CN103401529A - 复数带通滤波器电路的直流偏差校正方法 - Google Patents

复数带通滤波器电路的直流偏差校正方法 Download PDF

Info

Publication number
CN103401529A
CN103401529A CN2013102555946A CN201310255594A CN103401529A CN 103401529 A CN103401529 A CN 103401529A CN 2013102555946 A CN2013102555946 A CN 2013102555946A CN 201310255594 A CN201310255594 A CN 201310255594A CN 103401529 A CN103401529 A CN 103401529A
Authority
CN
China
Prior art keywords
deviation
passage
circuit
bandpass filters
complex bandpass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102555946A
Other languages
English (en)
Other versions
CN103401529B (zh
Inventor
杨俊杰
杨柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Jiuwei Electric Power Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310255594.6A priority Critical patent/CN103401529B/zh
Publication of CN103401529A publication Critical patent/CN103401529A/zh
Application granted granted Critical
Publication of CN103401529B publication Critical patent/CN103401529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种复数带通滤波器电路的直流偏差校正方法。步骤如下:(1)在中频接收和滤波器系统设计时使用同样阻值的衰减反馈电阻R和耦合频移电阻R0;(2)断开所有四个开关:SWI和SWQ,然后启动SAR取样反馈控制电路,改变Iq1电流源的幅度,使得I通道和Q通道的直流偏差同时减小到零;(3)接通SWI开关但断开SWQ开关,然后启动SAR取样反馈控制电路,改变Ii2电流源的幅度,使得I通道和Q通道的直流偏差同时减小到零;(4)接通开所有四个开关;理论上和实际电路中将直流偏差彻底减小到接近于零的水平,从而消除直流偏差对中频电路的影响,提高无线系统接收信号的动态范围。

Description

复数带通滤波器电路的直流偏差校正方法
技术领域
本发明涉及电子工程中的半导体工艺和电路设计技术,特别是一种复数带通滤波器电路的直流偏差校正方法。
背景技术
射频(RF)接收电路中通常包括天线(Antenna),低噪声放大器(LNA),混频器(Mixer),低通滤波器(LPF),信号放大器(VGA),模数转换器(ADC)等模块。如果采取直接转换(Direct Conversion)的方式, 在混频器阶段接收信号路径和振荡器(LO)时钟路径容易相互耦合泄露,这样造成自我混频而产生直流偏差。为了避免这个问题,很多设计采用了中频(IF)电路的方式 ,即分成两个阶段来从RF信号中分离出原来信号。第一阶段在混频器使用稍低于发射LO时钟的频率进行混频,这时就会使用复数带通滤波器(BPF)和放大器(VGA)来取代直接转换(Direct Conversion)电路中的低通滤波器(LPF)和放大器(VGA);第二阶段在基带用数字方式解码出原来的信号。这样中频IF电路的混频器造成的直流偏差大大降低,而直流偏差的主要来源不再是混频器模块的自我混频,而是其他因素,如差分电路不对称,工艺偏差等,特别是电路的增益大的时候尤其明显。
中频IF接收电路的直流偏差校正的难点在于:由于中频电路处理的是复数频率,所以I通道和Q通道电路有交互反馈作用。对于分离的I通道或Q通道,由于没有反馈回路的存在,直流偏差校正时只需采样输出直流偏置然后进行一次性电流补偿就可以将直流偏置降到很低的水平。但对于I通道和Q通道电路的交互反馈,即使I通道校正后,在校正Q通道的过程中可能会让I通道的直流偏置回到很差的水平。而且即使对I通道和Q通道反复循环校正,输出端的直流偏置可能根本不收敛,难以降低到理想的水平。这在高增益的情形尤其明显,由于这时电路的灵敏度更大。
目前很多中频IF接收电路还是采用对复数带通滤波器(BPF)和放大器(VGA)的I通道和Q通道的反复循环校正,然后取得相对较小的直流偏差为止(80mv-100mv),这样会使得中频带通滤波器(BPF)和放大器(VGA)的后一级模数转换器(ADC)很容易饱和,信号动态范围减小,从而降低系统的性能;而且这种方式由于不能确保直流偏差到最小值,所以在工艺最差情形下会造成极大的直流偏差,所以也会造成芯片成品率(Yield)的下降。
虽然有些方式来解决I通道和Q通道造成的直流偏差互相干扰问题,如高通(Qualcomm)的2011年美国专利US2011/0037506A1,在I通道和Q通道耦合的路径中增添了开关控制来分离取样I通道和Q通道的直流偏置并进行校正,但这个方法有个假设,就是当I通道和Q通道的运放产生的直流偏置水平相同时,采用这种方式能将直流偏置降到极低水平。可是带通滤波器直流偏置的机理本事就是由于一些随机的因素,如工艺造成的几何尺寸偏离,对称性不够等,所以虽然这种方式在大多数情形可以将直流偏置降低,但还是不是一种可靠的方法。当I通道和Q通道的直流偏置水平不同或甚至极性相反时,该方式校正的结果就不理想。
发明内容
基于目前对于中频接收电路,包括复数带通滤波器和放大器的直流偏置电路存在的可靠性问题,本发明在严格理论分析的基础上,一种复数带通滤波器电路的直流偏差校正方法,其特征在于,包括如下步骤:
a.  电路系统设计;
b.  直流偏差取样校正电路;
c.  中频接收滤波器电路直流偏差固定的校正。
优选的,所述电路系统设计部分包括:
a.在中频接收和滤波器系统设计时使用同样阻值的衰减反馈电阻R和耦合频移电阻R0 ;
b.直流偏差校正电流补偿点有三处:  Ii2 是在I通道输入电阻Ri之前接入,以消除来自于前一级混频器I通道输出的直流偏差;Iq2是在Q通道输入电阻Ri之前接入,以消除来自于前一级混频器I通道输出的直流偏差;Iq1 是在通道输入电阻Ri之后接入,以消除来自于Q通道运算放大器输入端的直流偏差;
c.之所以I通道运算放大器输入端的直流偏差不需要补偿(没有电流源Ii1)是因为在权利要求2a中使用同样阻值的衰减反馈电阻R和耦合频移电阻R0,所以在 I通道运算放大器直流偏差在输出端产生的效应已经抵销为零。
优选的,所述直流偏差取样电路包括:
a.输出直流偏压电压比较器;
b.逐次逼近型寄存器算法逻辑和相应的寄存器;
c.多位高精度数模转换器;
d.受控电流源。
优选的,所述中频接收滤波器电路直流偏差固定的校正步骤包括:
a.芯片上电,系统初始化,所以寄存器设初始值0;并将低噪声放大器的正负输入端短接;
b.断开I通道和Q通道信号输入端开关,通过取样反馈电路调节Iq1补偿电流源幅度;
c.调节Iq1补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器的比特数,直到I通道和Q通道的直流偏差都接近于零;
d.断开Q通道信号输入端开关,接通I通道输入端开关,通过取样反馈电路调节Ii2补偿电流源幅度;
e.调节Ii2补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器的比特数,直到I通道和Q通道的直流偏差都接近于零;
f.接通I通道和Q通道输入端开关,通过取样反馈电路调节Iq2补偿电流源幅度;
g.调节Iq2补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器的比特数,直到I通道和Q通道的直流偏差都接近于零;
h.将低噪声放大器的正负输入端短接断开;中频接收滤波器电路直流偏差校正过程结束。
优选的,所述输出直流偏压电压比较器,当输入直流偏差正极大于负极时输出高电平;当输入直流偏差正极小于负极时输出低电平。
优选的,所述逐次逼近型寄存器算法逻辑和相应的寄存器,按如下顺序来生成控制电流源的比特位:
a.初始时所有比特位都设为零;
b.第一次将最高位从零切换到1,然后寄存器控制数模转换器生成相应的补偿电流送到复数带通滤波器的输入端,接下来电压比较器根据复数带通滤波器输出进行取样,生成比较结果。如果比较器输出为1,则最高位保留为1;否则如果比较器输出为0,则最高位(MSB)重设为为0;        
c.重复b的步骤依次决定从第二最高位到最低位的比特值,当LSB结束后,寄存器的值就是该补偿电流源控制比特的最后值。保存该比特值,在电路正常工作时使用。
优选的,所述多为数模转换器,根据寄存器的控制比特位生成相应的控制电流。如控制比特位是1111111111就生成最大幅度的直流偏差补偿电流;而如控制比特位是0000000000就生成最小幅度的直流偏差补偿电流。             
优选的,所述受控电流源代表DAC根据寄存器的控制比特位所生成的电流,直接接入到复数带宽滤波器的I通道或Q通道的输入端。
    对于复数带通滤波器和放大器中I通道和Q通道相互耦合的情形,I通道在滤波器输出端的直流偏差为:                                                          
     其中  和 
Figure 259286DEST_PATH_IMAGE003
是I通道和Q通道复数带通滤波器和放大器前一级模块产生的直流偏压,而  
Figure 637178DEST_PATH_IMAGE004
和 
Figure 706765DEST_PATH_IMAGE005
则是复数带通滤波器和放大器本身在I通道和Q通道运放输入端产生的直流偏压。
同样,Q通道在滤波器输出端的直流偏压为:
         
Figure 435686DEST_PATH_IMAGE006
基于上述分析,本发明设计采取如下方式来减小和抵消中频电路所产生的直流偏差:
a.  设计R和R0 取同样阻值来使得 
Figure 373555DEST_PATH_IMAGE007
项生成的直流偏差为零;这个条件易于实现,因为复数带通滤波器和放大器电路增益由R/Ri决定,如果R固定为R0值,可以只改变Ri来达到可变增益的目的(VGA);
b.  增加I通道开关SWI,这样SWI开关断开时Ri相当于∞,从而使得直流偏差项  
Figure 605954DEST_PATH_IMAGE008
为零;
c.  增加Q通道开关SWQ,这样SWQ开关断开时Ri相当于∞,从而使得直流偏差项为 
Figure 112021DEST_PATH_IMAGE009
零。
 基于上述分析,本发明设计采取如下步骤来实现降低输出端的直流偏压到接近于零的水平:
a.  在中频接收和复数带通滤波器系统设计时使用同样阻值的衰减反馈电阻R和耦合频移电阻R0 ;这样使得在I通道和Q通道输出直流偏差中 项生成的直流偏差为零;
b.  断开I通道和Q通道信号输入端开关SWI和 SWQ,使得直流偏差项 
Figure 538640DEST_PATH_IMAGE008
和  
Figure 625545DEST_PATH_IMAGE009
都为零;利用直流偏置取样反馈校正电路调节Iq1电流源幅度来补偿偏置电流  
Figure 302514DEST_PATH_IMAGE010
而使得I通道和Q通道直流偏差同时减小到接近于零;
c.  断开Q通道信号输入端开关使得  
Figure DEST_PATH_IMAGE011
为零,接通I通道输入端开关,通过取样反馈电路调节Ii2电流源幅度来补偿偏置电流 
Figure 333924DEST_PATH_IMAGE008
而使得I通道和Q通道直流偏差同时减小到接近于零;
d.  接通I通道和Q通道输入端开关,通过取样反馈电路调节Iq2电流源幅度来补偿偏置电流  
Figure 488962DEST_PATH_IMAGE012
而使得I通道和Q通道直流偏差同时减小到接近于零。
基于上述分析,由于 
Figure 695952DEST_PATH_IMAGE002
和  
Figure DEST_PATH_IMAGE013
分别是I通道和Q通道在混频器输出所产生的直流偏差。所以本发明的校正方式包括了校正由低噪声放大器和混频器所产生的直流偏差。
基于上述分析,由于  和 
Figure 328108DEST_PATH_IMAGE014
分别是复数带通滤波器和放大器本身在I通道和Q通道运放输入端产生的直流偏压,所以本发明的校正方式包括了校正由复数带通滤波器和放大器产生的直流偏差。
虽未明确提及,本发明电流源补偿方式可以为单端或差分补偿。在差分补偿时通道的正极输入端和负极输入端都有补偿电流源,其幅值相等但极性相反。
 本发明对无线中频复数带通滤波器电路的直流偏差校正的精度取小于数模转换器(DAC)的最低位(LSB)所代表的直流偏差水平。所以DAC的精度越高,最终直流偏差校正的精度也就越高。
附图说明
图1是中频IF接收电路的组成电路模块和信号路径;
图2是复数带通滤波器的电路结构和直流偏置校正电流源的接入方式;
图3是直流偏差取样校正电路的内部模块图;
图4是中频接收电路直流偏差的校正步骤;
图5是直流偏差校正流程的输出波形。
如下具体实施方式将结合附图进行说明。
具体实施方式
本发明直流偏差校正方式所适用的中频无线接收系统如图1所示。RF信号由天线(101)进入,经过低噪声放大器(LNA,102)后分两路I通道和Q通道送入混频器(Mixer,103和104),然后经过复数带通滤波器和放大器(Complex BPF和VGA,105),经过复数带通模数转换器(Complex Band-pass ?∑ADC,107)后变成基带信号。直流偏置反馈校正电路在复数带通滤波器和放大器的输出端取样,然后生成控制电流源的输出进入复数带通滤波器和放大器的输入端。由于复数带通滤波器和放大器位于中间,所以它的直流偏置也受到前面混频器和低噪声放大器的影响。
图2是复数带通滤波器的电路结构和直流偏置校正电流源的接入方式。电路系统设计部分包括:
a.  在中频接收和滤波器系统设计时使用同样阻值的衰减反馈电阻R和耦合频移电阻R0 ;
b.  直流偏差校正电流补偿点有三处:  Ii2 是在I通道输入电阻Ri之前接入,以消除来自于前一级混频器I通道输出的直流偏差;Iq2是在Q通道输入电阻Ri之前接入,以消除来自于前一级混频器I通道输出的直流偏差;Iq1 是在通道输入电阻Ri之后接入,以消除来自于Q通道运算放大器输入端的直流偏差;
c.  之所以I通道运算放大器输入端的直流偏差不需要补偿(没有电流源Ii1)是因为在权利要求2a中使用同样阻值的衰减反馈电阻R和耦合频移电阻R0,所以在 I通道运算放大器直流偏差在输出端产生的效应已经抵销为零。
在图3中直流偏差校正电路的模块包括:
a.  输出直流偏压电压比较器
b.  逐次逼近型寄存器算法逻辑和相应的寄存器(SAR)
c.  多位高精度数模转换器(DAC)
d.  受控电流源
中频接收滤波器电路直流偏差固定的校正步骤如图4所示,包括:
a.  芯片上电,系统初始化,所以寄存器设初始值0;并将低噪声放大器(LNA)的正负输入端短接;
b.  断开I通道和Q通道信号输入端开关,通过取样反馈电路调节Iq1补偿电流源幅度;
c.  调节Iq1补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器(DAC)的比特数,直到I通道和Q通道的直流偏差都接近于零;
d.  断开Q通道信号输入端开关,接通I通道输入端开关,通过取样反馈电路调节Ii2补偿电流源幅度;
e.  调节Ii2补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器(DAC)的比特数,直到I通道和Q通道的直流偏差都接近于零;
f.  接通I通道和Q通道输入端开关,通过取样反馈电路调节Iq2补偿电流源幅度;
g.  调节Iq2补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器(DAC)的比特数,直到I通道和Q通道的直流偏差都接近于零;
h.  将低噪声放大器(LNA)的正负输入端短接断开;中频接收滤波器电路直流偏差校正过程结束。
图5是连续三次校正过程中直流偏差的波形图。每一次校正I和Q通道的直流偏差都同时减小到几乎为零。但当开关切换时,I通道和Q通道的直流偏差又变差,所以下一次校正又将直流偏差减小到几乎为零。最后当所有开关开通时,校正流程将直流偏置减小到几乎为零时,这时开关的状态也是电路正常工作的状态,所以正常工作时,经过校正后的电路的直流偏差也几乎为零。
本发明电流源补偿方式可以为单端或差分补偿。在差分补偿时通道的正极输入端和负极输入端都有补偿电流源,其幅值相等但极性相反。
以上所示为本发明的具体实施方式,但本发明的保护范围并不局限于此。任何熟悉本技术领域的专业技术人员在本发明公开的技术范围内,所轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种复数带通滤波器电路的直流偏差校正方法,其特征在于,包括如下步骤:
a.电路系统设计;
b.直流偏差取样校正电路;
c.中频接收滤波器电路直流偏差固定的校正。
2. 根据权利要求1所述的一种复数带通滤波器电路的直流偏差校正方法,其特征在于,所述电路系统设计部分包括:
a.在中频接收和滤波器系统设计时使用同样阻值的衰减反馈电阻R和耦合频移电阻R0 ;
b.直流偏差校正电流补偿点有三处:  Ii2 是在I通道输入电阻Ri之前接入,以消除来自于前一级混频器I通道输出的直流偏差;Iq2是在Q通道输入电阻Ri之前接入,以消除来自于前一级混频器I通道输出的直流偏差;Iq1 是在通道输入电阻Ri之后接入,以消除来自于Q通道运算放大器输入端的直流偏差;
c.之所以I通道运算放大器输入端的直流偏差不需要补偿(没有电流源Ii1)是因为在权利要求2a中使用同样阻值的衰减反馈电阻R和耦合频移电阻R0,所以在 I通道运算放大器直流偏差在输出端产生的效应已经抵销为零。
3.根据权利要求2所述的一种复数带通滤波器电路的直流偏差校正方法,其特征在于,所述直流偏差取样电路包括:
a.输出直流偏压电压比较器;
b.逐次逼近型寄存器算法逻辑和相应的寄存器;
c.多位高精度数模转换器;
d.受控电流源。
4.根据权利要求3所述的一种复数带通滤波器电路的直流偏差校正方法,其特征在于,所述中频接收滤波器电路直流偏差固定的校正步骤包括:
a.芯片上电,系统初始化,所以寄存器设初始值0;并将低噪声放大器的正负输入端短接;
b.断开I通道和Q通道信号输入端开关,通过取样反馈电路调节Iq1补偿电流源幅度;
c.调节Iq1补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器的比特数,直到I通道和Q通道的直流偏差都接近于零;
d.断开Q通道信号输入端开关,接通I通道输入端开关,通过取样反馈电路调节Ii2补偿电流源幅度;
e.调节Ii2补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器的比特数,直到I通道和Q通道的直流偏差都接近于零;
f.接通I通道和Q通道输入端开关,通过取样反馈电路调节Iq2补偿电流源幅度;
g.调节Iq2补偿电流源幅度次数取决于直流偏差取样电路内多位高精度数模转换器的比特数,直到I通道和Q通道的直流偏差都接近于零;
h.将低噪声放大器的正负输入端短接断开;中频接收滤波器电路直流偏差校正过程结束。
5.根据权利要求3所述的一种复数带通滤波器电路的直流偏差校正方法,其特征在于,所述输出直流偏压电压比较器,当输入直流偏差正极大于负极时输出高电平;当输入直流偏差正极小于负极时输出低电平。
6.根据权利要求3所述的一种复数带通滤波器电路的直流偏差校正方法,其特征在于,所述逐次逼近型寄存器算法逻辑和相应的寄存器,按如下顺序来生成控制电流源的比特位:
a.初始时所有比特位都设为零;
b.第一次将最高位从零切换到1,然后寄存器控制数模转换器生成相应的补偿电流送到复数带通滤波器的输入端,接下来电压比较器根据复数带通滤波器输出进行取样,生成比较结果;如果比较器输出为1,则最高位保留为1;否则如果比较器输出为0,则最高位(MSB)重设为为0;        
c.重复b的步骤依次决定从第二最高位到最低位的比特值,当LSB结束后,寄存器的值就是该补偿电流源控制比特的最后值;保存该比特值,在电路正常工作时使用。
7.根据权利要求3所述的一种复数带通滤波器电路的直流偏差校正方法,其特征在于,所述多为数模转换器,根据寄存器的控制比特位生成相应的控制电流;
如控制比特位是1111111111就生成最大幅度的直流偏差补偿电流;而如控制比特位是0000000000就生成最小幅度的直流偏差补偿电流。              
8.根据权利要求3所述的一种复数带通滤波器电路的直流偏差校正方法,其特征在于,所述受控电流源代表DAC根据寄存器的控制比特位所生成的电流,直接接入到复数带宽滤波器的I通道或Q通道的输入端。
CN201310255594.6A 2013-06-25 2013-06-25 复数带通滤波器电路的直流偏差校正方法 Active CN103401529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310255594.6A CN103401529B (zh) 2013-06-25 2013-06-25 复数带通滤波器电路的直流偏差校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310255594.6A CN103401529B (zh) 2013-06-25 2013-06-25 复数带通滤波器电路的直流偏差校正方法

Publications (2)

Publication Number Publication Date
CN103401529A true CN103401529A (zh) 2013-11-20
CN103401529B CN103401529B (zh) 2017-05-17

Family

ID=49565091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310255594.6A Active CN103401529B (zh) 2013-06-25 2013-06-25 复数带通滤波器电路的直流偏差校正方法

Country Status (1)

Country Link
CN (1) CN103401529B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410386A (zh) * 2014-11-27 2015-03-11 北京时代民芯科技有限公司 一种应用于Gm-C型复数滤波器的直流失调消除电路
CN106505968A (zh) * 2016-11-02 2017-03-15 珠海市杰理科技股份有限公司 可重构滤波器及复数滤波器
CN108599763A (zh) * 2018-05-11 2018-09-28 成都华微电子科技有限公司 Sar型adc带有源运放型电容重分布阵列

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422889A (en) * 1992-10-28 1995-06-06 Alcatel N.V. Offset correction circuit
CN1397108A (zh) * 2000-11-23 2003-02-12 皇家菲利浦电子有限公司 具有直流控制环路及直流阻断电路的直流偏移校正电路
CN1536770A (zh) * 2003-05-15 2004-10-13 威盛电子股份有限公司 具有直流偏移补偿功能的直接转换接收器及其补偿方法
CN102377707A (zh) * 2010-08-11 2012-03-14 齐凌微电子科技(上海)有限公司 用于零中频接收器的消除直流偏移方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422889A (en) * 1992-10-28 1995-06-06 Alcatel N.V. Offset correction circuit
CN1397108A (zh) * 2000-11-23 2003-02-12 皇家菲利浦电子有限公司 具有直流控制环路及直流阻断电路的直流偏移校正电路
CN1536770A (zh) * 2003-05-15 2004-10-13 威盛电子股份有限公司 具有直流偏移补偿功能的直接转换接收器及其补偿方法
CN102377707A (zh) * 2010-08-11 2012-03-14 齐凌微电子科技(上海)有限公司 用于零中频接收器的消除直流偏移方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410386A (zh) * 2014-11-27 2015-03-11 北京时代民芯科技有限公司 一种应用于Gm-C型复数滤波器的直流失调消除电路
CN104410386B (zh) * 2014-11-27 2017-10-03 北京时代民芯科技有限公司 一种应用于Gm‑C型复数滤波器的直流失调消除电路
CN106505968A (zh) * 2016-11-02 2017-03-15 珠海市杰理科技股份有限公司 可重构滤波器及复数滤波器
CN108599763A (zh) * 2018-05-11 2018-09-28 成都华微电子科技有限公司 Sar型adc带有源运放型电容重分布阵列
CN108599763B (zh) * 2018-05-11 2022-04-15 成都华微电子科技股份有限公司 Sar型adc带有源运放型电容重分布阵列

Also Published As

Publication number Publication date
CN103401529B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
Brandolini et al. A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS
Zheng et al. A 14-bit 250 MS/s IF sampling pipelined ADC in 180 nm CMOS process
US9806915B1 (en) Circuit for and method of receiving an input signal
US10581442B2 (en) Apparatus for correcting linearity of a digital-to-analog converter
CN112187269B (zh) 可变速率模数ad高速采样电路
US9685969B1 (en) Time-interleaved high-speed digital-to-analog converter (DAC) architecture with spur calibration
EP3031135A1 (en) Analog switch for rf front end
US10873336B2 (en) Track and hold circuits for high speed and interleaved ADCs
CN111384902A (zh) 一种阻抗匹配频率可调的宽带接收机电路
TWI737914B (zh) 極低耗電接收機
CN103401529A (zh) 复数带通滤波器电路的直流偏差校正方法
US20070076818A1 (en) System and method for calibrating an analog signal path during operation in an ultra wideband receiver
CN103326735A (zh) 无线中频接收电路系统的直流偏差校正方法
US7973687B2 (en) Differential switch, D/A converter, semiconductor integrated circuit and communication apparatus
US8482335B2 (en) High linearity up-conversion mixer
US20080201396A1 (en) Signal processing apparatus and the correcting method
US7724061B2 (en) Active clamp circuit for electronic components
US9584152B1 (en) Current steering digital to analog converter with dual current switch modules
US20100225509A1 (en) Analog-digital converter with pipeline architecture associated with a programmable gain amplifier
CN106375252A (zh) 一种iq与tiadc频率联合失真的修正方法及系统
US9835931B1 (en) Differential voltage-mode integrate and dump photonic analog to digital converter (pADC)
US20160241424A1 (en) Front-End System for A Radio Device
KR102123270B1 (ko) 디지털 후면 교정을 가지는 시간 인터리브 파이프라인 아날로그 디지털 변환 장치 및 그 방법
Xie et al. A dual-mode analog baseband utilizing digital-assisted calibration for WCDMA/GSM receivers
CN101860323B (zh) 一种直流偏移校正装置、系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240509

Address after: No. 4, 16th Floor, No. 596 Huangpu Road, Ganjingzi District, Dalian City, Liaoning Province, 116000

Patentee after: Dalian Jiuwei Electric Power Technology Co.,Ltd.

Country or region after: China

Address before: 226236 General Manager's Office, No. 5 Zhongli Road, Binhai Industrial Park, Qidong City, Nantong City, Jiangsu Province

Patentee before: Yang Junjie

Country or region before: China

Patentee before: Yang Liu