CN103414569A - 一种建立抗攻击的公钥密码的方法 - Google Patents

一种建立抗攻击的公钥密码的方法 Download PDF

Info

Publication number
CN103414569A
CN103414569A CN2013103822997A CN201310382299A CN103414569A CN 103414569 A CN103414569 A CN 103414569A CN 2013103822997 A CN2013103822997 A CN 2013103822997A CN 201310382299 A CN201310382299 A CN 201310382299A CN 103414569 A CN103414569 A CN 103414569A
Authority
CN
China
Prior art keywords
agreement
party
sub
sub trannum
subgroup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103822997A
Other languages
English (en)
Other versions
CN103414569B (zh
Inventor
王晓锋
王威鉴
林汉玲
王晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Peng Kam science and technology development enterprises
Original Assignee
王威鉴
王晓锋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王威鉴, 王晓锋 filed Critical 王威鉴
Priority to CN201310382299.7A priority Critical patent/CN103414569B/zh
Priority to PCT/CN2013/001119 priority patent/WO2015024149A1/zh
Publication of CN103414569A publication Critical patent/CN103414569A/zh
Priority to US14/450,305 priority patent/US9537660B2/en
Application granted granted Critical
Publication of CN103414569B publication Critical patent/CN103414569B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/002Countermeasures against attacks on cryptographic mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • H04L9/0841Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols
    • H04L9/0844Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols with user authentication or key authentication, e.g. ElGamal, MTI, MQV-Menezes-Qu-Vanstone protocol or Diffie-Hellman protocols using implicitly-certified keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/3006Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters
    • H04L9/3013Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters involving the discrete logarithm problem, e.g. ElGamal or Diffie-Hellman systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Detergent Compositions (AREA)
  • Complex Calculations (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明涉及信息安全领域,公开了一种建立抗攻击的公钥密码的方法,包括生成共享密钥的方法,所述生成共享密钥的方法包括如下步骤:(11)建立一个无限非交换群G;(12)协议双方选取G的两个元素作为私钥;(13)协议第二方计算y,并将y发送给协议第一方;(14)协议第一方计算x和z,并将(x,z)发送给协议第二方;(15)协议第二方计算w和v,并将(w,v)发送给协议第一方;(16)协议第一方计算u,并将u发给协议第二方;(17)协议第一方计算KA,而且协议第二方计算KB;从而达成共享密钥K=KA=KB。本发明所建设的公钥密码算法的安全保障是依赖于问题的不可解性,具有抗量子计算攻击的优点。

Description

一种建立抗攻击的公钥密码的方法
技术领域
本发明涉及信息安全领域,特别涉及一种建立抗量子计算攻击的公钥密码的密码技术。
背景技术
对信息发送与接收人的真实身份的验证、对所发出/接收信息在事后的不可抵赖以及保障数据的完整性是现代密码学主题的二个重要问题。
公开密钥密码体制对这两方面的问题都给出了出色的解答,并正在继续产生许多新的思想和方案。在公钥体制中,加密密钥不同于解密密钥。人们将加密密钥公之于众,谁都可以使用;而解密密钥只有解密人自己知道。近代公钥密码系统的安全性几乎都是基于目前被认为计算困难的两类数学问题;第一类为大素数分解问题,例如RSA算法;第二类为离散对数问题,例如Diffie-Hellman的密钥交换算法、E1Gamal算法、和椭圆曲线公钥密码算法(简记为ECC)等。
近年来,由于非交换的辫群自身的有限呈示特性、清晰表达的代数关系式、漂亮的几何结构、因属于自动机群类而其字问题在二次多项式时间内可解从而相应的应用于编码的计算和贮存都可快速实现等优点,辫群成为了人们试图建立各种公开密钥密码协议的热门平台,并涌现了诸多以辩群为平台,并以辩群上的判定难题作为安全保障的公钥密码系统。例如,Ko等人基于辫群中的元素共轭问题建立的密钥交换协议。
在经典公钥密码算法中,作为安全保障的实际计算困难问题,随着计算机性能的提高其难解性将大大降低。特别地,Shor于1997年提出的著名的Shor量子算法将分别在多项式时间内进行大整数的因数分解和离散对数的计算,这意味着基于RSA,ECC,E1Gamal算法等建立的公钥密码协议将不再安全,而量子计算机的设计正紧锣密鼓地进行中。
针对Ko等人提出的基于辫群的元素的共轭问题建立公钥密码体制方案,人们陆续发现了诸如基于长度的攻击、线性表示攻击、Super-Summit-set攻击等攻击方案。从而,对应的公钥密码体制也存在着安全隐患。
综上所述,这样就使得上述公钥密码的身份的验证、数据保障的安全性存在隐患。
发明内容
为解决基于现有公钥密码的身份的验证、数据保障的安全性存在隐患的问题,本发明的目的在于建立一个能抵抗各种已知的攻击的公钥密码技术,和在此基础上给出各应用协议。
本发明的目的是这样实现的:一种建立抗攻击的公钥密码的方法,包括生成共享密钥的方法,生成共享密钥的方法也称为生成共享密钥协议,所述生成共享密钥的方法包括如下步骤:
(11)建立一个无限非交换群G及G的两个子群A和B,使得对任意a∈A、任意的b∈B,等式ab=ba成立;
(12)协议第一方选取G中一元素g,其中,协议第一方选取两个元素b1,b2∈A作为私钥,协议第二方选取两个元素d1,d2∈B作为私钥;
(13)协议第二方选取两个元素c1,c2∈B,计算y=d1c1gc2d2,并将y发送给协议第一方;
(14)协议第一方选取四个元素a1,a2,b3,b4∈A,计算
x=b1a1ga2b2和z=b3a1ya2b4=b3a1d1c1gc2d2a2b4
并将(x,z)发送给协议第二方;
(15)协议第二方选取两个元素d3,d4∈B,计算
w=d3c1xc2d4=d3c1b1a1ga2b2c2d4
v=d1 -1zd2 -1=d1 -1b3a1d1c1gc2d2a2b4d2 -1=b3a1c1gc2a2b4
并将(w,v)发送给协议第一方;
(16)协议第一方计算
u=b1 -1wb2 -1=b1 -1d3c1b1a1ga2b2c2d4b2 -1=d3c1a1ga2c2d4
并将u发给协议第二方;
(17)协议第一方计算KA=b3 -1vb4 -1=a1c1gc2a2,而且协议第二方计算KB=d3 -1ud4 -1=c1a1ga2c2
由于a1,a2∈A,c1,c2∈B,所以a1与c1和a2与c2分别乘法可交换,故协议第一方和协议第二方达成共享密钥K=KA=KB
作为一种优选方式,还包括信息数据加密解密的方法,信息数据加密解密的方法也称为公钥加密解密协议,所述信息数据加密解密的方法包括如下步骤;
(21)定义需要加密的已编码明文信息为m∈{0,1}k,即长度为k的0-1数串;并定义Θ:G→{0,1}k是一个由群G到明文空间{0,1}k抗碰撞的Hash函数,协议第一方选取(G,A,B,g,Θ)为其公钥;
(22)加密:协议第二方先计算KB=d3 -1ud4 -1=c1a1ga2c2,然后进行加密计算
Figure BSA0000094475080000041
并将t作为密文发送给协议第一方,这里的
Figure BSA0000094475080000042
是异或运算;
(23)解密:协议第一方先计算KA=b3 -1vb4 -1=a1c1gc2a2,然后进行解密计算 m ′ = Θ ( K A ) ⊕ t = Θ ( K A ) ⊕ ( Θ ( K A ) ⊕ m ) ;
(24)验证m′=m:由密钥交换协议知KA=KB,所以
m ′ = Θ ( K A ) ⊕ ( Θ ( K B ) ⊕ m ) = Θ ( K B ) ⊕ ( Θ ( K B ) ⊕ m ) = ( Θ ( K B ) ⊕ Θ ( K B ) ) ⊕ m = m .
作为一种优选方式,还包括数字签名的方法,数字签名的方法也称为数字签名协议,所述数字签名的方法包括如下步骤:
(31)将需要签名的已编码明文信息定义为p,并定义Θ:G→{0,1}k是一个抗碰撞的Hash函数,协议第一方选取(G,A,B,g,Θ)为其公钥;
(32)签名:协议第一方计算KA=b3 -1vb4 -1=a1c1gc2a2和S=Θ(pKA),协议第一方将S作为它对信息p的签名并将(S,p)发送给协议第二方;
(33)验证:协议第二方计算KB=d3 -1ud4 -1=c1a1ga2c2和S′=Θ(pKB),如果S′=S,协议第二方则认可S是协议第一方对信息p的签名,否则,协议第二方拒绝接受S是协议第一方对信息p的签名。
作为一种优选方式,还包括身份认证的方法,所述协议第一方为示证人,所述协议第二方为验证人;所述身份认证的方法包括如下步骤:
(41)协议第一方选取一个抗碰撞的Hash函数Θ:G→{0,1}k,协议第一方选取(G,A,B,g,Θ)为其公钥;
(42)协议第二方计算y=d1c1gc2d2和w=d3c1xc2d4,并将(y,w)作为挑战一发送给协议第一方;
(43)协议第一方计算
z=b3a1ya2b4和u=b1 -1wb2 -1=d3c1a1ga2c2d4
并将(z,u)作为响应发送给协议第二方;
(44)协议第二方计算v=d1 -1zd2 -1=b3a1c1gc2a2b4,并将v作为挑战二发送给协议第一方;
(45)协议第一方计算t=Θ(b3 -1vb4 -1)=Θ(a1c1gc2a2)并将t作为承诺发送给协议第二方;
(46)协议第二方计算t′=Θ(d3 -1ud4 -1)=Θ(c1a1ga2c2),并验证是否t=t′,如果t=t′,协议第二方认可协议第一方的身份,否则拒绝认可。
其中,所述无限非交换群G优选为辫群,给出辫群Bn(n≥12)的具有不可解的子群成员问题的Mihailova子群的生成元系,给出了辫群Bn(n≥12)的具有子群成员问题不可解的Mihailova子群的生成元系,并建议为抗量子计算攻击,上述协议双方的私钥由Mihailova子群的生成元生成;
所述无限非交换群G取指数为n≥12的辫群Bn,并由如下呈示所定义的群:
Bn〈σ1,σ2,...,σn-1iσj=σjσi,|i-j|≥2,σiσi+1σi=σi+1σiσi+1,1≤i≤n-2〉,辫群Bn含有如下两个子群:
Figure BSA0000094475080000051
为不大于n/2的最大整数,辫群Bn的左辫子LBn和右辫子RBn分别为
LBn=〈σ1,σ2,...,σm-1〉和RBn=〈σm+1,σm+2,...,σn-1
即,分别为由σ1,σ2,...,σm-1和σm+1,σm+2,...,σn-1生成的子群,并且,对于任意的a∈LBn和任意的b∈RBn,有ab=ba,所述的G的子群A即取为LBn,,而G的子群B即取为RBn
当n≥12时,LBn和RBn分别含有一个与F2×F2同构的子群,即两个秩为2的自由群的直积同构的子群:
LA=〈σm-5 2,σm-4 2,σm-2 2,σm-1 2〉≤LBn
RA=〈σm+1 2,σm+2 2,σm+4 2,σm+5 2〉≤RBn
作为一种优选方式,所述辫群Bn的指数n≥12;子群为A=LBn和B=RBn;a1,a2,c1,c2的选取满足其乘积a1c1ga2c2不小于256比特;私钥b1,b2,d1,d2均不小于256比特;保护层元素b3,b4,d3,d4均不小于128比特。
本发明首先从理论建立了一个存在不可解的问题的代数系统,其次,以这个问题的不可解性作为安全保障建立公钥密码算法。本发明算法的安全性与不可解问题的等价性,证明了其对量子计算等攻击的免疫,由于本发明建立的公钥密码方法是以不可解的判定问题作为安全保障,因此该方法无论从理论上还是实际应用方面均得到了有力保障,与现有技术相比,具有以下优点:
1.所建设的公钥密码算法的安全保障是依赖于问题的不可解性,而不是问题的计算困难性,(经典公钥密码算法是基于计算的困难性);
2.本发明的公钥密码算法的安全性等价于所依赖的问题的不可解性是得到数学证明的;
3.本发明的公钥密码算法是抗量子计算攻击的。
具体实施方式
下面结合实施例对本发明一种建立抗量子计算攻击的公钥密码协议作进一步详细说明。
1.建立公钥密码协议的平台
建立所有公钥密码协议的平台是一个无限非交换群(non-abelian group)G及G的两个子群A和B,使得对任意a∈A任意的b∈B,等式ab=ba成立。此外,由于编码和密钥生成的需要,G还必须满足以下条件:
1)于G的生成元集合上的代表G的元素的字具有可计算的正规形式(normal form);
2)G至少是呈指数增长(exponential growth),即G中字长为正整数n的元素个数下囿于一个关于n的指数函数;
3)基于正规形式的群的乘积运算和求逆运算是能行可计算的。
为此,选取无限非交换群G为指数n≥12的辫群Bn,Bn具有上述性质并由如下呈示(presentation)所定义的群:
Bn=〈σ1,σ2,...,σn-1iσj=σjσi,|i-j|≥2,σiσi+1σi=σi+1σiσi+1,1≤i≤n-2〉,辫群Bn含有如下两个子群:
为不大于n/2的最大整数,辫群Bn的左辫子LBn和右辫子RBn分别为
LBn=〈σ1,σ2,...,σm-1〉和RBn=〈σm+1,σm+2,...,σn-1
即,分别由σ1,σ2,...,σm-1和σm+1,σm+2,...,σn-1生成的子群,并且,对于任意的a∈LBn和任意的b∈RBn,有ab=ba。
当n≥12时,LBn和RBn分别含有一个与F2×F2,即两个秩为2的自由群的直积同构的子群
LA=〈σm-5 2,σm-4 2,σm-2 2,σm-1 2〉≤LBn
RA=〈σm+1 2,σm+2 2,σm+4 2,σm+5 2〉≤RBn
由一个两个元素生成的其字问题不可解的有限呈示群H,再构造LA的一个Mihailova子群MLA(H)和RA的一个Mihailova子群MRA(H);下方即为MLA(H)的56个生成元,其中i=m-5;而当令i=m+1,便可得到MRA(H)的56个生成元:
σ i 2 σ i + 3 2 , σ i + 1 2 σ i + 4 2 , S ij , T ij , j = 1,2 , · · · , 27
而27个Sij为(将下述每一Sij中的所有σi换成σi+3,所有σi+1换成σi+4便得到对应的27个Tij,j=1,2,...,27):
Figure BSA0000094475080000091
Figure BSA0000094475080000111
2.建立公钥密码体制的核心协议
在本实施例中,协议双方分别是Alice和Bob,
1)Alice选取Bn中一元素g,Alice选取两个元素b1,b2∈LBn作为私钥,Bob选取两个元素d1,d2∈RBn作为私钥;
2)Bob选取两个元素c1,c2∈RBn,计算y=d1c1gc2d2,并将y发送给Alice;
3)Alice选取四个元素a1,a2,b3,b4∈LBn,计算
x=b1a1ga2b2和z=b3a1va2b4=b3a1d1c1gc2d2a2b4
并将(x,z)发送给Bob;
4)Bob选取两个元素d3,d4∈RBn,计算
w=d3c1xc2d4=d3c1b1a1ga2b2c2d4
v=d1 -1zd2 -1=d1 -1b3a1d1c1gc2d2a2b4d2 -1=b3a1c1gc2a2b4
并将(w,v)发送给Alice;
5)Alice计算
u=b1 -1wb2 -1=b1 -1d3c1b1a1ga2b2c2d4b2 -1=d3c1a1ga2c2d4
并将u发给Bob,
上述协议中的第4)步中,由于d1,d2∈RBn,a1,a2,b3,b4∈LBn,所以d1 -1,d2 -1分别与b3,a1和b4,a2乘法可交换,故得该步骤中最后一个等式。同理得到第5)步中最后一个等式。
3.应用协议
在核心协议的基础上建立如下的应用协议,
建立密钥交换协议的优选实施例:
在核心协议的五个步骤后继续进行如下进程:
6)Alice计算KA=b3 -1vb4 -1=a1c1gc2a2而且Bob计算KB=d3 -1ud4 -1=c1a1ga2c2
由于a1,a2∈LBn,c1,c2∈RBn,所以a1与c1和a2与c2分别乘法可交换,故Alice和Bob达成共享密钥K=KA=KB
建立数据加密协议的优选实施例:
设需要加密的明文信息(已编码)为m∈{0,1}k(即长度为k的0-1数串),并设Θ:Bn→{0,1}k是一个由群Bn到明文空间{0,1}k抗碰撞的Hash函数。Alice的公钥是(Bn,LBn,RBn,g,Θ),并选取a1,a2,b1,b2,b3,b4∈LBn,私钥为b1,b2。Bob选取c1,c2,d1,d2,d3,d4∈RBn,并且以d1,d2为私钥。在核心协议的五个步骤后继续进行如下进程:
6)加密:Bob先计算KB=d3 -1ud4 -1=c1a1ga2c2,然后计算(加密)并将t作为密文发送给Alice。这里的
Figure BSA0000094475080000132
是异或(exclusive or)运算。
7)解密:Alice先计算KA=b3 -1vb4 -1=a1c1gc2a2,然后计算(解密)
m ′ = Θ ( K A ) ⊕ t = Θ ( K A ) ⊕ ( Θ ( K B ) ⊕ m )
验证m′=m:由密钥交换协议知KA=KB,所以
m ′ = Θ ( K A ) ⊕ ( Θ ( K B ) ⊕ m ) = Θ ( K B ) ⊕ ( Θ ( K B ) ⊕ m ) = ( Θ ( K B ) ⊕ Θ ( K B ) ) ⊕ m = m .
建立数字签名协议的优选实施例:
设需要加密的明文信息(已编码)为m,并设Θ:Bn→{0,1}k是一个抗碰撞的Hash函数。Alice的公钥是(Bn,LBn,RBn,g,Θ),并选取a1,a2,b1,b2,b3,b4∈LBn,私钥为b1,b2。Bob选取c1,c2,d1,d2,d3,d4∈B,并且以d1,d2为私钥。在核心协议的五个步骤后继续进行如下进程:
6)签名:Alice计算KA=b3 -1vb4 -1=a1c1gc2a2和S=Θ(mKA),Alice将S作为她对文件m的签名并将(S,m)发送给Bob。
7)验证:Bob计算KB=d3 -1ud4 -1=c1a1ga2c2和S′=Θ(mKB),如果S′=S,Bob则认可S是Alice对文件m的签名,否则,Bob拒绝接受S是Alice对文件m的签名。
一种在核心协议基础上的身份认证协议的优选实施例:
Alice选取Bn中一元素g,四个元素a1,a2,b1,b2∈LBn,一个抗碰撞的Hash函数Θ:Bn→{0,1}k,并计算x=b1a1ga2b2。Alice的公钥是(Bn,LBn,RBn,g,x,Θ),私钥为b1,b2
认证过程:
设Alice是示证人(prover),Bob是验证人(verifier)。
1)Bob选取六个元素c1,c2,d1,d2,d3,d4∈RBn,私钥为d1,d2。Bob计算
y=d1c1gc2d2和w=d3c1xc2d4
并将(y,w)作为挑战(challenge)一发送给Alice;
2)Alice选取两个元素b3,b4∈LBn,,计算
z=b3a1ya2b4和u=b1 -1wb2 -1=d3c1a1ga2c2d4
并将(z,u)作为响应(response)发送给Bob;
3)Bob计算v=d1 -1zd2 -1=b3a1c1gc2a2b4,并将v作为挑战二发送给Alice;
4)Alice计算t=Θ(b3 -1vb4 -1)=Θ(a1c1gc2a2)并将t作为承诺(commitment)发送给Bob;
5)Bob t′=Θ(d3 -1ud4 -1)=Θ(c1a1ga2c2),并验证是否t=t′。
如果t=t′,Bob认可Alice的身份,否则拒绝认可。
五、安全性分析
我们仅给出密钥交换协议的安全性即可。
首先,给出群上的三个判定问题的定义。
子群成员问题(subgroup membership problem or generalized wordproblem,简记为GWP):给定群G的一个其生成元集为X的子群H,判定G中任意元素g是否可由X上的字代表,即判定g是否为H中元素。
元素分解搜索问题(decomposition search problem,简记为DSP):设g和h是群G两个元素。已知存在G的两个元素c和d,使得h=cgd。求G的两个元素c′和d′,使得h=c′gd′。
扩展的元素分解搜索问题(generalized decomposition search problem,简记为GDSP):设g和h是群G两个元素,H是G的一个子群。已知存在H的两个元素c和d,使得h=cgd。求H的两个元素c′和d′,使得h=c′gd′。
DSP是十分容易求解的:令c′=g-1,d′=h即可。而GDSP的可判定性则不确定。然而,对于无限非交换群中分解方程式h=cgd(c和d未知),要确定地解出c和d是不可能的。应为人们不知道c和d的值,即使通过求解GDSP问题计算得到的所谓的“解”c′和d′,使得h=c′gd′,也无法确定是否c′=c和d′=d。特别地,如果c和d分别取自于具有不可解的GWP问题的子群C和D,求解者不仅无法确定是否c′=c和d′=d,而且他根本不能确定c′和d′是否分别是C和D的元素。
在核心协议中,攻击方Eve通过公开信息和Alice与Bob的交互式过程能获取的信息如下:
无限非交换群G,G的两个子群A和B,使得对任意a∈A任意的b∈B,有ab=ba,G中一元素g,以及下列G中元素:
y=d1c1gc2d2,x=b1a1ga2b2,z=b3a1d1c1gc2d2a2b4,w=d3c1b1a1ga2b2c2d4
v=b3a1c1gc2a2b4,u=d3c1a1ga2c2d4
注意,Eve只知道x,y,z,w,u,v,不知道对应的分解表达式。Eve如果能够通过解决GDSP问题而获得c1′,c2′∈B,和a1′,a2′∈A,使得a1′ga2′=a1ga2和c1′gc2′=c1gc2,则由A和B的元素乘法可交换性得
c1′a1′ga2′c2′=c1′a1ga2c1′=a1c1′gc2′a2=a1c1gc2a2=K
所以,Eve需要先获得元素a1ga2和c1gc2
由于Eve不知道a1ga2和c1gc2,她无法从x剥离掉b1和b2去获得a1ga2,和从y剥离掉d1和d2去获得c1gc2。而Eve知道w=b1ub2和z=d1vd2(但不知b1,b2和d1,d2)。现在即使Eve能解决GDSP问题,解得b1′,b2′∈A,和d1′,d2′∈B,使得b1′ub2′=b1ub2和d1′vd2′=d1vd2,她也无法确定b1′=b1,b2′=b2和d1′=d1,d2′=d2。从而Eve仍然不能从x剥离掉b1和b2去获得a1ga2,和从y剥离掉d1和d2去获得c1gc2
特别地,在具体实施方案中无限非交换群G取指数n≥12的辫群Bn,A和B分别取Bn的子群LBn和RBn,而私钥b1,b2和d1,d2分别在LBn的Mihailova子群MLA(H)和RBn的Mihailova子群MRA(H)中选取,则在上述Eve的攻击中,她通过解决GDSP问题解得b1′,b2′∈LBn,和d1′,d2′∈RBn,使得b1′ub2′=b1ub2和d1′vd2′=d1vd2,她必须确定b1′=b1,b2′=b2和d1′=d1,d2′=d2,因为b1,b2∈MLA(H),d1,d2∈MRA(H),从而她必须先确定是否b1′,b2′∈MLA(H),以及是否d1′,d2′∈MRA(H)。但是MLA(H)和MRA(H)的GWP问题不可解,故Eve即使借助量子计算系统也无法进行攻击。
六、参数的选取
在一个优选实施例中,辫群Bn的指数n≥12,各协议中的子群A=LBn,B=RBn,a1,a2,c1,c2的选取要满足其乘积a1a2c1c2不小于256比特,私钥b1,b2,d1,d2均不小于256比特,保护层元素b3,b4,d3,d4均不小于128比特。
特别指出,为抗量子计算攻击,建议私钥b1,b2和d1,d2分别在辫群Bn的Mihailova子群MLA(H)和MRA(H)中选取。从而,由于MLA(H)和MRA(H)的GWP的不可解性,正如在安全性分析中所述,即使借助量子计算系统,b1,b2和d1,d2也是不可被攻击的。
以上是对本发明一种建立抗攻击的公钥密码的方法进行了阐述,用于帮助理解本发明,但本发明的实施方式并不受上述实施例的限制,任何未背离本发明原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种建立抗攻击的公钥密码的方法,其特征在于:包括生成共享密钥的方法,所述生成共享密钥的方法包括如下步骤:
(11)建立一个无限非交换群G及G的两个子群A和B,使得对任意a∈A、任意的b∈B,等式ab=ba成立;
(12)协议第一方选取G中一元素g,协议第一方选取两个元素b1,b2∈A作为私钥,协议第二方选取两个元素d1,d2∈B作为私钥;
(13)协议第二方选取两个元素c1,c2∈B,计算y=d1c1gc2d2,并将y发送给协议第一方;
(14)协议第一方选取四个元素a1,a2,b3,b4∈A,计算
x=b1a1ga2b2和z=b3a1ya2b4=b3a1d1c1gc2d2a2b4
并将(x,z)发送给协议第二方;
(15)协议第二方选取两个元素d3,d4∈B,计算
w=d3c1xc2d4=d3c1b1a1ga2b2c2d4
v=d1 -1zd2 -1=d1 -1b3a1d1c1gc2d2a2b4d2 -1=b3a1c1gc2a2b4
并将(w,v)发送给协议第一方;
(16)协议第一方计算
u=b1 -1wb2 -1=b1 -1d3c1b1a1ga2b2c2d4b2 -1=d3c1a1ga2c2d4
并将u发给协议第二方;
(17)协议第一方计算KA=b3 -1vb4 -1=a1c1gc2a2,而且协议第二方计算KB=d3 -1ud4 -1=c1a1ga2c2
由于a1,a2∈A,c1,c2∈B,所以a1与c1和a2与c2分别乘法可交换,故协议第一方和协议第二方达成共享密钥K=KA=KB
2.根据权利要求1所述的建立抗攻击的公钥密码的方法,其特征在于:还包括信息数据加密解密的方法,所述信息数据加密解密的方法包括如下步骤;
(21)定义需要加密的已编码明文信息为m∈{0,1}k,即长度为k的0-1数串;并定义Θ:G→{0,1}k是一个由群G到明文空间{0,1}k抗碰撞的Hash函数,协议第一方选取(G,A,B,g,Θ)为其公钥;
(22)加密:协议第二方先计算KB=d3 -1ud4 -1=c1a1ga2c2,然后进行加密计算
Figure FSA0000094475070000021
并将t作为密文发送给协议第一方,这里的
Figure FSA0000094475070000022
是异或运算;
(23)解密:协议第一方先计算KA=b3 -1vb4 -1=a1c1gc2a2,然后进行解密计算 m ′ = Θ ( K A ) ⊕ t = Θ ( K A ) ⊕ ( Θ ( K B ) ⊕ m ) ;
(24)验证m′=m:由密钥交换协议知KA=KB,所以
m ′ = Θ ( K A ) ⊕ ( Θ ( K B ) ⊕ m ) = Θ ( K B ) ⊕ ( Θ ( K B ) ⊕ m ) = ( Θ ( K B ) ⊕ Θ ( K B ) ) ⊕ m = m .
3.根据权利要求1所述的建立抗攻击的公钥密码的方法,其特征在于:还包括数字签名的方法,所述数字签名的方法包括如下步骤:
(31)将需要签名的已编码明文信息定义为p,并定义Θ:G→{0,1}k是一个抗碰撞的Hash函数,协议第一方选取(G,A,B,g,Θ)为其公钥;
(32)签名:协议第一方计算KA=b3 -1vb4 -1=a1c1gc2a2和S=Θ(pKA),协议第一方将S作为它对信息p的签名并将(S,p)发送给协议第二方;
(33)验证:协议第二方计算KB=d3 -1ud4 -1=c1a1ga2c2和S′=Θ(pKB),如果S′=S,协议第二方则认可S是协议第一方对信息p的签名,否则,协议第二方拒绝接受S是协议第一方对信息p的签名。
4.根据权利要求1所述的建立抗攻击的公钥密码的方法,其特征在于:还包括身份认证的方法,所述协议第一方为示证人,所述协议第二方为验证人;所述身份认证的方法包括如下步骤:
(41)协议第一方选取一个抗碰撞的Hash函数Θ:G→{0,1}k,协议第一方选取(G,A,B,g,Θ)为其公钥;
(42)协议第二方计算y=d1c1gc2d2和w=d3c1xc2d4,并将(y,w)作为挑战一发送给协议第一方;
(43)协议第一方计算
z=b3a1ya2b4和u=b1 -1wb2 -1=d3c1a1ga2c2d4
并将(z,u)作为响应发送给协议第二方;
(44)协议第二方计算v=d1 -1zd2 -1=b3a1c1gc2a2b4,并将v作为挑战二发送给协议第一方;
(45)协议第一方计算t=Θ(b3 -1vb4 -1)=Θ(a1c1gc2a2)并将t作为承诺发送给协议第二方;
(46)协议第二方计算t′=Θ(d3 -1ud4 -1)=Θ(c1a1ga2c2),并验证是否t=t′,如果t=t′,协议第二方认可协议第一方的身份,否则拒绝认可。
5.根据权利要求1-4所述的任一建立抗攻击的公钥密码的方法,其特征在于:所述无限非交换群G为辫群,
所述辫群为具有子群成员不可解的Mihailova子群,且私钥在Mihailova子群中选取;
所述无限非交换群G取指数为n≥12的辫群Bn,并由如下呈示所定义的群:
Bn=〈σ1,σ2,...,σn-1iσj=σjσi,|i-j|≥2,σiσi+1σi=σi+1σiσi+1,1≤i≤n-2〉,辫群Bn含有如下两个子群:
Figure FSA0000094475070000041
为不大于n/2的最大整数,辫群Bn的左辫子LBn和右辫子RBn分别为
LBn=〈σ1,σ2,...,σm-1〉和RBn=〈σm+1,σm+2,...,σn-1
即,分别为由σ1,σ2,...,σm-1和σm+1,σm+2,...,σn-1生成的子群,并且,对于任意的a∈LBn和任意的b∈RBn,有ab=ba,所述的G的子群A即取为LBn,,而G的子群B即取为RBn
当n≥12时,LBn和RBn分别含有一个与F2×F2同构的子群,即两个秩为2的自由群的直积同构的子群:
LA=〈σm-5 2,σm-4 2,σm-2 2,σm-1 2〉≤LBn
RA=〈σm+1 2,σm+2 2,σm+4 2,σm+5 2〉≤RBn
再由两个元素生成的其字问题不可解的有限呈示群H,构造LA的一个Mihailova子群MLA(H)和RA的Mihailova子群MRA(H);下方即为MLA(H)的56个生成元,其中i=m-5;而当令i=m+1,便可得到MRA(H)的56个生成元:
σ i 2 σ i + 3 2 , σ i + 1 2 σ i + 4 2 , S ij , T ij , j = 1,2 , · · · , 27
而27个Sij为:
Figure FSA0000094475070000052
Figure FSA0000094475070000061
Figure FSA0000094475070000071
将上述每一Sij中的所有σi换成σi+3,所有σi+1换成σi+4便得到对应的27个Tij,j=1,2,...,27。
6.根据权利要求5所述的建立抗攻击的公钥密码的方法,其特征在于:所述辫群Bn的指数n≥12;子群为A=LBn和B=RBn;a1,a2,c1,c2的选取满足其乘积a1c1ga2c2不小于256比特;私钥b1,b2,d1,d2均不小于256比特;保护层元素b3,b4,d3,d4均不小于128比特。
CN201310382299.7A 2013-08-21 2013-08-21 一种建立抗攻击的公钥密码的方法 Expired - Fee Related CN103414569B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310382299.7A CN103414569B (zh) 2013-08-21 2013-08-21 一种建立抗攻击的公钥密码的方法
PCT/CN2013/001119 WO2015024149A1 (zh) 2013-08-21 2013-09-22 一种建立抗攻击的公钥密码的方法
US14/450,305 US9537660B2 (en) 2013-08-21 2014-08-04 Method of establishing public key cryptographic protocols against quantum computational attack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310382299.7A CN103414569B (zh) 2013-08-21 2013-08-21 一种建立抗攻击的公钥密码的方法

Publications (2)

Publication Number Publication Date
CN103414569A true CN103414569A (zh) 2013-11-27
CN103414569B CN103414569B (zh) 2016-08-10

Family

ID=49607555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310382299.7A Expired - Fee Related CN103414569B (zh) 2013-08-21 2013-08-21 一种建立抗攻击的公钥密码的方法

Country Status (3)

Country Link
US (1) US9537660B2 (zh)
CN (1) CN103414569B (zh)
WO (1) WO2015024149A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081505A1 (zh) * 2013-12-04 2015-06-11 王威鉴 建立抗量子计算攻击的公钥密码的方法
CN105049208A (zh) * 2015-06-15 2015-11-11 浙江金大科技有限公司 基于双重困难的数据加密方法
WO2017063114A1 (zh) * 2015-10-12 2017-04-20 王晓峰 建立抗攻击的安全性公钥密码的方法
CN108449754A (zh) * 2018-03-16 2018-08-24 丘佳珏 智能设备通过无线路由上网的方法
WO2019000231A1 (zh) * 2017-06-27 2019-01-03 王威鉴 建立抗攻击的公钥密码的方法
CN109787752A (zh) * 2018-09-30 2019-05-21 王威鉴 建立抗攻击的共享密钥的方法
CN111400773A (zh) * 2020-03-12 2020-07-10 深圳大学 数字签名方法、数字签名装置、系统和存储介质
CN111740821A (zh) * 2020-05-06 2020-10-02 深圳大学 建立共享密钥的方法及装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10148285B1 (en) 2012-07-25 2018-12-04 Erich Schmitt Abstraction and de-abstraction of a digital data stream
US10795858B1 (en) 2014-02-18 2020-10-06 Erich Schmitt Universal abstraction and de-abstraction of a digital data stream
US10505722B2 (en) * 2016-07-06 2019-12-10 Securerf Corporation Shared secret communication system with use of cloaking elements
US10133603B2 (en) 2017-02-14 2018-11-20 Bank Of America Corporation Computerized system for real-time resource transfer verification and tracking
US10454892B2 (en) 2017-02-21 2019-10-22 Bank Of America Corporation Determining security features for external quantum-level computing processing
US10447472B2 (en) * 2017-02-21 2019-10-15 Bank Of America Corporation Block computing for information silo
US10243976B2 (en) 2017-02-24 2019-03-26 Bank Of America Corporation Information securities resource propagation for attack prevention
US10489726B2 (en) 2017-02-27 2019-11-26 Bank Of America Corporation Lineage identification and tracking of resource inception, use, and current location
US10440051B2 (en) 2017-03-03 2019-10-08 Bank Of America Corporation Enhanced detection of polymorphic malicious content within an entity
US10284496B2 (en) 2017-03-03 2019-05-07 Bank Of America Corporation Computerized system for providing resource distribution channels based on predicting future resource distributions
US10270594B2 (en) 2017-03-06 2019-04-23 Bank Of America Corporation Enhanced polymorphic quantum enabled firewall
US10437991B2 (en) 2017-03-06 2019-10-08 Bank Of America Corporation Distractional variable identification for authentication of resource distribution
US10412082B2 (en) 2017-03-09 2019-09-10 Bank Of America Corporation Multi-variable composition at channel for multi-faceted authentication
US10440052B2 (en) 2017-03-17 2019-10-08 Bank Of America Corporation Real-time linear identification of resource distribution breach
US11120356B2 (en) 2017-03-17 2021-09-14 Bank Of America Corporation Morphing federated model for real-time prevention of resource abuse
US11055776B2 (en) 2017-03-23 2021-07-06 Bank Of America Corporation Multi-disciplinary comprehensive real-time trading signal within a designated time frame
US10476854B2 (en) 2017-04-20 2019-11-12 Bank Of America Corporation Quantum key distribution logon widget
US20190215148A1 (en) * 2018-01-11 2019-07-11 Shenzhen University Method of establishing anti-attack public key cryptogram
CN109981253B (zh) * 2019-04-01 2022-09-27 浙江工商大学 一种基于有限李型群的抗量子攻击的非对称加密方法
CN110086614B (zh) * 2019-05-05 2023-03-21 南京邮电大学 一种使用标记单光子源的量子数字签名方法
WO2021179258A1 (zh) * 2020-03-12 2021-09-16 深圳大学 数字签名方法、数字签名装置、系统和存储介质
US11743036B2 (en) * 2020-05-06 2023-08-29 Shenzhen University Method and apparatus for establishing shared key

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133523B2 (en) * 2002-12-20 2006-11-07 Pitney Bowes Inc. Method and system for solving the word problem in braid group cryptosystems
CN101374043A (zh) * 2007-08-24 2009-02-25 管海明 密钥协商的方法、加/解密的方法及签名/验证的方法
US20100153728A1 (en) * 2008-12-16 2010-06-17 Certicom Corp. Acceleration of key agreement protocols
CN103200000A (zh) * 2013-03-27 2013-07-10 武汉大学 一种量子计算环境下的共享密钥建立方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785813B1 (en) * 1997-11-07 2004-08-31 Certicom Corp. Key agreement and transport protocol with implicit signatures
US6493449B2 (en) * 1998-02-26 2002-12-10 Arithmetica, Inc. Method and apparatus for cryptographically secure algebraic key establishment protocols based on monoids
US7136484B1 (en) * 2001-10-01 2006-11-14 Silicon Image, Inc. Cryptosystems using commuting pairs in a monoid
FR2831738B1 (fr) * 2001-10-25 2003-12-19 France Telecom Procede cryptographique a cle publique base sur les groupes de tresses
US7961874B2 (en) * 2004-03-03 2011-06-14 King Fahd University Of Petroleum & Minerals XZ-elliptic curve cryptography with secret key embedding
JP2008203548A (ja) * 2007-02-20 2008-09-04 Oki Electric Ind Co Ltd 二次双曲線群を使用する鍵生成方法、復号方法、署名検証方法、鍵ストリーム生成方法および装置。
US8219820B2 (en) * 2007-03-07 2012-07-10 Research In Motion Limited Power analysis countermeasure for the ECMQV key agreement algorithm
CN102017510B (zh) * 2007-10-23 2013-06-12 赵运磊 自封闭联合知识证明和Diffie-Hellman密钥交换方法与结构
US8699701B2 (en) * 2010-12-01 2014-04-15 King Fahd University Method of performing XZ-elliptic curve cryptography for use with network security protocols
ES2400895B1 (es) * 2011-05-13 2014-03-24 Telefónica, S.A. Método para realizar una firma digital de grupo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133523B2 (en) * 2002-12-20 2006-11-07 Pitney Bowes Inc. Method and system for solving the word problem in braid group cryptosystems
CN101374043A (zh) * 2007-08-24 2009-02-25 管海明 密钥协商的方法、加/解密的方法及签名/验证的方法
US20100153728A1 (en) * 2008-12-16 2010-06-17 Certicom Corp. Acceleration of key agreement protocols
CN103200000A (zh) * 2013-03-27 2013-07-10 武汉大学 一种量子计算环境下的共享密钥建立方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
左黎明: "一个基于辨群的公钥密码算法", 《微电子学与计算机》 *
赵国: "代数学在公钥密码学中的应用", 《西南名族大学自然科学版》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393488A (zh) * 2013-12-04 2016-03-09 王威鉴 建立抗量子计算攻击的公钥密码的方法
WO2015081505A1 (zh) * 2013-12-04 2015-06-11 王威鉴 建立抗量子计算攻击的公钥密码的方法
CN105393488B (zh) * 2013-12-04 2019-07-09 王威鉴 建立抗量子计算攻击的公钥密码的方法
CN105049208B (zh) * 2015-06-15 2018-04-20 浙江工商大学 基于双重困难的数据加密方法
CN105049208A (zh) * 2015-06-15 2015-11-11 浙江金大科技有限公司 基于双重困难的数据加密方法
WO2017063114A1 (zh) * 2015-10-12 2017-04-20 王晓峰 建立抗攻击的安全性公钥密码的方法
CN106664199A (zh) * 2015-10-12 2017-05-10 王晓峰 建立抗攻击的安全性公钥密码的方法
WO2019000231A1 (zh) * 2017-06-27 2019-01-03 王威鉴 建立抗攻击的公钥密码的方法
CN108449754A (zh) * 2018-03-16 2018-08-24 丘佳珏 智能设备通过无线路由上网的方法
CN109787752A (zh) * 2018-09-30 2019-05-21 王威鉴 建立抗攻击的共享密钥的方法
CN111400773A (zh) * 2020-03-12 2020-07-10 深圳大学 数字签名方法、数字签名装置、系统和存储介质
CN111400773B (zh) * 2020-03-12 2022-09-09 深圳大学 数字签名方法、数字签名装置、系统和存储介质
CN111740821A (zh) * 2020-05-06 2020-10-02 深圳大学 建立共享密钥的方法及装置

Also Published As

Publication number Publication date
US20150055777A1 (en) 2015-02-26
CN103414569B (zh) 2016-08-10
US9537660B2 (en) 2017-01-03
WO2015024149A1 (zh) 2015-02-26

Similar Documents

Publication Publication Date Title
CN103414569B (zh) 一种建立抗攻击的公钥密码的方法
CN111106936B (zh) 一种基于sm9的属性加密方法与系统
CN108173639B (zh) 一种基于sm9签名算法的两方合作签名方法
CN107124268B (zh) 一种可抵抗恶意攻击的隐私集合交集计算方法
CN107911209B (zh) 建立抗量子计算攻击的安全性公钥密码的方法
CN102263638B (zh) 认证设备、认证方法和签名生成设备
CN104821880B (zh) 一种无证书广义代理签密方法
CN110545279A (zh) 兼具隐私和监管功能的区块链交易方法、装置及系统
CN107342859A (zh) 一种匿名认证方法及其应用
CN109600233A (zh) 基于sm2数字签名算法的群签名标识签发方法
CN106664199A (zh) 建立抗攻击的安全性公钥密码的方法
CN104301108A (zh) 一种从基于身份环境到无证书环境的签密方法
CN109547209A (zh) 一种两方sm2数字签名生成方法
CN113162751B (zh) 具备加同态性的加密方法、系统及可读存储介质
CN106713349B (zh) 一种能抵抗选择密文攻击的群组间代理重加密方法
CN107294696A (zh) 针对Leveled全同态密钥分配方法
CN105393488B (zh) 建立抗量子计算攻击的公钥密码的方法
CN111865555B (zh) 一种基于k-Lin假设的同态加密方法
CN102291396B (zh) 可信平台远程证明的匿名认证算法
CN113132104A (zh) 一种主动安全的ecdsa数字签名两方生成方法
Ruan et al. Efficient provably secure password-based explicit authenticated key agreement
CN103346999B (zh) 一种支持not运算符并具有cca安全的cp-abe方法
CN108055134B (zh) 椭圆曲线点数乘及配对运算的协同计算方法及系统
CN109981253B (zh) 一种基于有限李型群的抗量子攻击的非对称加密方法
Abdullah et al. Hybrid quantum-classical key distribution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170817

Address after: 518000 Guangdong city of Shenzhen province Nanshan District Xili street Zhongshan Road No. 1001 Science Park B6-8B TCL

Patentee after: Shenzhen Peng Kam science and technology development enterprises

Address before: 518000 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Co-patentee before: Wang Xiaofeng

Patentee before: Wang Weijian

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810

Termination date: 20190821

CF01 Termination of patent right due to non-payment of annual fee