dimethyl ether
CN102452878A (en) Method for preparing low-carbon olefin by synthetic gas one-step technology
Jiang et al. Propane Dehydrogenation over Pt/TiO2–Al2O3 Catalysts
Mann et al. Adsorption and reaction of acetaldehyde on shape-controlled CeO2 nanocrystals: elucidation of structure–function relationships
Hassanpour et al. Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether
US20090326288A1 (en) Method for Selective Hydrogenation of Acetylene to Ethylene
US20080312483A1 (en) Process for Producing Aromatic Hydrocarbon and Hydrogen
CN101530813A (en) Method for preparing molecular sieve catalyst used in carbon 4 liquid gas aromatization reaction
Iwamoto One step formation of propene from ethene or ethanol through metathesis on nickel ion-loaded silica
CN103055857A (en) Catalyst for low-carbon alkane dehydrogenation and preparation method thereof
CN101623633A (en) Catalyst for preparing olefin by dehydrogenating low-carbon alkane, and preparation method and application thereof
Chen et al. Direct conversion of syngas to ethanol over Rh/Mn-supported on modified SBA-15 molecular sieves: Effect of supports
Makarfi et al. Conversion of bioethanol over zeolites
US20040010174A1 (en) Oxidative dehydrogenation of hydrocarbons by promoted metal oxides
CN101244971A (en) Synthesis method for producing ethylene with high-efficiency dehydration of biological ethyl alcohol
CN102746081A (en) Method for preparing ethylene and propylene through dehydrogenation and catalytic cracking of light hydrocarbon raw material
CN101279279A (en) Large pore volume nickel catalyst for selective hydrogenation
CN101913975A (en) Selective hydrogenation method for C2 distillate
CN101081799A (en) Method for preparing small molecule alkene by oxygen compounds
CN1600836A (en) Method for preparing gasoline with low content of olefin by modifying direct distillation gasoline
Catizzone et al. Dimethyl ether synthesis via methanol dehydration: Effect of zeolite structure
CN102133540A (en) Catalyst and method for preparing high-octane fuel through catalytic conversion of alcohol ether
CN102371177A (en) Catalyst for preparing aromatic hydrocarbons by methanol conversion and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model