CN103414029A - Rectangular frame fractal antenna with both near-zero refractive index effect and left-handed effect - Google Patents

Rectangular frame fractal antenna with both near-zero refractive index effect and left-handed effect Download PDF

Info

Publication number
CN103414029A
CN103414029A CN2013103687158A CN201310368715A CN103414029A CN 103414029 A CN103414029 A CN 103414029A CN 2013103687158 A CN2013103687158 A CN 2013103687158A CN 201310368715 A CN201310368715 A CN 201310368715A CN 103414029 A CN103414029 A CN 103414029A
Authority
CN
China
Prior art keywords
dielectric substrate
rectangular
layer
metal
rectangular frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013103687158A
Other languages
Chinese (zh)
Inventor
王纪俊
贡磊磊
张艳荣
朱志盼
沈廷根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN2013103687158A priority Critical patent/CN103414029A/en
Publication of CN103414029A publication Critical patent/CN103414029A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及一种基于矩形开口环左手材料的矩形框分形天线,该贴片天线包括三层介质基板、金属接地板、矩形框分形金属辐射片、微带馈线、矩形金属谐振环。该复合结构的介质基板有三层,第一、三层相对介电常数为10,第二层相对介电常数为2.2。激励源采用Gaussian离散源,通过微带馈线给贴片天线馈电。本发明在矩形框分形结构上加入矩形开口环左手材料组合形成的天线,在不同频率处,具有左手效应和折射率近零效应,对电磁能量的局域化程度有了明显的提高,对波束产生汇聚作用,导致天线增益明显增大,并表现为较低的回波损耗,较好地改善了天线的性能,可广泛应用于移动通信、卫星通信以及航空航天等领域。

Figure 201310368715

The invention relates to a rectangular frame fractal antenna based on the left-hand material of a rectangular split ring. The patch antenna includes a three-layer dielectric substrate, a metal ground plate, a rectangular frame fractal metal radiation sheet, a microstrip feeder, and a rectangular metal resonant ring. The dielectric substrate of the composite structure has three layers, the relative permittivity of the first and third layers is 10, and the relative permittivity of the second layer is 2.2. The excitation source adopts Gaussian discrete source, and feeds the patch antenna through the microstrip feeder. In the invention, the antenna formed by adding a rectangular split ring left-handed material to the fractal structure of a rectangular frame has a left-handed effect and a near-zero refractive index effect at different frequencies, which significantly improves the localization degree of electromagnetic energy and improves the beam Convergence is generated, resulting in a significant increase in antenna gain, and a lower return loss, which improves the performance of the antenna and can be widely used in mobile communications, satellite communications, aerospace and other fields.

Figure 201310368715

Description

一种同时具有近零折射率效应和左手效应的矩形框分形天线A Rectangular Frame Fractal Antenna with Near-Zero Refractive Index Effect and Left-Handed Effect Simultaneously

技术领域technical field

本发明属于通信技术领域,具体涉及一种基于矩形开口环左手材料的矩形框分形天线。The invention belongs to the technical field of communication, and in particular relates to a rectangular frame fractal antenna based on a rectangular split ring left-hand material.

背景技术Background technique

近来,作为人工电磁超材料的另一分支,对于零折射率超材料的研究引起了广泛关注,很多团队已经通过实验证实了零折射材料及近零折射材料的存在。ENOCH等人第一次实验证实了将辐射源嵌入零折射率基板中时,辐射的能量将被限制在一个周围介质狭小的圆锥区域内,即通过利用零折射率材料的特性,能量辐射的方向性得到了很大的改善。Recently, as another branch of artificial electromagnetic metamaterials, the research on zero-refractive-index metamaterials has attracted widespread attention. Many teams have confirmed the existence of zero-refractive materials and near-zero-refractive materials through experiments. For the first time, ENOCH and others confirmed that when the radiation source is embedded in a zero-refractive-index substrate, the energy of the radiation will be confined in a narrow conical region of the surrounding medium, that is, by utilizing the characteristics of the zero-refractive-index material, the direction of energy radiation Sex has been greatly improved.

分形的概念是由名为Mandelbrot的一个法国数学家于1983年在《自然界中的分形几何》一书中首次提出的。分形几何就是研究无限复杂而具有特定意义下的自相似图形和结构的几何学,自相似就是局部的形态与整体形态的相似。所谓分形天线,是指在几何属性上具有分形几何特征的天线。它是通过将天线设计理沦和分形几何学相结合而设计出的新型天线。分形几何的自填充特性使得天线单元可以比较容易的实现小型化,另一方面,由于分形几何所具有的自相似特性,天线可以获得多频带的特性。The concept of fractal was first proposed by a French mathematician named Mandelbrot in 1983 in the book "Fractal Geometry in Nature". Fractal geometry is the geometry of self-similar graphics and structures that are infinitely complex and have specific meanings. Self-similarity is the similarity between the local shape and the overall shape. The so-called fractal antenna refers to an antenna with fractal geometric characteristics in terms of geometric properties. It is a new type of antenna designed by combining antenna design theory with fractal geometry. The self-filling characteristic of fractal geometry makes it easier to miniaturize the antenna unit. On the other hand, due to the self-similarity characteristic of fractal geometry, the antenna can obtain multi-band characteristics.

左手材料(LHM)是一种新型周期结构的人工电磁媒质,其介电常数和磁导率同时为负,因此,当电磁波在这种双负介质材料中传播时,波传播的电矢量、磁矢量和波矢量三者满足左手定则,所以被称为左手材料(或称负折射材料)。它作为一种新型的人工电磁材料,引起了人们极大的研究兴趣。早在1968年,V.G.Veselageo就从理论上研究了LHM中的反常电磁现象;2000年,Smith等人首次发现用特殊微结构周期排列的复合介质可以在微波波段同时得到负的介电常量和负的磁导率,从而从实验上验证了这种材料可以通过人工方法制得。LHM的反常电磁特使它在光与电磁波领域存在的重要应用价值。Left-handed material (LHM) is a new type of artificial electromagnetic medium with periodic structure. Its permittivity and magnetic permeability are negative at the same time. Therefore, when the electromagnetic wave propagates in this double negative dielectric material, the electric vector, magnetic The three vectors and wave vectors satisfy the left-hand rule, so they are called left-handed materials (or negative refraction materials). As a new type of artificial electromagnetic material, it has aroused great research interest. As early as 1968, V.G. Veselageo theoretically studied the abnormal electromagnetic phenomena in LHM; in 2000, Smith et al. discovered for the first time that a composite medium with a special microstructure periodically arranged can simultaneously obtain negative dielectric constant and negative The magnetic permeability, thus experimentally verified that this material can be prepared by artificial methods. The anomalous electromagnetic special of LHM makes it have important application value in the fields of light and electromagnetic waves.

本发明通过对一种基于矩形开口环左手材料的矩形框分形天线体系的研究,得到对应的性能参数,运用Nicolson-Ross-Weir(NRW)方法算出这种基于矩形框左手材料分形天线的等效折射率。The present invention obtains the corresponding performance parameters through the research of a rectangular frame fractal antenna system based on the left-hand material of the rectangular split ring, and uses the Nicolson-Ross-Weir (NRW) method to calculate the equivalent of the fractal antenna based on the rectangular frame left-hand material. refractive index.

发明内容Contents of the invention

本发明要解决的技术问题是提供一种同时具有近零折射率效应和左手效应的左手材料矩形框分形天线,即在某一频率范围内,具有左手效应,加强了电磁波共振强度,提高了电磁能量的局域化程度,从而降低天线的回波损耗,增大了增益;同时在另一频率范围内,具有折射率近零效应,进一步提高天线的定向增益。The technical problem to be solved by the present invention is to provide a left-handed material rectangular frame fractal antenna with near-zero refractive index effect and left-handed effect at the same time. The degree of energy localization reduces the return loss of the antenna and increases the gain; at the same time, in another frequency range, it has a near-zero refractive index effect, which further improves the directional gain of the antenna.

为解决上述技术问题,本发明的一种基于矩形开口环左手材料的矩形框分形天线包括第一层介质基板1、第二层介质基板2、第三层介质基板3、金属接地板4、微带馈线5、矩形框分形金属辐射贴片6、矩形金属谐振环7。第一层介质基板1、第二层介质基板2、第三层介质基板3、金属接地板4依次叠加,矩形框左手材料分形天线由矩形框分形金属辐射贴片6和微带馈线5组成,微带馈线5通过金属导线与激励源相连,用于对基于矩形开口环左手材料的矩形框分形天线馈电。第一层介质基板1、第二层介质基板2和第三层介质基板3的正面都采用电路板刻蚀技术。第一层介质基板1的正面采用电路板刻蚀技术刻蚀出矩形框分形贴片天线和周期性排列的矩形金属谐振环7;第二层介质基板2和第三层介质基板3的正面都采用电路板刻蚀技术刻蚀出周期性排列的矩形金属谐振环7,第三层介质基板3的反面贴有金属接地板4,其通过金属导线与激励源相连。In order to solve the above technical problems, a rectangular frame fractal antenna based on a rectangular split ring left-handed material of the present invention includes a first layer of dielectric substrate 1, a second layer of dielectric substrate 2, a third layer of dielectric substrate 3, a metal ground plate 4, micro Belt feeder 5, rectangular frame fractal metal radiation patch 6, rectangular metal resonant ring 7. The first layer of dielectric substrate 1, the second layer of dielectric substrate 2, the third layer of dielectric substrate 3, and the metal ground plate 4 are stacked in sequence. The left-hand material fractal antenna with a rectangular frame is composed of a rectangular frame fractal metal radiation patch 6 and a microstrip feeder 5. The microstrip feeder 5 is connected to the excitation source through a metal wire, and is used to feed the rectangular frame fractal antenna based on the left-hand material of the rectangular split ring. The front surfaces of the first dielectric substrate 1 , the second dielectric substrate 2 and the third dielectric substrate 3 all adopt circuit board etching technology. The front of the first layer of dielectric substrate 1 adopts circuit board etching technology to etch a rectangular frame fractal patch antenna and periodically arranged rectangular metal resonant rings 7; the front of the second layer of dielectric substrate 2 and the third layer of dielectric substrate 3 are both Rectangular metal resonant rings 7 arranged periodically are etched out by circuit board etching technology, and a metal ground plate 4 is pasted on the reverse side of the third dielectric substrate 3, which is connected to the excitation source through metal wires.

所述的第三层介质基板3正面周期性排列的矩形金属谐振环7共36个,以6×6的结构均匀排布,所述的第二层介质基板2与第三层介质基板3相比,其正面除缺少正中的四个矩形金属谐振环7外其他排布与第三层介质基板3相同,共排布了32个矩形金属谐振环7,所述的第一层介质基板1正面的矩形金属谐振环7的排布与第二层介质基板2正面的矩形金属谐振环7的排布相同,正中采用电路板刻蚀技术刻蚀出矩形框分形贴片天线。A total of 36 rectangular metal resonant rings 7 are periodically arranged on the front side of the third layer of dielectric substrate 3, and are evenly arranged in a 6×6 structure. The second layer of dielectric substrate 2 is in phase with the third layer of dielectric substrate 3 Compared with the front, except for the lack of four rectangular metal resonant rings 7 in the middle, the arrangement is the same as that of the third layer of dielectric substrate 3, and a total of 32 rectangular metal resonant rings 7 are arranged. The front of the first layer of dielectric substrate 1 The arrangement of the rectangular metal resonant rings 7 is the same as that of the rectangular metal resonant rings 7 on the front of the second dielectric substrate 2, and a rectangular frame fractal patch antenna is etched in the center by circuit board etching technology.

所述的基于矩形开口环左手材料的矩形框分形天线其组成结构可选用如下尺寸:第一层介质基板1、第二层介质基板2、第三层介质基板3叠加后的尺寸为80mm×80mm×7mm;第一层介质基板1、第二层介质基板2和第三层介质基板3的尺寸相同,长和宽均为80mm×80mm;第一层介质基板1和第三层介质基板3的相对介电常数均为10,厚度均为D1=2mm,第二层介质基板2的相对介电常数均为2.2,厚度D2=3mm;第一层介质基板1正面固定有宽度W7=27mm的矩形框分形金属辐射片6,其中矩形框分形金属辐射贴片6由25个长宽均为W8=3mm的矩形框构成;所述的矩形金属谐振环7由内外两层矩形开口环构成,外层矩形开口环长和宽均为W2=9mm,内层矩形开口环长和宽均为W3=7mm,矩形金属谐振环7的宽度W9=0.5mm,内外层矩形的开口宽度均为W5=1mm,相邻的矩形金属谐振环7左右间隔S1=4mm,上下间隔也是S1=4mm。矩形金属谐振环7距介质基板边缘的间距W4=3mm。微带馈线5的长L2=38.5mm,宽W6=1mm。第三层介质基板3反面贴有80mm×80mm金属接地板4,激励源通过金属导线一端与微带馈线5相连,一端与金属接地板4相连,激励源采用Gaussian离散源,通过微带馈线5给矩形框分形金属辐射片6馈电。The composition structure of the rectangular frame fractal antenna based on the left-handed material of the rectangular split ring can be selected as follows: the size of the first layer of dielectric substrate 1, the second layer of dielectric substrate 2, and the third layer of dielectric substrate 3 is 80mm×80mm ×7mm; the first layer of dielectric substrate 1, the second layer of dielectric substrate 2 and the third layer of dielectric substrate 3 have the same size, and the length and width are both 80mm×80mm; the first layer of dielectric substrate 1 and the third layer of dielectric substrate 3 The relative permittivity is 10, the thickness is D 1 =2mm, the relative permittivity of the second layer of dielectric substrate 2 is 2.2, and the thickness is D 2 =3mm; the front of the first layer of dielectric substrate 1 is fixed with a width W 7 = 27mm rectangular frame fractal metal radiation patch 6, wherein the rectangular frame fractal metal radiation patch 6 is composed of 25 rectangular frames whose length and width are both W 8 =3mm; the rectangular metal resonant ring 7 consists of two layers of rectangular split rings inside and outside Composition, the length and width of the outer rectangular split ring are both W 2 =9mm, the length and width of the inner rectangular split ring are both W 3 =7mm, the width of the rectangular metal resonant ring 7 is W 9 =0.5mm, and the inner and outer rectangular openings The widths are all W 5 =1 mm, the left and right intervals of adjacent rectangular metal resonant rings 7 are S 1 =4 mm, and the upper and lower intervals are also S 1 =4 mm. The distance W 4 between the rectangular metal resonant ring 7 and the edge of the dielectric substrate is 3mm. The length L 2 =38.5 mm and the width W 6 =1 mm of the microstrip feeder 5 . The reverse side of the dielectric substrate 3 of the third layer is attached with an 80mm×80mm metal grounding plate 4. One end of the excitation source is connected to the microstrip feeder 5 through a metal wire, and the other end is connected to the metal grounding plate 4. The excitation source adopts a Gaussian discrete source and passes through the microstrip feeder 5 Feed power to the rectangular frame fractal metal radiator 6.

为了验证本发明的有效性,将上述基于矩形开口环左手材料的矩形框分形天线结构利用仿真软件XFDTD进行测试,该软件是美国REMCOM公司开发的基于电磁数值计算方法FDTD(时域有限差分法)的全波三维电磁仿真软件,该软件仿真结果可靠性高。通过该软件的仿真测试,可以得到天线性能对应的性能参数值,如回波损耗(s11,也称为反射系数)、传输系数(s21)、电压驻波比(VSWR)和增益(Gain)等。通过分析这些数值,可以比较出天线性能的优劣。In order to verify the effectiveness of the present invention, the above-mentioned rectangular frame fractal antenna structure based on the left-hand material of the rectangular split ring is tested by the simulation software XFDTD, which is based on the electromagnetic numerical calculation method FDTD (finite difference method in time domain) developed by the U.S. REMCOM company The full-wave 3D electromagnetic simulation software has high reliability of simulation results. Through the simulation test of the software, the performance parameter values corresponding to the antenna performance can be obtained, such as return loss (s11, also known as reflection coefficient), transmission coefficient (s21), voltage standing wave ratio (VSWR) and gain (Gain), etc. . By analyzing these values, you can compare the pros and cons of the antenna performance.

本发明是通过对普通矩形框分形天线加入了矩形开口环左手材料结构组合形成一种基于矩形开口环左手材料的矩形框分形天线,其特性表现为天线具有左手效应和折射率近零效应,将该天线在两个频率的效应进行比较,发现左手效应具有更小的回波损耗,而近零折射率效应具有更高的定向增益;并将具有矩形谐振环的矩形框分形天线与普通的矩形框分形天线进行比较,发现它比后者具有更小的回波损耗和更高的增益。从理论的角度分析其原因为:一方面,在f=15.9098GHz频率处产生的电磁波共振态,使得该结构的整体相对介电常数和磁导率均为负值,形成电磁波的“隧道”效应和倏逝波的放大作用,由此,大大加强了电磁波共振强度。另一方面,在f=23.2309GHz处,近零折射率效应对电磁波束产生汇聚作用,导致天线增益明显增大,并表现为较低的回波损耗,较好地改善了天线的性能。The present invention forms a rectangular frame fractal antenna based on the left-hand material of the rectangular split ring by adding the left-hand material structure of the rectangular split ring to the ordinary rectangular frame fractal antenna. Comparing the effect of the antenna at two frequencies, it is found that the left-hand effect has a smaller return loss, and the near-zero refractive index effect has a higher directional gain; and the rectangular frame fractal antenna with a rectangular resonant ring is compared with the ordinary rectangular Compared with the frame fractal antenna, it is found that it has smaller return loss and higher gain than the latter. From a theoretical point of view, the reasons are as follows: On the one hand, the resonance state of electromagnetic waves generated at the frequency of f=15.9098GHz makes the overall relative permittivity and permeability of the structure negative, forming a "tunnel" effect of electromagnetic waves And the amplification effect of the evanescent wave, thereby greatly enhancing the electromagnetic wave resonance intensity. On the other hand, at f=23.2309GHz, the near-zero refractive index effect produces a converging effect on the electromagnetic beam, resulting in a significant increase in antenna gain, which is manifested as a lower return loss, which improves the performance of the antenna.

附图说明Description of drawings

下面结合附图和具体实施方式对本发明作进一步详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:

图1是本发明一种基于矩形开口环左手材料的矩形框分形天线正面结构示意图,其中:1-第一层介质基板;2-第二层介质基板;3-第三层介质基板;4-金属接地板;5-微带馈线;6-矩形框分形金属辐射贴片;7-矩形金属谐振环。Fig. 1 is a schematic diagram of the front structure of a rectangular frame fractal antenna based on a rectangular split ring left-hand material according to the present invention, wherein: 1-the first layer of dielectric substrate; 2-the second layer of dielectric substrate; 3-the third layer of dielectric substrate; 4- Metal ground plate; 5-microstrip feeder; 6-fractal metal radiation patch with rectangular frame; 7-rectangular metal resonant ring.

图2是本发明一种基于矩形开口环左手材料的矩形框分形天线第二层介质基板结构示意图;Fig. 2 is a schematic structural diagram of a second-layer dielectric substrate of a rectangular frame fractal antenna based on a rectangular split ring left-handed material in the present invention;

图3是本发明一种基于矩形开口环左手材料的矩形框分形天线第三层介质基板结构示意图;Fig. 3 is a schematic structural diagram of a third-layer dielectric substrate of a rectangular frame fractal antenna based on a rectangular split ring left-hand material according to the present invention;

图4是本发明一种基于矩形开口环左手材料的矩形框分形天线的矩形金属谐振环结构示意图;Fig. 4 is a schematic diagram of the structure of a rectangular metal resonant ring of a rectangular frame fractal antenna based on a rectangular split ring left-hand material of the present invention;

图5是本发明一种基于矩形开口环左手材料的矩形框分形天线各层结构组合示意图;Fig. 5 is a schematic diagram of the structure combination of each layer of a rectangular frame fractal antenna based on a rectangular split ring left-hand material according to the present invention;

图6是本发明一种基于矩形开口环左手材料的矩形框分形天线整体结构的相对介电常数、磁导率和折射率n,其中(a)嵌有谐振环的矩形框分形天线在f=23.2309Ghz处的折射率n,磁导率μr,介电常数εr;(b)嵌有谐振环的矩形框分形天线在f=15.9098Ghz处的折射率n,磁导率μr,介电常数εrFig. 6 is the relative permittivity, magnetic permeability and refractive index n of a kind of rectangular frame fractal antenna overall structure based on rectangular split ring left-hand material of the present invention, wherein (a) the rectangular frame fractal antenna that is embedded with resonant ring is at f= Refractive index n at 23.2309Ghz, magnetic permeability μ r , dielectric constant ε r ; (b) Refractive index n at f=15.9098Ghz, magnetic permeability μ r , dielectric constant ε r of a rectangular frame fractal antenna embedded with a resonant ring Electrical constant ε r ;

图7是本发明一种基于矩形开口环左手材料的矩形框分形天线回波损耗s11示意图,其中(a)嵌有谐振环的矩形框分形天线在频率f=23.2309GHz时的s11;(b)嵌有谐振环的矩形框分形天线在频率f=15.9098GHz时的s11;Fig. 7 is a schematic diagram of the return loss s11 of a rectangular frame fractal antenna based on the left-hand material of a rectangular split ring according to the present invention, wherein (a) s11 of the rectangular frame fractal antenna embedded with a resonant ring at a frequency f=23.2309GHz; (b) The s11 of the rectangular frame fractal antenna embedded with resonant ring at frequency f=15.9098GHz;

图8是本发明一种基于矩形开口环左手材料的矩形框分形天线电压驻波比VSWR示意图,其中(a)嵌有谐振环的矩形框分形天线在频率f=23.2309GHz时的VSWR;(b)嵌有谐振环的矩形框分形天线在频率f=15.9098GHz时的VSWR;Fig. 8 is a schematic diagram of voltage standing wave ratio VSWR of a rectangular frame fractal antenna based on a rectangular split ring left-hand material in the present invention, wherein (a) the VSWR of the rectangular frame fractal antenna embedded with a resonant ring at frequency f=23.2309GHz; (b ) VSWR of a rectangular frame fractal antenna with a resonant ring embedded at frequency f=15.9098GHz;

图9是本发明一种基于矩形开口环左手材料的矩形框分形天线增益示意图,其中(a)嵌有谐振环的矩形框分形天线在频率f=23.2309GHz时的增益极化图;(b)嵌有谐振环的矩形框分形天线在频率f=15.9098GHz时的增益极化图。Fig. 9 is a schematic diagram of the gain of a rectangular frame fractal antenna based on a rectangular split ring left-handed material in the present invention, wherein (a) the gain polarization diagram of the rectangular frame fractal antenna embedded with a resonant ring at a frequency f=23.2309GHz; (b) The gain polarization diagram of the rectangular frame fractal antenna embedded with resonant ring at frequency f=15.9098GHz.

具体实施方案specific implementation plan

采用电路板刻蚀技术,如图1所示的这种基于近零折射率的三角形框左手材料贴片天线结构,在第一层介质基板1上刻蚀矩形框分形天线6和矩形金属谐振环7。第二层介质基板2上周期性的刻蚀32个矩形金属谐振环7,第三层介质基板3上周期性的排列着36个矩形金属谐振环7。微带馈线5连接着矩形框分形金属辐射片6,作为电波信号馈入源。Using circuit board etching technology, as shown in Figure 1, the rectangular frame fractal antenna 6 and rectangular metal resonant ring are etched on the first layer of dielectric substrate 1 based on the near-zero refractive index left-handed material patch antenna structure. 7. 32 rectangular metal resonance rings 7 are periodically etched on the second dielectric substrate 2 , and 36 rectangular metal resonance rings 7 are periodically arranged on the third dielectric substrate 3 . The microstrip feeder 5 is connected to the rectangular frame fractal metal radiator 6 as the feed source of the electric wave signal.

本发明是一种基于矩形开口环左手材料的矩形框分形天线,如图1所示,这种矩形框左手材料的分形天线有3层尺寸相同的介质基板,叠加后的尺寸为80mm×80mm×7mm。第一层介质基板1和第三层介质基板3的相对介电常数为10,厚度D1=2mm,第二层介质基板2的相对介电常数为2.2,厚度D2=2mm。The present invention is a rectangular frame fractal antenna based on the left-hand material of the rectangular split ring. As shown in Figure 1, the fractal antenna of the left-hand material of the rectangular frame has three layers of dielectric substrates with the same size, and the superimposed size is 80mm×80mm× 7mm. The relative permittivity of the first dielectric substrate 1 and the third dielectric substrate 3 is 10, and the thickness D 1 =2mm. The relative permittivity of the second dielectric substrate 2 is 2.2, and the thickness D 2 =2mm.

第一层介质基板1、第二层介质基板2、第三层介质基板3叠加后的尺寸为80mm×80mm×7mm;第一层介质基板1、第二层介质基板2和第三层介质基板3的尺寸相同,长和宽均为80mm×80mm;第一层介质基板1和第三层介质基板3的相对介电常数均为10,厚度均为D1=2mm,第二层介质基板2的相对介电常数均为2.2,厚度D2=3mm;第一层介质基板1正面固定有宽度W7=27mm的矩形框分形金属辐射片6,其中矩形框分形金属辐射贴片6由25个长和宽均为W8=3mm的矩形框构成;在第一层介质基板1上嵌入32个矩形金属谐振环7,矩形金属谐振环7由内外两层矩形开口环构成,外层矩形开口环长和宽均为W2=9mm,内层矩形开口环长和宽均为W3=7mm,矩形金属谐振环7的宽度W9=0.5mm,内外层矩形的开口宽度均为W5=1mm,相邻的矩形金属谐振环7左右间隔S1=4mm,上下间隔也是S1=4mm。矩形形金属谐振环7距介质基板边缘的间距W4=3mm。微带馈线5的长L2=38.5mm,宽W6=1mm。第二层介质基板2上周期性的排列着32个矩形金属谢振环7,第三层介质基板3上周期性的排列着36个矩形金属谐振环7。第三层介质基板3反面贴有80mm×80mm金属接地板4,激励源通过金属导线一端与微带馈线5相连,一端与金属接地板4相连,激励源采用Gaussian离散源,通过微带馈线5给矩形框分形金属辐射片6馈电。The size of the first layer of dielectric substrate 1, the second layer of dielectric substrate 2, and the third layer of dielectric substrate 3 is 80mm×80mm×7mm; the first layer of dielectric substrate 1, the second layer of dielectric substrate 2 and the third layer of dielectric substrate 3 have the same size, the length and width are both 80mm×80mm; the relative permittivity of the first layer of dielectric substrate 1 and the third layer of dielectric substrate 3 are both 10, and the thickness is D 1 =2mm, and the second layer of dielectric substrate 2 The relative permittivity of each is 2.2, and the thickness D 2 =3mm; the front of the first dielectric substrate 1 is fixed with a rectangular frame fractal metal radiation patch 6 with a width W 7 =27mm, wherein the rectangular frame fractal metal radiation patch 6 consists of 25 It is composed of a rectangular frame whose length and width are both W 8 =3 mm; 32 rectangular metal resonant rings 7 are embedded on the first dielectric substrate 1, and the rectangular metal resonant ring 7 is composed of two inner and outer rectangular split rings, and the outer rectangular split ring The length and width are both W 2 =9mm, the length and width of the inner rectangular opening ring are both W 3 =7mm, the width of the rectangular metal resonant ring 7 is W 9 =0.5mm, and the opening width of the inner and outer rectangles is W 5 =1mm , the adjacent rectangular metal resonant rings 7 have a left and right interval of S 1 =4 mm, and an upper and lower interval of S 1 =4 mm. The distance W 4 between the rectangular metal resonant ring 7 and the edge of the dielectric substrate is 3mm. The length L 2 =38.5 mm and the width W 6 =1 mm of the microstrip feeder 5 . 32 rectangular metal vibration rings 7 are periodically arranged on the second dielectric substrate 2 , and 36 rectangular metal resonance rings 7 are periodically arranged on the third dielectric substrate 3 . The reverse side of the dielectric substrate 3 of the third layer is attached with an 80mm×80mm metal grounding plate 4. One end of the excitation source is connected to the microstrip feeder 5 through a metal wire, and the other end is connected to the metal grounding plate 4. The excitation source adopts a Gaussian discrete source and passes through the microstrip feeder 5 Feed power to the rectangular frame fractal metal radiator 6.

为验证所设计结构是否具有近零折射率效应和左手效应,用XFDTD电磁仿真软件对这种基于矩形开口环左手材料的矩形框分形天线进行仿真实验,得到了该结构整体的散射参数,即反射系数(s11)和传输系数(s21),通过NRW传输/反射算法提取出了这种复合结构整体的有效介电常数和有效磁导率电磁参数,图4给出了由仿真得到的参数所提取的该复合结构的有效磁导率μr、有效介电常数εr和折射率n。在天线谐振点附近f=23.2309GHZ频率处,天线介质板整体的折射率小于零且接近于零,其中有效磁导率μr=-0.156,有效介电常数εr=-0.3107,其等效折射率n=-0.2201,其值接近于零。而在谐振点f=15.9098Ghz附近,有效磁导率μr=-0.5009,有效介电常数εr=-2.406,其等效折射率n=-1.098,其值为非近零情况。如图5所示为这种基于矩形开口环左手材料的矩形框分形天线的回波损耗s11特性图,在频率f=23.2309GHZ处最小回波损耗s11=-31.6528dB,在谐振点f=15.9098Ghz附近,最小回波损耗s11=-37.8794dB,说明左手效应具有更小的回波损耗。In order to verify whether the designed structure has the near-zero refractive index effect and the left-hand effect, the XFDTD electromagnetic simulation software is used to simulate the rectangular frame fractal antenna based on the rectangular split ring left-hand material, and the overall scattering parameters of the structure are obtained, that is, the reflection Coefficient (s11) and transmission coefficient (s21), through the NRW transmission/reflection algorithm, the effective permittivity and effective permeability electromagnetic parameters of the composite structure are extracted. Figure 4 shows the parameters extracted from the simulation The effective permeability μ r , effective permittivity ε r and refractive index n of the composite structure. At the frequency of f=23.2309GHZ near the antenna resonance point, the overall refractive index of the antenna dielectric plate is less than zero and close to zero, where the effective permeability μ r =-0.156, the effective permittivity ε r =-0.3107, which is equivalent to Refractive index n=-0.2201, its value is close to zero. In the vicinity of the resonance point f=15.9098Ghz, the effective permeability μ r =-0.5009, the effective permittivity ε r =-2.406, and the equivalent refractive index n=-1.098, which are non-near zero. As shown in Figure 5, the return loss s11 characteristic diagram of the rectangular frame fractal antenna based on the left-hand material of the rectangular split ring, the minimum return loss s11=-31.6528dB at the frequency f=23.2309GHZ, and the resonance point f=15.9098 Near Ghz, the minimum return loss s11=-37.8794dB, indicating that the left-hand effect has a smaller return loss.

图6所示为电压驻波比VSWR特性图,在频率f=23.2309GHZ处最小电压驻波比为1.05,已经很靠近理想值1,在谐振点f=15.9098Ghz附近,最小电压驻波比为1.026。Figure 6 shows the VSWR characteristic diagram. At the frequency f=23.2309GHZ, the minimum VSWR is 1.05, which is very close to the ideal value of 1. Near the resonance point f=15.9098Ghz, the minimum VSWR is 1.026.

图7所示为增益特性图,加入矩形金属谐振环左手材料结构后,这种多层复合左手材料矩形框分形天线,在频率f=23.2309GHZ处正向增益最大约为10.8dB,在谐振点f=15.9098Ghz附近正向最大增益为6.3dB。说明近零折射率效应具有更高的定向增益。Figure 7 shows the gain characteristic diagram. After adding the left-handed material structure of the rectangular metal resonant ring, this multilayer composite left-handed material rectangular frame fractal antenna has a maximum forward gain of about 10.8dB at the frequency f=23.2309GHZ, and at the resonance point The maximum positive gain near f=15.9098Ghz is 6.3dB. It shows that the near-zero refractive index effect has higher directional gain.

通过对这种基于矩形开口环左手材料的矩形框分形天线的研究,发现其特性表现为天线具有左手效应和折射率近零效应,将该天线在两个频率的效应进行比较,发现左手效应具有更小的回波损耗,而近零折射率效应具有更高的定向增益;并将具有矩形谐振环的矩形框分形天线与普通的矩形框分形天线进行比较,发现它比后者具有更小的回波损耗和更高的增益。从理论的角度分析其原因为:一方面,在贴片天线的基底介质上加入了左手材料之后,就会形成电磁(光子)禁带,抑制沿基底底板介质传播的表面波,从而增加电磁波向自由空间的反射能量;另一方面,在f=15.9098GHz频率处产生的电磁波共振态,使得该结构的整体相对介电常数和磁导率均为负值,形成电磁波的“隧道”效应和倏逝波的放大作用,由此,大大加强了电磁波共振强度,另外f=23.2309GHz处,近零折射率效应对电磁波束产生汇聚作用,导致天线增益明显增大,并表现为较低的回波损耗,较好地改善了天线的性能。Through the study of the rectangular frame fractal antenna based on the left-handed material of the rectangular split ring, it is found that its characteristic is that the antenna has a left-handed effect and a near-zero refractive index effect. Comparing the effects of the antenna at two frequencies, it is found that the left-handed effect has Smaller return loss, and the near-zero refractive index effect has higher directional gain; and compared the rectangular frame fractal antenna with the rectangular resonant ring with the ordinary rectangular frame fractal antenna, it is found that it has a smaller return loss and higher gain. From a theoretical point of view, the reasons are as follows: on the one hand, after the left-handed material is added to the base medium of the patch antenna, an electromagnetic (photonic) forbidden band will be formed, which will suppress the surface wave propagating along the base plate medium, thereby increasing the direction of electromagnetic waves. The reflected energy of free space; on the other hand, the electromagnetic wave resonance state generated at f=15.9098GHz frequency makes the overall relative permittivity and magnetic permeability of the structure both negative, forming the "tunnel" effect and evanescence of electromagnetic waves The amplification effect of the evanescent wave greatly enhances the resonance intensity of the electromagnetic wave. In addition, at f=23.2309GHz, the near-zero refractive index effect has a converging effect on the electromagnetic beam, resulting in a significant increase in the antenna gain and a lower echo Loss, better to improve the performance of the antenna.

至此,完成这种基于矩形框左手材料的分形天线的制作。So far, the fabrication of the fractal antenna based on the left-hand material of the rectangular frame has been completed.

Claims (3)

1.一种基于矩形开口环左手材料的矩形框分形天线,其特征在于:包括第一层介质基板(1)、第二层介质基板(2)、第三层介质基板(3) 、金属接地板(4)、微带馈线(5)、矩形框分形金属辐射贴片(6)、矩形金属谐振环(7);第一层介质基板(1)、第二层介质基板(2) 、第三层介质基板(3) 、金属接地板(4)依次叠加,矩形框分形贴片天线由矩形框分形金属辐射贴片(6)和微带馈线(5)组成,微带馈线(5)通过金属导线与激励源相连,用于对基于矩形开口环左手材料的矩形框分形天线馈电;第一层介质基板(1)的正面采用电路板刻蚀技术刻蚀出矩形框分形贴片天线和周期性排列的矩形金属谐振环(7)、第二层介质基板(2)和第三层介质基板(3)的正面都采用电路板刻蚀技术刻蚀出周期性排列的矩形金属谐振环(7),第三层介质基板(3)的反面贴有金属接地板(4),其通过金属导线与激励源相连。 1. A rectangular frame fractal antenna based on the left-hand material of a rectangular split ring, characterized in that it includes a first layer of dielectric substrate (1), a second layer of dielectric substrate (2), a third layer of dielectric substrate (3), a metal junction Floor (4), microstrip feeder (5), rectangular frame fractal metal radiation patch (6), rectangular metal resonant ring (7); the first layer of dielectric substrate (1), the second layer of dielectric substrate (2), the second The three-layer dielectric substrate (3) and the metal grounding plate (4) are stacked in sequence, and the rectangular frame fractal patch antenna is composed of a rectangular frame fractal metal radiation patch (6) and a microstrip feeder (5), and the microstrip feeder (5) passes through The metal wire is connected to the excitation source, and is used to feed the rectangular frame fractal antenna based on the left-hand material of the rectangular split ring; the front side of the first layer of dielectric substrate (1) is etched with a circuit board etching technology to form a rectangular frame fractal patch antenna and Periodically arranged rectangular metal resonant rings (7), the front surfaces of the second layer of dielectric substrate (2) and the third layer of dielectric substrate (3) are all etched out of periodically arranged rectangular metal resonant rings ( 7), the reverse side of the third dielectric substrate (3) is pasted with a metal grounding plate (4), which is connected to the excitation source through metal wires. 2.根据权利要求1所述的一种基于矩形开口环左手材料的矩形框分形天线,其特征在于:所述的第三层介质基板(3)正面周期性排列的矩形金属谐振环(7)共36个,以6×6的结构均匀排布,所述的第二层介质基板(2)与第三层介质基板(3)相比,其正面除缺少正中的四个矩形金属谐振环(7)外其他排布与第三层介质基板(3)相同,共排布了32个矩形金属谐振环(7),所述的第一层介质基板(1)正面的矩形金属谐振环(7)的排布与第二层介质基板(2)正面的矩形金属谐振环(7)的排布相同,正中采用电路板刻蚀技术刻蚀出矩形框分形贴片天线。 2. A rectangular frame fractal antenna based on a rectangular split ring left-handed material according to claim 1, characterized in that: the rectangular metal resonant ring (7) periodically arranged on the front of the third dielectric substrate (3) A total of 36 pieces are evenly arranged in a 6×6 structure. Compared with the third layer dielectric substrate (3), the second layer of dielectric substrate (2) lacks four rectangular metal resonant rings ( 7) The other arrangement is the same as that of the third layer of dielectric substrate (3), a total of 32 rectangular metal resonant rings (7) are arranged, and the rectangular metal resonant ring (7) on the front side of the first layer of dielectric substrate (1) ) is arranged in the same arrangement as the rectangular metal resonant ring (7) on the front of the second dielectric substrate (2), and a rectangular frame fractal patch antenna is etched in the center by using circuit board etching technology. 3.根据权利要求1或2所述的一种基于矩形开口环左手材料的矩形框分形天线,其特征在于:第一层介质基板(1)、第二层介质基板(2)、第三层介质基板(3)叠加后的尺寸为80mm×80mm×7mm;第一层介质基板(1)、第二层介质基板(2)和第三层介质基板(3)的尺寸相同,长和宽均为80mm;第一层介质基板(1)和第三层介质基板(3)的相对介电常数均为10,厚度均为D1=2mm,第二层介质基板(2)的相对介电常数均为2.2,厚度D2=3mm;第一层介质基板(1)正面固定有宽度W7=27mm的矩形框分形金属辐射片(6),其中矩形框分形金属辐射贴片(6)由25个长和宽均为W8=3mm的矩形框构成;所述的矩形金属谐振环(7)由内外两层矩形开口环构成,外层矩形开口环长和宽均为W2=9mm,内层矩形开口环长和宽均为W3=7mm,矩形金属谐振环(7)的宽度W9=0.5mm,内外层矩形的开口宽度均为W5=1mm,相邻的矩形金属谐振环(7)左右间隔S1=4mm,上下间隔也是S1=4mm,矩形金属谐振环(7)距介质基板边缘的间距W4=3mm,微带馈线(5)的长L2=38.5mm,宽W6=1mm,第三层介质基板(3)反面贴有80mm×80mm金属接地板(4),激励源通过金属导线一端与微带馈线(5)相连,一端与金属接地板(4)相连,激励源采用Gaussian离散源,通过微带馈线(5)给矩形框分形金属辐射片(6)馈电。 3. A rectangular frame fractal antenna based on a rectangular split ring left-handed material according to claim 1 or 2, characterized in that: the first layer of dielectric substrate (1), the second layer of dielectric substrate (2), the third layer The size of the stacked dielectric substrates (3) is 80mm×80mm×7mm; the dimensions of the first layer of dielectric substrate (1), the second layer of dielectric substrate (2) and the third layer of dielectric substrate (3) are the same, with the same length and width. The relative permittivity of the first layer of dielectric substrate (1) and the third layer of dielectric substrate (3) are both 10, and the thickness is D 1 =2mm, the relative permittivity of the second layer of dielectric substrate (2) Both are 2.2, thickness D 2 =3mm; the front of the first dielectric substrate (1) is fixed with a rectangular frame fractal metal radiation patch (6) with a width W 7 =27mm, in which the rectangular frame fractal metal radiation patch (6) consists of 25 A rectangular frame whose length and width are both W 8 =3 mm; the rectangular metal resonant ring (7) is composed of two inner and outer rectangular split rings, the outer rectangular split ring has a length and width of W 2 =9 mm, and the inner The length and width of the layered rectangular opening ring are both W 3 =7mm, the width of the rectangular metal resonant ring (7) is W 9 =0.5mm, the opening width of the inner and outer rectangles is both W 5 =1mm, and the adjacent rectangular metal resonant ring ( 7) The distance between left and right is S 1 =4mm, the distance between top and bottom is also S 1 =4mm, the distance between the rectangular metal resonant ring (7) and the edge of the dielectric substrate is W 4 =3mm, the length L 2 of the microstrip feeder (5) =38.5mm, and the width W 6 =1mm, 80mm×80mm metal grounding plate (4) is pasted on the reverse side of the third dielectric substrate (3), the excitation source is connected to the microstrip feeder (5) through a metal wire at one end, and the metal grounding plate (4) at one end , the excitation source adopts a Gaussian discrete source, and feeds the rectangular frame fractal metal radiator (6) through the microstrip feeder (5).
CN2013103687158A 2013-08-22 2013-08-22 Rectangular frame fractal antenna with both near-zero refractive index effect and left-handed effect Pending CN103414029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013103687158A CN103414029A (en) 2013-08-22 2013-08-22 Rectangular frame fractal antenna with both near-zero refractive index effect and left-handed effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013103687158A CN103414029A (en) 2013-08-22 2013-08-22 Rectangular frame fractal antenna with both near-zero refractive index effect and left-handed effect

Publications (1)

Publication Number Publication Date
CN103414029A true CN103414029A (en) 2013-11-27

Family

ID=49607023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013103687158A Pending CN103414029A (en) 2013-08-22 2013-08-22 Rectangular frame fractal antenna with both near-zero refractive index effect and left-handed effect

Country Status (1)

Country Link
CN (1) CN103414029A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633431A (en) * 2013-12-06 2014-03-12 西安电子科技大学 Low-profile adjustable tri-band antenna
CN104201480A (en) * 2014-07-16 2014-12-10 电子科技大学 Novel LTCC laminate circular polarization microstrip antenna
CN104218325A (en) * 2014-09-15 2014-12-17 西安电子科技大学 Artificial electromagnetic material with effective dielectric constant and permeability close to zero
CN105811077A (en) * 2014-10-23 2016-07-27 现代自动车株式会社 Antenna, circular polarized patch antenna, and vehicle having the same
CN107634346A (en) * 2017-08-07 2018-01-26 西安电子科技大学 ENZ metasurface sandwich for multi-angle transmission of TE and TM polarized waves
CN107732450A (en) * 2017-12-01 2018-02-23 厦门大学嘉庚学院 Multilayer Gradient Fractal Slot Graphene Antenna for Mobile Digital TV
CN109586023A (en) * 2019-01-07 2019-04-05 云南大学 Rectangular microstrip antenna based on Metamaterial dielectric substrate
CN111106425A (en) * 2018-10-29 2020-05-05 奥特斯奥地利科技与系统技术有限公司 Electronic device and method for transmitting or receiving electromagnetic radiation
CN111758186A (en) * 2018-02-23 2020-10-09 高通股份有限公司 Multi-layer antenna
CN113300115A (en) * 2021-05-18 2021-08-24 北京邮电大学 Electromagnetic metamaterial lens unit and metamaterial lens antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090160718A1 (en) * 2007-12-21 2009-06-25 Ta-Jen Yen Plane focus antenna
CN101976760A (en) * 2010-09-07 2011-02-16 江苏大学 Resonance loop left-handed medium patch antenna
US20110095955A1 (en) * 1995-08-09 2011-04-28 Fractal Antenna Systems, Inc. Fractal antennas and fractal resonators
CN103236581A (en) * 2013-04-09 2013-08-07 江苏大学 Left-handed material latticed patch antenna with multi-layer composite heterostructure
CN203617428U (en) * 2013-08-22 2014-05-28 江苏大学 Rectangular frame fractal antenna with near-zero refractive index effect and left-hand effect simultaneously

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110095955A1 (en) * 1995-08-09 2011-04-28 Fractal Antenna Systems, Inc. Fractal antennas and fractal resonators
US20090160718A1 (en) * 2007-12-21 2009-06-25 Ta-Jen Yen Plane focus antenna
CN101976760A (en) * 2010-09-07 2011-02-16 江苏大学 Resonance loop left-handed medium patch antenna
CN103236581A (en) * 2013-04-09 2013-08-07 江苏大学 Left-handed material latticed patch antenna with multi-layer composite heterostructure
CN203617428U (en) * 2013-08-22 2014-05-28 江苏大学 Rectangular frame fractal antenna with near-zero refractive index effect and left-hand effect simultaneously

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633431A (en) * 2013-12-06 2014-03-12 西安电子科技大学 Low-profile adjustable tri-band antenna
CN104201480A (en) * 2014-07-16 2014-12-10 电子科技大学 Novel LTCC laminate circular polarization microstrip antenna
CN104218325A (en) * 2014-09-15 2014-12-17 西安电子科技大学 Artificial electromagnetic material with effective dielectric constant and permeability close to zero
CN104218325B (en) * 2014-09-15 2016-08-17 西安电子科技大学 A kind of effective dielectric constant and the artificial electromagnetic material of magnetic conductivity nearly zero
CN105811077A (en) * 2014-10-23 2016-07-27 现代自动车株式会社 Antenna, circular polarized patch antenna, and vehicle having the same
CN105811077B (en) * 2014-10-23 2020-12-01 现代自动车株式会社 Antenna, circularly polarized patch antenna and vehicle having such an antenna
CN107634346A (en) * 2017-08-07 2018-01-26 西安电子科技大学 ENZ metasurface sandwich for multi-angle transmission of TE and TM polarized waves
CN107634346B (en) * 2017-08-07 2020-07-28 西安电子科技大学 ENZ super-surface interlayer for multi-angle transmission of TE and TM polarized waves
CN107732450A (en) * 2017-12-01 2018-02-23 厦门大学嘉庚学院 Multilayer Gradient Fractal Slot Graphene Antenna for Mobile Digital TV
CN107732450B (en) * 2017-12-01 2023-08-04 厦门大学嘉庚学院 Multilayer gradual change fractal gap graphene antenna for mobile digital television
CN111758186B (en) * 2018-02-23 2023-06-13 高通股份有限公司 Multilayer antenna
CN111758186A (en) * 2018-02-23 2020-10-09 高通股份有限公司 Multi-layer antenna
CN111106425A (en) * 2018-10-29 2020-05-05 奥特斯奥地利科技与系统技术有限公司 Electronic device and method for transmitting or receiving electromagnetic radiation
US10897308B2 (en) 2018-10-29 2021-01-19 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Integration of all components being necessary for transmitting/receiving electromagnetic radiation in a component carrier
CN109586023A (en) * 2019-01-07 2019-04-05 云南大学 Rectangular microstrip antenna based on Metamaterial dielectric substrate
CN113300115A (en) * 2021-05-18 2021-08-24 北京邮电大学 Electromagnetic metamaterial lens unit and metamaterial lens antenna
CN113300115B (en) * 2021-05-18 2022-05-31 北京邮电大学 Electromagnetic metamaterial lens unit and metamaterial lens antenna

Similar Documents

Publication Publication Date Title
CN103414029A (en) Rectangular frame fractal antenna with both near-zero refractive index effect and left-handed effect
Liu et al. Enhancement of the gain for microstrip antennas using negative permeability metamaterial on low temperature co-fired ceramic (LTCC) substrate
CN104218325B (en) A kind of effective dielectric constant and the artificial electromagnetic material of magnetic conductivity nearly zero
CN103427159B (en) A kind of MULTILAYER COMPOSITE compound lattice structure left-handed materials shaped as frame paster antenna
TW201001802A (en) Artificial medium
Elwi et al. A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications
CN101976759A (en) Equivalent LHM (Left Handed Material) patch antenna of split ring resonators
CN102938500A (en) Combined spiral-wire rectangular-frame patch antenna based on left-handed material effect
CN203617428U (en) Rectangular frame fractal antenna with near-zero refractive index effect and left-hand effect simultaneously
CN102157797A (en) Broadband high-gain flat-plate Vivaldi antenna
CN103996899B (en) Cross gap paster antenna based on complementation division resonant ring
Dawar et al. Bandwidth enhancement of RMPA using ENG metamaterials at THz
CN103236581B (en) Left-handed material latticed patch antenna with multi-layer composite heterostructure
Pushpakaran et al. A compact stacked dipole antenna with directional radiation coverage for wireless communications
Bala et al. Design and analysis of metamaterial antenna using triangular resonator
CN107681252A (en) A kind of method that Compact high-gain antenna is made using sub-wavelength period disresonance structure coating
CN103236580B (en) Multilayer composite left-handed material rectangular-frame patch antenna based on photonic crystal structure
CN104409804B (en) A kind of frequency-selective surfaces and method for designing with switching characteristic
CN110707422A (en) Hyperbolic metamaterial planar antenna
Joshi et al. Rectangular slotted microstrip patch antenna with partially loaded metamaterial ground plane
Aktar et al. Enhanced gain and bandwidth of patch antenna using ebg substrates
JP3978502B1 (en) Strip line type left-handed line
CN203250855U (en) A Rectangular Frame Patch Antenna of Multilayer Composite Left-Handed Material Based on Photonic Crystal Structure
Nemati et al. A 77GHz on-chip microstrip patch antenna with suppressed surface wave using EBG substrate
Chen et al. A compact electromagnetic bandgap structure based on multi-layer technology for 7-Tesla magnetic resonance imaging applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131127