CN103414206A - Water, fire and light combined optimization power generation scheduling optimization method considering security constraints - Google Patents
Water, fire and light combined optimization power generation scheduling optimization method considering security constraints Download PDFInfo
- Publication number
- CN103414206A CN103414206A CN2013102939109A CN201310293910A CN103414206A CN 103414206 A CN103414206 A CN 103414206A CN 2013102939109 A CN2013102939109 A CN 2013102939109A CN 201310293910 A CN201310293910 A CN 201310293910A CN 103414206 A CN103414206 A CN 103414206A
- Authority
- CN
- China
- Prior art keywords
- unit
- optimization
- power
- water
- power generation
- Prior art date
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 75
- 239000011901 water Substances 0.000 title claims abstract description 51
- 238000010248 power generation Methods 0.000 title abstract description 15
- 280000255884 Dispatching companies 0.000 claims abstract description 20
- 238000009987 spinning Methods 0.000 claims description 12
- 230000035945 sensitivity Effects 0.000 claims description 6
- 230000000875 corresponding Effects 0.000 claims description 4
- 239000000446 fuels Substances 0.000 claims description 3
- 235000009808 lpulo Nutrition 0.000 claims description 3
- 230000002452 interceptive Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 5
- 238000000034 methods Methods 0.000 description 4
- 230000001276 controlling effects Effects 0.000 description 2
- 238000004458 analytical methods Methods 0.000 description 1
- 238000005516 engineering processes Methods 0.000 description 1
- 239000005431 greenhouse gases Substances 0.000 description 1
- 230000004301 light adaptation Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001737 promoting Effects 0.000 description 1
- 230000001172 regenerating Effects 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Abstract
Description
Technical field
The invention belongs to the dispatching automation of electric power systems technical field, relate in particular to a kind of water power, photovoltaic generation and thermoelectricity combined optimization generation schedule optimization method of considering security constraint.
Background technology
Current, energy-saving and emission-reduction also contain that climate warming has been common the challenge and important issue that the whole world faces.The Chinese government pays much attention to the energy-saving and emission-reduction work of power industry, proposes to implement energy-saving power generation dispatching at power domain, improves the power industry energy use efficiency, and environmental contamination reduction promotes the energy and electric power structural adjustment.This is the power industry implement scientific view of development, and the major action of building a harmonious socialist society is the inevitable choice of building a resource-conserving and environment-friendly society.
Take photovoltaic generation as the emerging energy of representative because of its pollution-free regenerative nature, and, without greenhouse gas emission, become gradually the important directions of energy development.The photovoltaic generation of take just progressively becomes the important energy resources of China as the new forms of energy of representative, meeting energy demand, improve energy resource structure, environmental contamination reduction, preserve the ecological environment, promote the aspects such as socio-economic development to play a significant role.
But photovoltaic generation has typical intermittent characteristic, to compare power supply reliability lower with conventional energy resource.Photovoltaic generation has randomness, fluctuation and intermittence, is difficult to effective prediction, scheduling and controlling, the electric power netting safe running increase of controlling risk.Secondly, the regional feature of solar energy resources is obvious, is contrary distribution with demand.Because the local need for electricity of photovoltaic plant is little, the electric network composition weakness, the access of photovoltaic generation power, the outstanding problem of carrying and dissolve, the effective distribution of resources problem also has to be solved.These difficult problems become the bottleneck of restriction China new forms of energy development, if can not effectively be solved, can have a strong impact on the realization of China's new forms of energy developing goal.
For encouraging the new forms of energy development, country has put into effect a series of support policies, and requires the grid company generation of electricity by new energy of fully dissolving, in case occur, abandons light, and grid company will face from the pressure of social each side and censure.According to the analysis to photovoltaic power access in the past and operation control historical data, find that photovoltaic power admittance scarce capacity mainly is limited by the electric network composition weakness, and power generation configuration is unreasonable, can't meet mains frequency voltage and power supply reliability requirement after the high permeability generation of electricity by new energy accesses.But also find, Unit Commitment and the plan of exerting oneself are admitted very significantly impact are also arranged new forms of energy, and reasonably conventional energy resource generating coordination optimization, help to excavate the electrical network potentiality, promotes generation of electricity by new energy and admit ability.
Therefore, for promoting extensive new forms of energy, admit ability, especially large-scale photovoltaic power is admitted ability, promote electric power netting safe running level and large electrical network controling power, realize wider most optimum distribution of resources, performance interconnected power grid most optimum distribution of resources potentiality, in the urgent need to the operation of power networks by under large-scale photovoltaic generating access, control the security perimeter reach, by Real-Time Scheduling, control and extend to planning a few days ago, utilize high accuracy load prediction and photovoltaic power information of forecasting, by photovoltaic generation and conventional energy resource coordination optimization a few days ago, eliminate the principal risk that large-scale photovoltaic generating access faces, for Real-Time Scheduling provides larger margin of safety and regulating measure more widely.
Summary of the invention
For overcoming the deficiency on prior art, purpose of the invention process is to provide a kind of water power, photovoltaic generation and thermoelectricity combined optimization generation schedule optimization method of considering security constraint, the impact of various factors in can the flexible adaptation actual schedule, optimize the plan of exerting oneself of water power, photovoltaic generation and fired power generating unit, the generation schedule of water power, photovoltaic generation and fired power generating unit that can the reasonable arrangement future scheduling cycle, realize the coordination optimization scheduling of new forms of energy and conventional energy resource.
For achieving the above object, technical scheme of the present invention is, a kind ofly considers that the water flare up combined optimization generation schedule optimization method of security constraint comprises the steps:
(1) determine and optimize the period, obtain the Optimal Parameters of Hydropower Unit, fired power generating unit and photovoltaic generation unit; Definite needs carry out the dispatching cycle of generation schedule optimization, obtain system loading prediction curve, bus load prediction curve in the cycle, obtain intraperiod line road maintenance scheduling, interconnection plan, obtaining new forms of energy in the cycle is photovoltaic power prediction curve, the power fluctuation interval of photovoltaic generation unit, obtain conventional energy resource in the cycle and be Hydropower Unit and fired power generating unit upstate, subtract the plan of exerting oneself, to determine the optimization space of generation schedule.
(2) Hydropower Unit, fired power generating unit and photovoltaic generation unit combined optimization calculate; According to the electric network model of actual electric network set up take total system cost of electricity-generating minimum as the water flare up combined optimization generating plan model of the consideration security constraint of target be water power, photovoltaic generation and thermoelectricity combined optimization generating plan model.
The water flare up combined optimization generating plan model of described consideration security constraint is usingd 15 minutes periods of the logic as an optimization, the system loading curve in dispatching cycle of take is research object, optimize the plan of exerting oneself of each water power, photovoltaic generation and fired power generating unit, optimization aim is the cost of electricity-generating minimum that can dispatch unit in system.
Wherein, the water flare up combined optimization generating plan model of described consideration security constraint is:
Target function:
Constraints:
p i,minu i,t≤p i,t≤p i,maxu i,t
0≤δ i,s,t≤(P i,s-P i,s-1)u i,t
-Δ i≤p i,t-p i,t-1≤Δ i
p i,t=P i,t
u i,t=U i,t
Wherein, N is the number that participates in the conventional energy resource units such as the water power of scheduling and thermoelectricity in system, and T is system dispatching cycle hop count when contained, C i,tFor the fuel used to generate electricity cost of conventional unit i in the t period, ST i,tStarting fluid cost for conventional unit i when the t; W is for participating in the photovoltaic generation unit number of scheduling, p w,tThe exerting oneself when the t for photovoltaic generation unit w, p i,tThe exerting oneself when the t for conventional unit i, System loading predicted value during for t; Power prediction value for photovoltaic generation unit w when the t; p I, minWith p I, maxBe respectively exert oneself lower limit and the upper limit of conventional unit i, u i,tBe 0/1 amount, mean unit start-stop state; S is the linear segments of unit generation cost; C I, minFor unit i is in the corresponding cost of prescribing a time limit of exerting oneself down; δ I, s, tFor unit i exerting oneself on sectional curve s section when the t; b i,sFor the slope (be micro-increase cost) of unit i in its sectional curve s section; P i,sFor the terminal power of each piecewise interval in the consumption characteristic curve, wherein starting point P I, 0=p I, minΔ iBut the maximum for the per period load increase and decrease of unit i; With Be respectively conventional unit i provides when t rise spinning reserve and downward spinning reserve, With Rise spinning reserve demand while being respectively system t and downward spinning reserve demand; P i,tFor conventional unit i firm output set point when the t; U i,tFor conventional unit i stationary state set point when the t; With The trend bound that means respectively branch road ij, p Ij, tFor the trend of branch road ij in the t period.
(3) judge the optimization in above-mentioned steps (2) calculates whether meet all security constraints; Exerting oneself of water power, thermoelectricity and the photovoltaic generation unit obtained according to Optimization Solution, monitor element according to overall network, and each period in dispatching cycle is carried out to Security Checking; If newly-increased, do not monitor that the element trend is out-of-limit, enter step (4), otherwise calculate the sensitivity information of newly-increased out-of-limit supervision element, enter step (2).
Newly-increased out-of-limit supervision element adds in model with the linearisation constraint type, and constraint expression is:
Wherein, l i,tFor node load power, S I, j, tFor the sensitivity to branch road ij of the injecting power of node i.
(4) iteration finishes, and generates the generation schedule of water power, thermoelectricity and photovoltaic generation unit, optimizes and finishes.
Method of the present invention has following characteristics and function:
New forms of energy will occupy critical role in the future source of energy structure, but will have randomness, fluctuation and intermittence as the photovoltaic generation of its representative, compare with conventional energy resource, and reliability is lower.The present invention, when specifying generation schedule, coordinates to have considered water power, thermoelectricity and photovoltaic generation unit, when calculating, can take into full account the various complicated factors of generating planning under coordinated dispatching mode, from large direction, ensures the access of new forms of energy.
The target function of generation schedule optimization is total system cost of electricity-generating minimum, on the basis of photovoltaic power prediction curve, has guaranteed that electrical network can admit maximum new forms of energy.If electrical network causes the conventional fired power generating unit of having started shooting can't meet the demands in the load valley period after admitting photovoltaic generation, need that photovoltaic generation is abandoned to light and process; If because the reasons such as power system security constraints need to be exerted oneself and adjust new forms of energy, require the equal proportion adjusting as far as possible of each photovoltaic generation unit.
By optimization, calculate with the interactive iteration of two subproblems of Security Checking and solve, obtained the generation schedule of the water power, thermoelectricity and the photovoltaic generation unit that meet network security, guaranteed the enforceability of generation schedule.
The invention has the beneficial effects as follows through considering the coordinated scheduling of water power, thermoelectricity and photovoltaic generation unit, uncertainty and the fluctuation of photovoltaic generation unit have been considered in advance, guaranteed the enforceability after generation schedule issues, the various constraintss such as the system balancing constraint while having considered again a few days ago to move, unit operation constraint and power system security constraints.
The present invention can be according to system loading prediction variation, unit maintenance plan, photovoltaic generation power prediction situation and system loading prediction case, optimize water power, thermoelectricity and photovoltaic generation unit generation schedule, guarantee the safety access of photovoltaic generation power, helped better to instruct the safety and economic operation of electric power system.
The present invention has realized the coordinated scheduling of water power, thermoelectricity and photovoltaic generation unit, helps to improve intelligent level and the decision-making capability of the rear power generation dispatching of new forms of energy access.Simultaneously, optimization method has low, the adaptable characteristics of calculating strength, more is adapted at China's larger scheduling institution of photovoltaic generation access power and applies.
The accompanying drawing explanation
Fig. 1 is flow chart of the present invention.
Embodiment
For technological means, creation characteristic that the present invention is realized, reach purpose and effect is easy to understand, below in conjunction with embodiment, further set forth the present invention.
The present invention considers the water flare up combined optimization generation schedule optimization method of security constraint.It is below a preferred case study on implementation of the present invention, comprised employing the inventive method, at the water power thermoelectricity of considering security constraint and the compilation process of photovoltaic generation unit combined optimization generation schedule, its feature, purpose and advantage can be from finding out the explanation of embodiment.
At electrical network a few days ago in the generation schedule compilation process, need to be in conjunction with the upstate of next day photovoltaic power prediction case and each conventional unit, consider the factors such as load balancing constraint, unit operation constraint, power system security constraints, and requirement is admitted the new forms of energy such as photovoltaic generation, the generation schedule of establishment 96 periods of next day.
The water flare up combined optimization generation schedule optimization method of consideration security constraint of the present invention, the system loading curve of take in dispatching cycle is set up the Optimization Solution model as research object, optimize the plan of exerting oneself of each water power, thermoelectricity and photovoltaic generation unit, by optimization, calculate the iteration with Security Checking, progressively active constraint is added in Optimized model, obtain the final optimum Unit Combination result that obtains.
The present invention is based on the physical model statistic property of electrical network, the economic model parameter, the network topology data, the load prediction data, photovoltaic power prediction data etc., according to the principle of system cost of electricity-generating minimum, optimize generation schedule, obtain being applied to the generation schedule optimum results under water power, photovoltaic generation and thermoelectricity combined dispatching pattern.
Therefore, the present invention proposes a kind of water power, photovoltaic generation and thermoelectricity combined optimization generation schedule optimization method that is applicable to the consideration security constraint of short term scheduling planning.Mainly solved following problem:
When Short Term Generation Schedules is formulated at the power system dispatching center, generally according to operating experience, the power curve of generating set manually is set, but uncertainty and the fluctuation of exerting oneself due to new forms of energy such as photovoltaic generations, the generation schedule of rule of thumb making often can be met difficulty when reality is carried out.Simultaneously, power grid security can't be effectively considered in the experience scheduling, and the Unit Combination scheme obtained is often actual infeasible, need to be in operation the Unit Combination scheme is adjusted repeatedly, thereby be difficult to guarantee fail safe and the economy of management and running, also to the operations staff, brought huge workload.
Adopt water power, photovoltaic generation and the thermoelectricity combined optimization generation schedule optimization method of the consideration security constraint of the present invention's proposition, the generation schedule of water power, photovoltaic generation and fired power generating unit that can the reasonable arrangement future scheduling cycle, realize the coordination optimization scheduling of new forms of energy and conventional energy resource.
The water flare up combined optimization generation schedule optimization method of the consideration security constraint of the present embodiment comprises the following steps:
(1) from system load demand prediction, bus load requirement forecasting, the photovoltaic power prediction curve of day part in following seclected time of the scope of load prediction system acquisition a few days ago, and obtain corresponding exchange between grids plan, assistant service demand and equipment (being mainly unit, circuit and transformer etc.) maintenance scheduling.In addition, obtain initially the exert oneself plan, unit of the initial start and stop state of unit, unit and subtract the data such as the plan of exerting oneself and unit firm output plan.
(2) obtain the network section for generation schedule establishment a few days ago, and, according to Plant maintenance plan, automatically generate the day part network topology, and calculate the sensitivity coefficient of day part.
(3) according to the electric network model of actual electric network, set up and take the water flare up combined optimization generation schedule optimization method model of total system cost of electricity-generating minimum as the consideration security constraint of target.
The water flare up combined optimization generating plan model of considering security constraint is usingd 15 minutes periods of the logic as an optimization, the system loading curve in dispatching cycle of take is research object, optimize the plan of exerting oneself of each water power, thermoelectricity and photovoltaic generation unit, optimization aim is the cost of electricity-generating minimum that can dispatch unit in system.
The water flare up combined optimization generating plan model of considering security constraint is:
Target function:
Constraints:
p i,minu i,t≤p i,t≤p i,maxu i,t
0≤δ i,s,t≤(P i,s-P i,s-1)u i,t
-Δ i≤p i,t-p i,t-1≤Δ i
p i,t=P i,t
u i,t=U i,t
Wherein, N participates in the conventional energy resource unit numbers such as the water power of scheduling and thermoelectricity in system, and T is system dispatching cycle hop count when contained, C i,tFor the fuel used to generate electricity cost of conventional unit i in the t period, ST i,tStarting fluid cost for conventional unit i when the t; W is for participating in the photovoltaic generation unit number of scheduling, p w,tThe exerting oneself when the t for photovoltaic generation unit w, p i,tThe exerting oneself when the t for conventional unit i, System loading predicted value during for t; Power prediction value for photovoltaic generation unit w when the t; p I, minWith p I, maxBe respectively exert oneself lower limit and the upper limit of conventional unit i, u i,tBe 0/1 amount, mean unit start-stop state; S is the linear segments of unit generation cost; C I, minFor unit i is in the corresponding cost of prescribing a time limit of exerting oneself down; δ I, s, tFor unit i exerting oneself on sectional curve s section when the t; b i,sFor the slope (be micro-increase cost) of unit i in its sectional curve s section; P i,sFor the terminal power of each piecewise interval in the consumption characteristic curve, wherein starting point P I, 0=p I, minΔ iBut the maximum for the per period load increase and decrease of unit i; With Be respectively conventional unit i provides when t rise spinning reserve and downward spinning reserve, With Rise spinning reserve demand while being respectively system t and downward spinning reserve demand; P i,tFor conventional unit i firm output set point when the t; U i,tFor conventional unit i stationary state set point when the t; With The trend bound that means respectively branch road ij, p Ij, tFor the trend of branch road ij in the t period.
(4) water power, thermoelectricity and the photovoltaic generation unit that according to Optimization Solution, obtain are exerted oneself, and consider that all the newly-increased out-of-limit supervision element of net adds in model with the linearisation constraint type, and constraint expression is:
Wherein, l i,tFor node load power, S I, j, tFor the sensitivity to branch road ij of the injecting power of node i.
(5) iteration finishes, and generates the generation schedule of water power, thermoelectricity and photovoltaic generation unit, optimizes and finishes.
Practical application effect
The present invention economizes in the dispatching of power netwoks planning system and is applied at certain, and effect meets expection.Practical application shows, the present invention can be under the prerequisite that meets all kinds of constraints such as system balancing constraint, unit operation constraint, power system security constraints and environment constraint, as much as possible according to the access electrical network of photovoltaic power prediction case by photovoltaic generation safety; Can effectively reduce the new forms of energy such as photovoltaic generation due to its hidden danger uncertain and fluctuation is brought to power grid security.
Research and trial that this method is carried out under the actual electric network data generation schedule is optimized, find out the water flare up combined optimization generation schedule optimization method of considering security constraint.This method be take system cost of electricity-generating minimum and is target, consider the coordinated scheduling of water power, thermoelectricity and photovoltaic generation unit, consider all kinds of constraints optimizing computer group generation schedules, guarantee the safety access of the new forms of energy such as photovoltaic generation power, helped to improve intelligent level and the decision-making capability of the rear power generation dispatching of new forms of energy access.Simultaneously, the method has low, the adaptable characteristics of calculating strength, more is adapted at China's larger scheduling institution of photovoltaic generation access power and applies.
According to specific exemplary case study on implementation, the present invention has been described herein.Do not break away to one skilled in the art under the scope of the invention and carry out suitable replacement or modification is apparent.Exemplary case study on implementation is only illustrative, rather than to the restriction of scope of the present invention, scope of the present invention is by affiliated claim definition.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102939109A CN103414206A (en) | 2013-07-12 | 2013-07-12 | Water, fire and light combined optimization power generation scheduling optimization method considering security constraints |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102939109A CN103414206A (en) | 2013-07-12 | 2013-07-12 | Water, fire and light combined optimization power generation scheduling optimization method considering security constraints |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103414206A true CN103414206A (en) | 2013-11-27 |
Family
ID=49607198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102939109A CN103414206A (en) | 2013-07-12 | 2013-07-12 | Water, fire and light combined optimization power generation scheduling optimization method considering security constraints |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103414206A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104239960A (en) * | 2014-07-09 | 2014-12-24 | 国电南瑞科技股份有限公司 | Electricity generating schedule optimizing method considering pump storage unit |
CN105656085A (en) * | 2014-11-18 | 2016-06-08 | 国家电网公司 | Smooth output method for combined power generation system of photovoltaic power station group and thermal power plant |
CN105678394A (en) * | 2014-11-07 | 2016-06-15 | 国家电网公司 | Multi-source and multi-cycle generation schedule formulation method |
CN106786799A (en) * | 2017-01-03 | 2017-05-31 | 国电南瑞科技股份有限公司 | A kind of DC link power step elelctrochemical power generation plan optimization method |
CN104182808B (en) * | 2014-08-25 | 2017-09-01 | 国家电网公司 | A kind of new energy station generation schedule formulating method rationed the power supply based on equal proportion |
CN108352712A (en) * | 2015-11-11 | 2018-07-31 | 西门子股份公司 | Method, predictor and control device for controlling the power grid with photovoltaic apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101841163A (en) * | 2010-03-15 | 2010-09-22 | 三一电气有限责任公司 | Grid-connected wind-light combined power generation system and power generation method thereof |
CN102427230A (en) * | 2011-12-19 | 2012-04-25 | 天津市电力公司 | Wind-light storage combined dispatching method and system used for distributed microgrid island operation |
CN102496968A (en) * | 2011-12-20 | 2012-06-13 | 国电南瑞科技股份有限公司 | Generation plan optimizing method in intermittent energy and conventional energy coordinated dispatching mode |
CN202737479U (en) * | 2012-06-14 | 2013-02-13 | 广东迪奥技术工程有限公司 | Distributed power generating apparatus based on renewable energy source |
-
2013
- 2013-07-12 CN CN2013102939109A patent/CN103414206A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101841163A (en) * | 2010-03-15 | 2010-09-22 | 三一电气有限责任公司 | Grid-connected wind-light combined power generation system and power generation method thereof |
CN102427230A (en) * | 2011-12-19 | 2012-04-25 | 天津市电力公司 | Wind-light storage combined dispatching method and system used for distributed microgrid island operation |
CN102496968A (en) * | 2011-12-20 | 2012-06-13 | 国电南瑞科技股份有限公司 | Generation plan optimizing method in intermittent energy and conventional energy coordinated dispatching mode |
CN202737479U (en) * | 2012-06-14 | 2013-02-13 | 广东迪奥技术工程有限公司 | Distributed power generating apparatus based on renewable energy source |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104239960A (en) * | 2014-07-09 | 2014-12-24 | 国电南瑞科技股份有限公司 | Electricity generating schedule optimizing method considering pump storage unit |
CN104182808B (en) * | 2014-08-25 | 2017-09-01 | 国家电网公司 | A kind of new energy station generation schedule formulating method rationed the power supply based on equal proportion |
CN105678394B (en) * | 2014-11-07 | 2020-04-14 | 国家电网公司 | Multi-source multi-cycle power generation plan making method |
CN105678394A (en) * | 2014-11-07 | 2016-06-15 | 国家电网公司 | Multi-source and multi-cycle generation schedule formulation method |
CN105656085B (en) * | 2014-11-18 | 2018-06-15 | 国家电网公司 | A kind of photovoltaic power station group and thermal power plant combined generating system are smoothly contributed method |
CN105656085A (en) * | 2014-11-18 | 2016-06-08 | 国家电网公司 | Smooth output method for combined power generation system of photovoltaic power station group and thermal power plant |
CN108352712A (en) * | 2015-11-11 | 2018-07-31 | 西门子股份公司 | Method, predictor and control device for controlling the power grid with photovoltaic apparatus |
CN106786799A (en) * | 2017-01-03 | 2017-05-31 | 国电南瑞科技股份有限公司 | A kind of DC link power step elelctrochemical power generation plan optimization method |
CN106786799B (en) * | 2017-01-03 | 2020-05-05 | 国电南瑞科技股份有限公司 | Power stepped power generation plan optimization method for direct current connecting line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system | |
CN103151798B (en) | Optimizing method of independent microgrid system | |
Fan et al. | Analysis and countermeasures of wind power curtailment in China | |
Lu et al. | Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming | |
CN102184475B (en) | Optimizing and dispatching method for microgrid economical operation on basis of multiple time scale coordination | |
Guo et al. | China's photovoltaic power development under policy incentives: A system dynamics analysis | |
Guan et al. | Energy-efficient buildings facilitated by microgrid | |
Feng et al. | A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy | |
CN103606967B (en) | A kind of dispatching method realizing electric power system robust and run | |
CN103793758B (en) | Multi-objective optimization scheduling method for electric vehicle charging station including photovoltaic power generation system | |
CN103840457B (en) | Consider DG Optimal Configuration Method in the power distribution network that electric automobile discharge and recharge affects | |
CN102280878B (en) | Wind power penetration optimization evaluation method based on SCED | |
CN103441520B (en) | Micro-grid distribution type new energy storage system | |
CN105337294B (en) | Coordinate the energy storage configuration method that wind power plant participates in electric system primary frequency modulation | |
CN103151803B (en) | Method for optimizing wind power system-contained unit and backup configuration | |
CN103580063B (en) | A kind of method of large-scale grid connection wind-powered electricity generation of dissolving based on demanding party's response | |
Huang et al. | Economic dispatch of power systems with virtual power plant based interval optimization method | |
CN102738834B (en) | Method for dynamically dividing and operating multiple islands of city micro power grid with photovoltaic power supplies | |
CN102684199B (en) | Multiple time scale control method of exchange power of microgrid and power distribution network | |
CN103728881B (en) | A kind of optimizing operation method of many edifice control system system | |
CN102244677B (en) | Green energy Cloud computing method and system | |
CN103632205B (en) | A kind of consider wind-powered electricity generation and negative rules containing electric automobile Optimization Scheduling | |
CN102185332B (en) | Method for controlling exchanging power between microgrid and large power grid | |
Mehrjerdi et al. | Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes | |
Zhang et al. | A stochastic MPC based approach to integrated energy management in microgrids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C06 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C10 | Entry into substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131127 |
|
C12 | Rejection of a patent application after its publication |